Effects of High-Temperature Stress on Biological Characteristics of Coccophagus japonicus Compere
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Collection and Preparation
2.2. Short-Term High-Temperature Stress Assays
2.3. Continuous High-Temperature Stress Assays
2.4. Survival and Biological Control Assay Following High-Temperature Stress
2.5. Data Processing
3. Results
3.1. Effects of Short-Term High-Temperature Stress on C. japonicus
3.2. Effects of Continuous High-Temperature Stress on C. japonicus
3.3. Effects of High-Temperature Stress on the Biological Control Function of C. japonicus
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, K.H. Metabolic and Enzyme Adaptation to Temperature. In Environmental Physiology and Biochemistry of Insects; Hoffmann, K.H., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1984; pp. 1–32. [Google Scholar]
- Ling, Y.F.; Bonebrake, T.C. Consistent Heat Tolerance under Starvation across Seasonal Morphs in Mycalesis Mineus (Lepidoptera: Nymphalidae). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2022, 271, 111261. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, D.R.; Nasreen, A.; Moffat, C.E.; Clarke, P.; Roitberg, B.D. Effects of Simulated Heat Waves on an Experimental Community of Pepper Plants, Green Peach Aphids and Two Parasitoid Species. Oikos 2012, 121, 149–159. [Google Scholar] [CrossRef]
- Xie, L.N.; Dong, H.; Qian, H.T.; Yan, J.J.; Cong, B. Functional Response of Thelytokous and Arrhenotokous Strains of Trichogramma Dendrolimi (Hymenoptera: Trichogrammatidae) to Eggs of Corcyra Cephalonica (Lepidoptera: Pyralidae) at Different Temperatures. Acta Entomol. Sin. 2013, 56, 263–269. [Google Scholar]
- Denny, M.W. Survival in Spatially Variable Thermal Environments: Consequences of Induced Thermal Defense. Integr. Zool. 2018, 13, 392–410. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R. Perception of Climate Change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [Google Scholar] [CrossRef]
- Rensing, L.; Ruoff, P. Temperature Effect on Entrainment, Phase Shifting, and Amplitude of Circadian Clocks and Its Molecular Bases. Chronobiol. Int. 2002, 19, 807–864. [Google Scholar] [CrossRef]
- Gaudon, J.M.; Allison, J.D.; Smith, S.M. Factors Influencing the Dispersal of a Native Parasitoid, Phasgonophora Sulcata, Attacking the Emerald Ash Borer: Implications for Biological Control. BioControl 2018, 63, 751–761. [Google Scholar] [CrossRef]
- Su, Y. Yun-TaikKim Temperature-Sensitive Paralytic Behavior of Shibire Is Altered in cAMP Defective Mutations of Drosophila. Genes Genom. 2003, 25, 9–153. [Google Scholar]
