Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials
Simple Summary
Abstract
1. Introduction
1.1. Flavonoid–Insect Interactions
1.2. Hypothesis and Methodology
2. Effects of Flavonoids on Insects
2.1. Butterflies (Order Lepidoptera)
2.2. Bees (Order Hymneoptera)
2.2.1. Honey Bees
2.2.2. Bumble Bees
2.3. Sawflies (Order Hymenoptera)
2.4. Beetles (Order Coleoptera)
2.4.1. Pests
2.4.2. Predators
2.5. True Bugs (Order Heteroptera)
2.5.1. Predators
2.5.2. Pests
2.6. True Flies (Order Diptera)
3. Harmless or Harmful Outcomes of Flavonoids and Flavonoid Glycosides
3.1. Outcomes on Beneficial Insects
3.2. Outcomes on Pest Insects
4. Utilization of Flavonoids and Flavonoid Glycosides in Pest Management
4.1. Sawflies
4.2. Beetles (Pests)
4.3. True Bugs (Pests)
4.4. True Flies (Pests)
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, S.; Kaur, I.; Kariyat, R. The multifunctional roles of polyphenols in plant-herbivore interactions. Intl. J. Mol. Sci. 2021, 22, 1442. [Google Scholar] [CrossRef]
- Ceska, O.; Styles, D. Flavonoids from Zea mays pollen. Phytochemistry 1984, 23, 1822–1823. [Google Scholar] [CrossRef]
- Palma-Tenango, M.; Soto-Hernandez, M.; Aguirre-Hernandez, E. Flavonoids in Agriculture. In Flavonoids—From Biosynthesis to Human Health; InTechOpen: London, UK, 2017; Chapter 10; pp. 189–201. [Google Scholar] [CrossRef]
- Lam, L.P.Y.; Wang, L.; Lui, A.C.W.; Liu, H.; Umezawa, T.; Tobimatsu, Y.; Lo, C. Flavonoids in major cereal grasses: Distribution, functions, biosynthesis, and applications. Phytochem. Rev. 2023, 22, 1399–1438. [Google Scholar] [CrossRef]
- Slámová, K.; Kapešová, J.; Valentová, K. “Sweet flavonoids”: Glycosidase-catalyzed modifications. Intl. J. Mol. Sci. 2018, 19, 2126. [Google Scholar] [CrossRef] [PubMed]
- Havsteen, B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 1983, 32, 1141–1148. [Google Scholar] [CrossRef]
- Rauter, A.P.; Ennis, M.; Hellwich, K.-H.; Herold, B.J.; Horton, D.; Moss, G.P.; Schomburg, I. Nomenclature of flavonoids (IUPAC Recommendations 2017). Pure Appl. Chem. 2018, 90, 1429–1486. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Herrmann, K. Flavonols and flavones in food plants: A review. J. Food Technol. 1976, 11, 433–448. [Google Scholar] [CrossRef]
- Pollastri, S.; Tattini, M. Flavonols: Old compounds for old roles. Ann. Bot. 2011, 108, 1225–1233. [Google Scholar] [CrossRef]
- Harborne, J.B. Introduction to Ecological Biochemistry, 3rd ed.; Academic Press Limited: London, UK, 1988; pp. 1–356. [Google Scholar]
- Harborne, J.B.; Grayer, R.J. Flavonoids and insects. In The Flavonoids: Advances in Research Since 1986, 1st ed.; Harborne, J.B., Ed.; Chapman and Hall: London, UK, 1994; Chapter 14; pp. 589–618. [Google Scholar]
- Mathesius, U. Flavonoid functions in plants and their interactions with other organisms. Plants 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Gautam, H.; Sharma, A.; Trivedi, P.K. The role of flavonols in insect resistance and stress response. Curr. Opin. Plant Biol. 2023, 73, 102353. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.S.J. Importance of flavonoids in insect-plant interactions: Feeding and oviposition. Phytochemistry 2001, 56, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.S.J. Flavonoid-insect interactions: Recent advances in our knowledge. Phytochemistry 2003, 64, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Schnarr, L.; Segatto, M.L.; Olsson, O.; Zuin, V.G.; Kummerer, K. Flavonoids as biopesticides—Systematic assessment of sources, structures, activities and environmental fate. Sci. Total Environ. 2022, 824, 153781. [Google Scholar] [CrossRef]