- De Fabrizio, V.; Trotta, V.; Pariti, L.; Radice, R.P.; Martelli, G. Preliminary Characterization of Biomolecular Processes Related to Plasticity in Acyrthosiphon Pisum. Heliyon 2024, 10, e23650. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, J.; Wyckhuys, K.A.G.; Yang, Y.; Lu, Y. Impact of Heat Stress on the Predatory Ladybugs Hippodamia Variegata and Propylaea Quatuordecimpunctata. Insects 2022, 13, 306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.P.; Zhu, J.H.; Han, D.Y.; Tan, H.Z.; Niu, L.M.; Fu, Y.G. Determination of the Supercooling Point of Parasaissetia Nigra and Its Parasitoid Metaphycus parasaissetiae. J. Environ. Entomol. 2013, 35, 827–831. [Google Scholar]
- Shen, S.; Zhang, Z.F.; Fu, Y.; Li, L.; Zhu, J. Factors Affecting Mating in Coccophagus Japonicus Compere. Environ. Entomol. 2017, 39, 1135–1141. [Google Scholar]
- Li, X.; Fu, Y.G.; Cheng, J.Y.; Wang, J.Y.; Zhu, J.H.; Zhang, F.P. Effects of temperature and photoperiod on the development and reproduction of endoparasitoid wasp Coccophagus japonicus Compere. J. Plant Prot. 2021, 48, 848–854. [Google Scholar]
- Wu, G.Y. Systematic and Faunistic Study on the Parasitic Wasps of Scales Insect in North China. Master’s Thesis, Zhejiang University, Hangzhou, China, 2002. [Google Scholar]
- Wu, X.S. Hyperparasitism behavior and Its Effect on the Offspring Development of Coccophagus Japonicus Compere. Master’s Thesis, Hainan University, Haikou, China, 2020. [Google Scholar]
- Zhang, F.P.; Niu, L.M.; Cheng, J.Y.; Zhu, J.H.; Li, L.; Fu, Y.G. Lethal Effects of Coccophagus Japonicus Compere on Parasaissetia Nigra Nietner. Chin. J. Trop. Crops 2020, 41, 544–548. [Google Scholar]
- Cheng, H.S. Study on Storage and Releasing Techniques of Coccophagus Japonicus Compere. Master’s Thesis, Hainan University, Haikou, China, 2022. [Google Scholar]
- Yang, M.J.; Cheng, J.Y.; Ye, Z.P.; Fu, Y.G.; Wang, J.Y.; Zhu, J.H.; Zhang, F.P. Effects of Short-Term Low Temperature Stress on Survival, Development and Reproduction of the Coccophagus Japonicus Compere. Chin. J. Biol. Control 2023, 39, 1029–1037. [Google Scholar]
- Hoffmann, A.A.; Sgrò, C.M. Climate Change and Evolutionary Adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef]
- Grimm, N.B.; Chapin, F.S.; Bierwagen, B.; Gonzalez, P.; Groffman, P.M.; Luo, Y.; Melton, F.; Nadelhoffer, K.; Pairis, A.; Raymond, P.A.; et al. The Impacts of Climate Change on Ecosystem Structure and Function. Front. Ecol. Environ. 2013, 11, 474–482. [Google Scholar] [CrossRef]
- Bailey, L.D.; van de Pol, M. Tackling Extremes: Challenges for Ecological and Evolutionary Research on Extreme Climatic Events. J. Anim. Ecol. 2016, 85, 85–96. [Google Scholar] [CrossRef]
- Kingsolver, J.G.; Buckley, L.B. Quantifying Thermal Extremes and Biological Variation to Predict Evolutionary Responses to Changing Climate. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160147. [Google Scholar] [CrossRef]