- Pereira, V.; Figueira, O.; Castilho, P.C. Flavonoids as insecticides in crop protection—A review of current research and future prospects. Plants 2024, 13, 776. [Google Scholar] [CrossRef] [PubMed]
- Barascou, L.; Sene, D.; Barraud, A.; Michez, D.; Lefebvre, V.; Medrzycki, P.; Di Prisco, G.; Strobl, V.; Yañez, O.; Neumann, P.; et al. Pollen nutrition fosters honeybee tolerance to pesticides. R. Soc. Open Sci. 2021, 8, 210818. [Google Scholar] [CrossRef] [PubMed]
- Riddick, E.W. Potential of quercetin to reduce herbivory without disrupting natural enemies and pollinators. Agriculture 2021, 11, 476. [Google Scholar] [CrossRef]
- Figueira, O.; Pereira, V.; Castilho, P.C. A two-step approach to orange peel waste valorization: Consecutive extraction of pectin and hesperidin. Foods 2023, 12, 3834. [Google Scholar] [CrossRef]
- Losey, J.E.; Rayor, L.S.; Carter, M.E. Transgenic pollen harms monarch larvae. Nature 1999, 399, 214. [Google Scholar] [CrossRef]
- Balmaki, B.; Christensen, T.; Dyer, L.A. Reconstructing butterfly-pollen interaction networks through periods of anthropogenic drought in the Great Basin (USA) over the past century. Anthropocene 2022, 37, 100325. [Google Scholar] [CrossRef]
- Heinz, C.A.; Feeny, P. Effects of contact chemistry and host plant experience in the oviposition behaviour of the eastern black swallowtail butterfly. Anim. Behav. 2005, 69, 107–115. [Google Scholar] [CrossRef]
- Pritsos, C.A.; Ahmad, S.; Bowen, S.M.; Elliott, A.J.; Blomquist, G.J.; Pardini, R.S. Antioxidant enzymes of the black swallowtail butterfly, Papilio polyxenes, and their response to the prooxidant allelochemical, quercetin. Arch. Insect Biochem. Physiol. 1988, 8, 101–112. [Google Scholar] [CrossRef]
- Feeny, P.; Sachdev, K.; Rosenberry, L.; Carter, M. Luteolin 7-O-(6”-O-Malonyl)-β-D-glucoside and trans-chlorogenic acid: Oviposition stimulants for the black swallowtail butterfly. Phytochemistry 1988, 27, 3439–3448. [Google Scholar] [CrossRef]
- Zhan, S.; Zhang, W.; Niitepõld, K.; Hsu, J.; Haeger, J.F.; Zalucki, M.P.; Altizer, S.; Roode, J.C.; Reppert, S.M.; Kronforst, M.R. The genetics of monarch butterfly migration and colouration. Nature 2014, 514, 317–321. [Google Scholar] [CrossRef]
- Haribal, M.; Renwick, A.A. Oviposition stimulants for the monarch butterfly: Flavonol glycosides from Asclepias curassavica. Phytochemistry 1996, 41, 139–144. [Google Scholar] [CrossRef]
- Damman, H.; Feeny, P. Mechanisms and consequences of selective oviposition by the zebra swallowtail butterfly. Anim. Behav. 1988, 36, 563–573. [Google Scholar] [CrossRef]
- Haribal, M.; Feeny, P. Combined roles of contact stimulant and deterrents in assessment of host-plant quality by ovipositing zebra swallowtail butterflies. J. Chem. Ecol. 2003, 29, 653–670. [Google Scholar] [CrossRef]
- Martin, J.M.; Madigosky, S.R.; Gu, Z.; Zhou, D.; Wu, J.; McLaughlin, J.L. Chemical defense in the zebra swallowtail butterfly, Eurytides marcellus, involving annonaceous acetogenins. J. Nat. Prod. 1999, 62, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Miller, J. Phylogenetic studies in the Papilioninae (Lepidoptera: Papilionidae). Bull. Am. Mus. Nat. Hist. 1987, 86, 365–512. [Google Scholar]
- Wilson, A. Flavonoid pigments in swallowtail butterflies. Phytochemistry 1986, 25, 1309–1313. [Google Scholar] [CrossRef]
- Ozaki, K.; Ryuda, M.; Yamada, A.; Utoguchi, A.; Ishimoto, H.; Calas, D.; Marion-Poll, F.; Tanimura, T.; Yoshikawa, H. A gustatory receptor involved in host plant recognition for oviposition of a swallowtail butterfly. Nat. Comm. 2011, 2, 542. [Google Scholar] [CrossRef] [PubMed]