- Vázquez, D.P.; Gianoli, E.; Morris, W.F.; Bozinovic, F. Ecological and Evolutionary Impacts of Changing Climatic Variability. Biol. Rev. Camb. Philos. 2017, 92, 22–42. [Google Scholar] [CrossRef] [PubMed]
- Physiological Ecology of North American Plant Communities; Chabot, B.F.; Mooney, H.A. (Eds.) Springer: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Deutsch, C.A.; Tewksbury, J.J.; Huey, R.B.; Sheldon, K.S.; Ghalambor, C.K.; Haak, D.C.; Martin, P.R. Impacts of Climate Warming on Terrestrial Ectotherms across Latitude. Proc. Natl. Acad. Sci. USA 2008, 105, 6668–6672. [Google Scholar] [CrossRef] [PubMed]
- Holling, C.S. Some Characteristics of Simple Types of Predation and Parasitism1. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Wang, D.S.; He, Y.R.; Zhang, W.; Nian, X.G.; Lin, T.; Zhao, R. Effects of Heat Stress on the Quality of Trichogrammatoidea Bactrae Nagaraja (Hymenoptera: Trichogrammatidae). Bull. Entomol. Res. 2014, 104, 543–551. [Google Scholar] [CrossRef]
- Liang, G.H.; Chen, J.H.; Huang, J.C.; He, R.B.; Liang, G.H.; Chen, J.H.; Huang, J.C.; He, R.B. Influence of Temperature on the Development Reproduction and Survival of Psyttalia Incisi. Acta Agric. Univ. Jiangxiensis 2007, 29, 193. [Google Scholar]
- Gibbs, M.; Van Dyck, H.; Karlsson, B. Reproductive Plasticity, Ovarian Dynamics and Maternal Effects in Response to Temperature and Flight in Pararge Aegeria. J. Insect Physiol. 2010, 56, 1275–1283. [Google Scholar] [CrossRef]
- Qiu, B.O.; Zhou, Z.-S.; Luo, S.-P.; Xu, Z.-F. Effect of Temperature on Development, Survival, and Fecundity of Microplitis Manilae (Hymenoptera: Braconidae). Environ. Entomol. 2012, 41, 657–664. [Google Scholar] [CrossRef]
- Andreadis, S.; Spanoudis, C.; Savopoulou-Soultani, M. Effect of Short-Term High Temperatures to the Survival and Parasitism of the Koinobiont Endoparasitoid Venturia Canescens (Hymenoptera: Ichneumonidae) against Plodia Interpunctella (Lepidoptera: Pyralidae). IOBC/wprs Bull. 2011, 69, 155–159. [Google Scholar]
- Wang, S.Y.; Wang, B.L.; Yan, G.L.; Liu, Y.H.; Zhang, D.Y.; Liu, T.X. Temperature-Dependent Demographic Characteristics and Control Potential of Aphelinus Asychis Reared from Sitobion Avenae as a Biological Control Agent for Myzus Persicae on Chili Peppers. Insects 2020, 11, 475. [Google Scholar] [CrossRef]
- Colinet, H.; Sinclair, B.J.; Vernon, P.; Renault, D. Insects in Fluctuating Thermal Environments. Annu. Rev. Entomol. 2015, 60, 123–140. [Google Scholar] [CrossRef]