- Nishida, R.; Ohsugi, T.; Kokubo, S.; Fukami, H. Oviposition stimulants of a Citrus-feeding swallowtail butterfly, Papillo xuthus L. Experientia 1987, 43, 342–344. [Google Scholar] [CrossRef]
- Suzuki, S.; Suzuki, T.; Shibuya, Y.; Goto, M.; Yokoyama, J.; Kato, T.; Ando, M.; Okamoto, T.; Tsuchida, K. Expansion processes of two emblematic Luehdorfia butterflies across the Japanese archipelago. J. Biogeogr. 2023, 50, 1710–1723. [Google Scholar] [CrossRef]
- Nishida, R. Oviposition stimulant of a zeryntiine swallowtail butterfly, Luehdorfia japonica. Phytochemistry 1994, 36, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Ichinosé, T.; Honda, H. Ovipositional behavior of Papilio demetrius Cramer and the factors involved in its host plants. Appl. Entomol. Zool. 1978, 13, 103–114. [Google Scholar] [CrossRef]
- Honda, K. Flavanone glycosides as oviposition stimulants in a papilionid butterfly, Papilio protenor. J. Chem. Ecol. 1986, 12, 1999–2010. [Google Scholar] [CrossRef]
- Honda, K. Identification of host plant chemicals stimulating oviposition by swallowtail butterfly, Papilio protenor. J. Chem. Ecol. 1990, 16, 325–337. [Google Scholar] [CrossRef]
- Honda, K.; Hayashi, N. A flavonoid glucoside, phellamurin, regulates differential oviposition on a rutaceous plant, Phellodendron amurense, by two sympatric butterflies, Papilio protenor and P. xuthus: The front line of a coevolutionary arms race? J. Chem. Ecol. 1995, 21, 1531–1539. [Google Scholar] [CrossRef]
- Honda, K.; Ômura, H.; Chachin, M.; Kawano, S.; Inoue, T.A. Synergistic or antagonistic modulation of oviposition response of two swallowtail butterflies, Papilio maackii and P. protenor, to Phellodendron amurense by its constitutive prenylated flavonoid, phellamurin. J. Chem. Ecol. 2011, 37, 575–581. [Google Scholar] [CrossRef]
- Dinca, V.; Dapporto, L.; Vila, R. A combined genetic-morphometric analysis unravels the complex biogeographical history of Polyommatus icarus and Polyommatus celina common blue butterflies. Mol. Ecol. 2011, 20, 3921–3935. [Google Scholar] [CrossRef]
- Weisen, B.; Krug, E.; Fiedler, K.; Wray, V.; Proksch, P. Sequestration of host-plant-derived flavonoids by lycaenid butterfly Polyommatus icarus. J. Chem. Ecol. 1994, 20, 2523–2538. [Google Scholar] [CrossRef] [PubMed]
- Schittko, U.; Burghardt, F.; Fiedler, K.; Wray, V.; Proksch, P. Sequestration and distribution of flavonoids in the common blue butterfly Polyommatus icarus reared on Trifolium repens. Phytochemistry 1999, 51, 609–614. [Google Scholar] [CrossRef]
- Burghardt, F.; Proksch, P.; Fiedler, K. Flavonoid sequestration by the common blue butterfly Polyommatus icarus: Quantitative intraspecific variation in relation to larval hostplant, sex and body size. Biochem. Syst. Ecol. 2001, 29, 875–889. [Google Scholar] [CrossRef]
- Burghardt, F.; Fiedler, K.; Proksch, P. Uptake of flavonoids from Vicia villosa (Fabaceae) by the lycaenid butterfly, Polyommatus icarus (Lepidoptera: Lycaenidae). Biochem. Syst. Ecol. 1997, 25, 527–536. [Google Scholar] [CrossRef]
- Burghardt, F.; Knuttel, H.; Becker, M. Flavonoid wing pigments increase attractiveness of female common blue (Polyommatus icarus) butterflies to mate-searching males. Naturwissenschaften 2000, 87, 304–307. [Google Scholar] [CrossRef]
- Callegari, S.E.; Bonham, E.; Hoodless, A.N.; Sage, R.B.; Holloway, G.J. Impact of game bird release on the Adonis blue butterfly Polyommatus bellargus (Lepidoptera: Lycaenidae) on chalk grassland. Eur. J. Wildl. Res. 2014, 60, 781–787. [Google Scholar] [CrossRef]
- Geuder, M.; Wray, V.; Fiedler, K.; Proksch, P. Sequestration and metabolism of host-plant flavonoids by the lycaenid butterfly Polyommatus bellargus. J. Chem. Ecol. 1997, 23, 1361–1372. [Google Scholar] [CrossRef]
- Ferreres, F.; Sousa, C.; Valentão, P.; Pereira, J.A.; Seabra, R.M.; Andrade, P.B. Tronchuda cabbage flavonoids uptake by Pieris brassicae. Phytochemistry 2007, 68, 361–367. [Google Scholar] [CrossRef]
- Phillips, C.B.; Brown, K.; Green, C.; Toft, R.; Walker, G.; Broome, K. Eradicating the large white butterfly from New Zealand eliminates a threat to endemic Brassicaceae. PLoS ONE 2020, 15, e0236791. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A. Flavonoid pigments of butterflies in the genus Melanargia. Phytochemistry 1985, 24, 1685–1691. [Google Scholar] [CrossRef]
- Wilson, A. Flavonoid pigments in marbled white butterfly (Melanargia galathea) are dependent on flavonoid content of larval diet. J. Chem. Ecol. 1985, 11, 1161–1179. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A. Flavonoid pigments and wing color in Melanargia galathea. J. Chem. Ecol. 1986, 12, 49–68. [Google Scholar] [CrossRef]
- Wilson, A. Flavonoid pigments in chalkhill blue (Lysandra coridon Poda) and other lycaenid butterflies. J. Chem. Ecol. 1987, 13, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, T.; Zimmermann, M. To hybridize or not to hybridize: What separates two genetic lineages of the Chalk-hill Blue Polyommatus coridon (Lycaenidae, Lepidoptera) along their secondary contact zone throughout eastern Central Europe? J. Zool. Syst. Evol. Res. 2011, 50, 106–115. [Google Scholar] [CrossRef]
- Habel, J.C.; Brückmann, S.V.; Krauss, J.; Schwarzer, J.; Weig, A.; Husemann, M.; Steffan-Dewenter, I. Fragmentation genetics of the grassland butterfly Polyommatus coridon: Stable genetic diversity or extinction debt? Conserv. Genet. 2015, 16, 549–558. [Google Scholar] [CrossRef]
- Marcelino, J.; Braese, C.; Christmon, K.; Evans, J.D.; Gilligan, T.; Giray, T.; Nearman, A.; Niño, E.L.; Rose, R.; Sheppard, W.S.; et al. The movement of western honey bees (Apis mellifera L.) among United States and territories: History, benefits, risks, and mitigation strategies. Front. Ecol. Evol. 2022, 10, 850600. [Google Scholar] [CrossRef]
- Lautenbach, S.; Seppelt, R.; Liebscher, J.; Dormann, C.F. Spatial and temporal trends of global pollination benefit. PLoS ONE 2012, 7, e35954. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant activity in bee products: A review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Fernandez, K.E.; Stanfield, B.; Frost, E.A.; Shanahan, E.R.; Susantio, D.; Dong, A.Z.; Tran, T.D.; Cokcetin, N.N.; Carter, D.A. Low levels of hive stress are associated with decreased honey activity and changes to the gut microbiome of resident honey bees. Microbiol. Spectrum 2023, 11, e0074223. [Google Scholar] [CrossRef]
- Dallagnol, A.M.; Dallagnol, V.C.; Vignolo, G.M.; Lopes, N.P.; Brunetti, A.E. Flavonoids and phenylethylamides are pivotal factors affecting the antimicrobial properties of stingless bee honey. J. Agric. Food Chem. 2022, 70, 12596–12603. [Google Scholar] [CrossRef]
- Mao, W.; Rupasinghe, S.G.; Johnson, R.M.; Zangerl, A.R.; Schuler, M.A.; Berenbaum, M.R. Quercetin-metabolizing CYP6AS enzymes of the pollinator Apis mellifera (Hymenoptera: Apidae). Comp. Biochem. Physiol. Pt. B. 2009, 154, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera). Proc. Natl. Acad. Sci. USA 2011, 108, 12657–12662. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc. Natl. Acad. Sci. USA 2013, 110, 8842–8846. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.M.; Mao, W.; Pollock, H.S.; Niu, G.; Schuler, M.A.; Berenbaum, M.R. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS ONE 2012, 7, e31051. [Google Scholar] [CrossRef]