- Le Lann, C.; Wardziak, T.; Van Baaren, J.; Van Alphen, J.J.M. Thermal Plasticity of Metabolic Rates Linked to Life-History Traits and Foraging Behaviour in a Parasitic Wasp: Temperature Affects Physiology and Behaviour of a Parasitoid. Funct. Ecol. 2011, 25, 641–651. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, S.; Hu, J.; Zhang, Y. Effects of Non-Lethal High-Temperature Stress on Bradysia Odoriphaga (Diptera: Sciaridae) Larval Development and Offspring. Insects 2020, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.S.; Hau, B.; Poehling, H.M. Effects of Pattern and Timing of High Temperature Exposure on Reproduction of the Rose Grain Aphid, Metopolophium dirhodu. Entomol. Exp. Appl. 2004, 110, 65–71. [Google Scholar] [CrossRef]
- Chen, H.; Opit, G.P.; Sheng, P.; Zhang, H. Maternal and Progeny Quality of Habrobracon Hebetor Say (Hymenoptera: Braconidae) after Cold Storage. Biol. Control 2011, 58, 255–261. [Google Scholar] [CrossRef]
- Honěk, A. Intraspecific Variation in Body Size and Fecundity in Insects: A General Relationship. Oikos 1993, 66, 483–492. [Google Scholar] [CrossRef]
- Colinet, H.; Boivin, G.; Hance, T. Manipulation of Parasitoid Size Using the Temperature-Size Rule: Fitness Consequences. Oecologia 2007, 152, 425–433. [Google Scholar] [CrossRef]
- Knapp, M.; Nedvěd, O. Gender and Timing during Ontogeny Matter: Effects of a Temporary High Temperature on Survival, Body Size and Colouration in Harmonia axyridis. PLoS ONE 2013, 8, e74984. [Google Scholar] [CrossRef]
- Atkinson, D. Temperature and Organism Size—A Biological Law for Ectotherms? In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 1994; Volume 25, pp. 1–58. [Google Scholar]
- van der Have, T.M.; de Jong, G. Adult Size in Ectotherms: Temperature Effects on Growth and Differentiation. J. Theor. Biol. 1996, 183, 329–340. [Google Scholar] [CrossRef]
- Forster, J.; Hirst, A.G.; Woodward, G. Growth and Development Rates Have Different Thermal Responses. Am. Nat. 2011, 178, 668–678. [Google Scholar] [CrossRef]
- Akhtar, Y.; Isman, M.B. Horizontal Transfer of Diatomaceous Earth and Botanical Insecticides in the Common Bed Bug, Cimex Lectularius L.; Hemiptera: Cimicidae. PLoS ONE 2013, 8, e75626. [Google Scholar] [CrossRef]
- Quan, Y.D.; He, K.L.; Wang, Z.Y.; Wei, H. Effects of Transient Exposure to Extremely High Temperatures on Egg, Neonate and Adult of Ostrinia furnacalis. J. Plant Prot. 2015, 42, 985–990. [Google Scholar]
- Moiroux, J.; Abram, P.K.; Louâpre, P.; Barrette, M.; Brodeur, J.; Boivin, G. Influence of Temperature on Patch Residence Time in Parasitoids: Physiological and Behavioural Mechanisms. Naturwissenschaften 2016, 103, 32. [Google Scholar] [CrossRef] [PubMed]
- Kroder, S.; Samietz, J.; Dorn, S. Effect of Ambient Temperature on Mechanosensory Host Location in Two Parasitic Wasps of Different Climatic Origin. Physiol. Entomol. 2006, 31, 299–305. [Google Scholar] [CrossRef]
- Sentis, A.; Ramon-Portugal, F.; Brodeur, J.; Hemptinne, J. The Smell of Change: Warming Affects Species Interactions Mediated by Chemical Information. Glob. Change Biol. 2015, 21, 3586–3594. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Fu, Y.G.; Peng, Z.Q. Influence of temperature on the laboratory population of parasaissetia nigra nietner. Chin. J. Trop. Crops 2010, 31, 809–814. [Google Scholar]
- Lu, C.C.; Wu, H.X. Studies on the biology and control of Parasaissetia nigra Nietner. J. Environ. Entomol. 1991, 13, 101–106. [Google Scholar]
Index | Factor | df | F | p |
---|---|---|---|---|
Survival rate (%) | a | 3 | 100.02 | <0.001 |
b | 2 | 12.13 | <0.001 | |
a × b | 6 | 1.72 | 0.160 | |
Developmental duration (d) | a | 3 | 30.14 | <0.001 |
b | 2 | 3.61 | 0.043 | |
a × b | 6 | 0.61 | 0.717 | |
Body length (mm) | a | 3 | 6.76 | 0.002 |
b | 2 | 1.73 | 0.199 | |
a × b | 6 | 0.43 | 0.850 | |
Number of mature eggs (individuals) | a | 3 | 47.01 | <0.001 |
b | 2 | 2.71 | 0.087 | |
a × b | 6 | 0.61 | 0.719 | |
Lifespan (d) | a | 3 | 30.07 | <0.001 |
b | 2 | 8.61 | 0.002 | |
a × b | 6 | 1.77 | 0.148 1 |
Index | Factor | df | F | p |
---|---|---|---|---|
Survival rate (%) | a | 3 | 28.97 | <0.001 |
b | 2 | 12.91 | <0.001 | |
a × b | 6 | 1.73 | 0.156 | |
Developmental duration (d) | a | 3 | 17.43 | <0.001 |
b | 2 | 7.62 | 0.003 | |
a × b | 6 | 1.06 | 0.412 | |
Body length (mm) | a | 3 | 19.51 | <0.001 |
b | 2 | 3.42 | 0.049 | |
a × b | 6 | 0.95 | 0.482 | |
Number of mature eggs (individuals) | a | 3 | 58.69 | <0.001 |
b | 2 | 10.33 | <0.001 | |
a × b | 6 | 1.24 | 0.320 | |
Lifespan (d) | a | 3 | 36.04 | <0.001 |
b | 2 | 1.91 | 0.170 | |
a × b | 6 | 0.39 | 0.878 1 |
Temperature (°C) | Time (d) | Survival Rate (%) | Developmental Duration (d) | Body Length (mm) | Number of Mature Eggs (Individuals) | Lifespan (d) |
---|---|---|---|---|---|---|
27 | - | 98.89 ± 1.11 a | 22.39 ± 0.11 d | 1.27 ± 0.00 ab | 57.17 ± 1.13 a | 19.97 ± 0.11 a |
36 | 2 | 96.39 ± 0.48 a | 22.16 ± 0.28 d | 1.28 ± 0.01 a | 56.03 ± 1.39 a | 19.83 ± 0.70 a |
4 | 91.87 ± 0.87 b | 22.56 ± 0.11 cd | 1.26 ± 0.01 abc | 51.10 ± 2.93 ab | 18.88 ± 0.81 ab | |
6 | 92.38 ± 1.19 b | 22.49 ± 0.20 cd | 1.27 ± 0.01 ab | 47.00 ± 2.57 bc | 16.47 ± 0.50 cd | |
38 | 2 | 90.07 ± 2.10 bc | 22.90 ± 0.15 bcd | 1.26 ± 0.01 abc | 45.50 ± 1.93 bcd | 17.12 ± 0.58 bcd |
4 | 83.82 ± 1.95 d | 23.20 ± 0.27 bcd | 1.25 ± 0.01 abc | 46.27 ± 2.55 bcd | 17.55 ± 0.75 bc | |
6 | 84.57 ± 1.25 d | 23.82 ± 0.24 ab | 1.24 ± 0.01 bc | 41.70 ± 0.99 cde | 15.38 ± 0.78 de | |
40 | 2 | 85.55 ± 2.58 cd | 23.17 ± 0.24 bcd | 1.25 ± 0.02 abc | 39.63 ± 1.62 de | 16.01 ± 0.65 cd |
4 | 80.04 ± 1.10 d | 23.60 ± 0.36 abc | 1.23 ± 0.01 c | 38.23 ± 2.91 e | 15.10 ± 0.77 de | |
6 | 71.09 ± 3.06 e | 24.53 ± 0.82 a | 1.23 ± 0.01 c | 36.27 ± 2.05 e | 13.94 ± 0.14 e | |
df | 9, 20 | 9, 20 | 9, 20 | 9, 20 | 9, 20 | |
F | 22.339 | 4.68 | 2.52 | 11.56 | 10.51 | |
p | <0.001 | 0.002 | 0.041 | <0.001 | <0.001 1 |
Temperature (°C) | Time (d) | Survival Rate (%) | Developmental Duration (d) | Body Length (mm) | Number of Mature Eggs (Individuals) | Lifespan (d) |
---|---|---|---|---|---|---|
27 | - | 98.89 ± 1.11 a | 9.06 ± 0.04 cd | 1.27 ± 0.00 a | 57.17 ± 1.13 a | 19.97 ± 0.11 a |
36 | 2 | 98.89 ± 1.11 a | 8.93 ± 0.05 d | 1.27 ± 0.01 a | 54.63 ± 2.10 a | 19.47 ± 0.65 a |
4 | 94.44 ± 2.94 ab | 9.07 ± 0.13 cd | 1.26 ± 0.00 a | 44.30 ± 1.65 b | 19.21 ± 0.55 ab | |
6 | 87.87 ± 3.85 cd | 9.30 ± 0.14c | 1.25 ± 0.01 ab | 43.67 ± 1.64 b | 19.03 ± 0.26 ab | |
38 | 2 | 92.22 ± 1.11 bc | 9.11 ± 0.09 cd | 1.26 ± 0.01 a | 44.03 ± 1.45 b | 17.60 ± 0.47 bc |
4 | 88.89 ± 2.94 bcd | 9.26 ± 0.04 c | 1.24 ± 0.01 ab | 40.53 ± 1.84 bc | 16.32 ± 0.81 cd | |
6 | 83.33 ± 1.92 de | 9.32 ± 0.07 c | 1.24 ± 0.01 abc | 38.13 ± 0.82 cd | 16.69 ± 0.59 cd | |
40 | 2 | 90.00 ±1.92 bcd | 9.28 ± 0.04 c | 1.22 ± 0.01 bc | 40.8 ± 1.81 bc | 17.03 ± 0.42 cd |
4 | 84.44 ± 1.11 de | 9.79 ± 0.06 b | 1.22 ± 0.01 bc | 34.97 ± 1.65 de | 15.99 ± 0.69 cd | |
6 | 78.89 ± 2.22 e | 10.20 ± 0.08 a | 1.21 ± 0.00 c | 31.60 ± 2.05 e | 15.36 ± 0.48 d | |
df | 9, 20 | 9, 20 | 9, 20 | 9, 20 | 9, 20 | |
F | 22.339 | 9.203 | 20.99 | 5.41 | 22.96 | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 1 |
Temperature and Time | Survival Rate (%) | Developmental Duration (d) | Body Length (mm) | Lifespan (d) | Single Female Fecundity (Individuals) |
---|---|---|---|---|---|
27 °C (CK) | 97.97 ± 1.00 a | 22.23 ± 0.11 b | 1.27 ± 0.00 a | 19.97 ± 0.11 a | 215.00 ± 4.93 a |
Stressed at 32 °C for 3 d | 93.55 ± 1.45 a | 22.07 ± 0.09 b | 1.24 ± 0.01 a | 14.46 ± 0.99 b | 168.00 ± 13.58 b |
Stressed at 34 °C for 3 d | 84.67 ± 2.33 b | 23.79 ± 0.17 a | 1.23 ± 0.01 b | 12.14 ± 0.49 c | 78.33 ± 3.71 c 1 |
Temperature and Time | Survival Rate (%) | Developmental Duration (d) | Body Length (mm) | Lifespan (d) | Single Female Fecundity (Individuals) |
---|---|---|---|---|---|
27 °C (CK) | 97.97 ± 1.00 a | 9.06 ± 0.04 a | 1.27 ± 0.00 a | 19.97 ± 0.11 a | 215.00 ± 4.93 a |
Stressed at 32 °C for 3 d | 81.11 ± 1.00 b | 8.61 ± 0.08 b | 1.26 ± 0.01 a | 16.51 ± 0.31 b | 128.33 ± 16.15 b |
Stressed at 34 °C for 3 d | 70.00 ± 1.73 c | 9.25 ± 0.07 a | 1.25 ± 0.01 a | 11.37 ± 0.62 c | 35.33 ± 2.73 c 1 |
Temperature and Time | Number of Emerged C. japonicus (Individuals) | Developmental Duration (d) | Body Length (mm) | Parasitism Rate (%) |
---|---|---|---|---|
27 °C (CK) | 44.33 ± 1.76 a | 22.23 ± 0.18 a | 1.27 ± 0.01 a | 62.22 ± 2.22 a |
Stressed at 32 °C for 3 d | 42.33 ± 1.86 ab | 22.33 ± 0.20 a | 1.26 ± 0.01 a | 60.00 ± 4.04 a |
Stressed at 34 °C for 3 d | 37.33 ± 1.45 b | 22.74 ± 0.13 a | 1.25 ± 0.01 a | 54.44 ± 3.93 a 1 |
Temperature and Time | Number of Emerged C. japonicus (Individuals) | Developmental Duration (d) | Body Length (mm) | Parasitism Rate (%) |
---|---|---|---|---|
27 °C (CK) | 44.33 ± 1.76 a | 22.23 ± 0.18 a | 1.27 ± 0.01 a | 62.22 ± 2.22 a |
Stressed at 32 °C for 3 d | 39.67 ± 0.88 a | 22.35 ± 0.24 a | 1.26 ± 0.01 a | 58.89 ± 2.94 a |
Stressed at 34 °C for 3 d | 27.67 ± 2.19 b | 22.70 ± 0.12 a | 1.26 ± 0.01 a | 47.78 ± 2.22 b 1 |
Temperature (°C) | Regression Equation | LT50 (h) | 95% Confidence Interval | Standard Error |
---|---|---|---|---|
36 | Y = −6.251+ 4.285X | 28.78 | 25.305~33.497 | 0.741 |
38 | Y = −5.992 + 4.972X | 16.04 | 14.391~17.930 | 0.792 |
40 | Y = −7.046 + 7.844X | 7.91 | 7.301~8.540 | 1.083 |
Temperature (°C) | P. nigra Density (Individual Per Petri Dish) | |||||
---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | |
27 | 4.67 ± 0.33 aD | 8.67 ± 0.67 aC | 13.33 ± 0.33 aB | 16.00 ± 0.58 aA | 17.67 ± 0.67 aA | 18.00 ± 1.00 aA |
36 | 3.33 ± 0.33 abD | 6.00 ± 0.58 abC | 9.00 ± 1.00 bB | 10.33 ± 0.88 bAB | 11.33 ± 0.88 bAB | 12.00 ± 0.58 bA |
38 | 2.67 ± 0.33 bcC | 5.33 ± 0.67 bcB | 7.33 ± 0.88 bAB | 8.67 ± 0.88 bA | 9.00 ± 1.00 bcA | 8.33 ± 0.33 cA |
40 | 1.33 ± 0.33 cD | 2.33 ± 0.33 cCD | 2.67 ± 0.67 cCD | 3.67 ± 0.67 cBC | 4.67 ± 0.67 cAB | 5.67 ± 0.67 cA 1 |
Temperature (°C) | Instant Attack rate (a′) | Handing Time (Th) | Parasitic Efficiency a′/Th (Individual·d−1) | Maximum Parasitized Hosts 1/Th (Individual·d−1) | Correlation Coefficient (R2) | Chi-Square (χ2) |
---|---|---|---|---|---|---|
27 | 1.0163 | 0.0162 | 62.74 | 61.73 | 0.9973 | 0.4224 |
36 | 0.7518 | 0.0324 | 23.20 | 30.86 | 0.9977 | 0.1629 |
38 | 0.6198 | 0.0425 | 14.58 | 23.53 | 0.9885 | 0.5632 |
40 | 0.3027 | 0.0997 | 3.04 | 10.03 | 0.9894 | 0.2706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Yang, M.; Ye, Z.; Zhu, J.; Fu, Y.; Chen, J.; Zhang, F. Effects of High-Temperature Stress on Biological Characteristics of Coccophagus japonicus Compere. Insects 2024, 15, 801. https://doi.org/10.3390/insects15100801
Sun Y, Yang M, Ye Z, Zhu J, Fu Y, Chen J, Zhang F. Effects of High-Temperature Stress on Biological Characteristics of Coccophagus japonicus Compere. Insects. 2024; 15(10):801. https://doi.org/10.3390/insects15100801
Chicago/Turabian StyleSun, Ying, Meijuan Yang, Zhengpei Ye, Junhong Zhu, Yueguan Fu, Junyu Chen, and Fangping Zhang. 2024. "Effects of High-Temperature Stress on Biological Characteristics of Coccophagus japonicus Compere" Insects 15, no. 10: 801. https://doi.org/10.3390/insects15100801