- Berenbaum, M.R.; Johnson, R.M. Xenobiotic detoxification pathways in honey bees. Curr. Opin. Insect Sci. 2015, 10, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. USA 2017, 114, 2538–2543. [Google Scholar] [CrossRef]
- Liao, L.-H.; Wu, W.-Y.; Berenbaum, M.R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Sci. Reports 2017, 7, 15924. [Google Scholar] [CrossRef]
- Liao, L.-H.; Wu, W.-Y.; Berenbaum, M.R. Impacts of dietary phytochemicals in the presence and absence of pesticides on longevity of honey bees (Apis mellifera). Insects 2017, 8(1), 22. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.-H.; Pearlstein, D.J.; Wu, W.-Y.; Kelley, A.G.; Montag, W.M.; Hsieh, E.M.; Berenbaum, M.R. Increase in longevity and amelioration of pesticide toxicity by natural levels of dietary phytochemicals in the honey bee, Apis mellifera. PLoS ONE 2020, 15, e02423364. [Google Scholar] [CrossRef]
- Liao, L.-H.; Wu, W.-Y.; Dad, A.; Berenbaum, M.R. Fungicide suppression of flight performance in the honeybee (Apis mellifera) and its amelioration by quercetin. Proc. R. Soc. B. 2019, 286, 2019.2041. [Google Scholar] [CrossRef]
- Wong, M.J.; Liao, L.-H.; Berenbaum, M.R. Biphasic concentration-dependent interaction between imidacloprid and dietary phytochemicals in honey bees (Apis mellifera). PLoS ONE 2018, 13, e0206625. [Google Scholar] [CrossRef] [PubMed]
- Bernklau, E.; Bjostad, L.; Hogeboom, A.; Carlisle, A.; Arathi, H.S. Dietary phytochemicals, honey bee longevity and pathogen tolerance. Insects 2019, 10(1), 14. [Google Scholar] [CrossRef] [PubMed]
- Grupe, A.C., II; Quandt, C.A. A growing pandemic: A review of Nosema parasites in globally domesticated and native bees. PLoS Path. 2020, 16, e1008580. [Google Scholar] [CrossRef] [PubMed]
- Hybl, M.; Mraz, P.; Sipos, J.; Hostickova, I.; Bohata, A.; Curn, V.; Kopec, T. Polyphenols as food supplement improved food consumption and longevity of honey bees (Apis mellifera) intoxicated by pesticide thiacloprid. Insects 2021, 12, 572. [Google Scholar] [CrossRef]
- Benedek, P.; Gaál, E. The effect of insect pollination on seed onion, with observations on the behaviour of honeybees on the crop. J. Apicult. Res. 1972, 11, 175–180. [Google Scholar] [CrossRef]
- Hernández, I.G.; Palottini, F.; Macri, I.; Galmarini, C.R.; Farina, W.M. Appetitive behavior of the honey bee Apis mellifera in response to phenolic compounds naturally found in nectars. J. Exptl. Biol. 2019, 222, jeb189910. [Google Scholar] [CrossRef]
- Wahl, O.; Ulm, K. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honeybee Apis mellifera carnica. Oecologia (Berlin) 1983, 59, 106–128. [Google Scholar] [CrossRef] [PubMed]
- Schmehl, D.R.; Teal, P.A.E.; Frazier, J.L.; Grozinger, C.M. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol. 2014, 71, 177–190. [Google Scholar] [CrossRef]
- Palmer-Young, E.C.; Farrell, I.W.; Adler, L.S.; Milano, N.J.; Egan, P.A.; Irwin, R.E.; Stevenson, P.C. Secondary metabolites from nectar and pollen: A resource for ecological and evolutionary studies. Ecology 2019, 100, e02621. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, G.; Yu, Y.; Liu, F. High concentration of nectar quercetin enhances worker resistance to queen’s signals in bees. J. Chem. Ecol. 2010, 36, 1241–1243. [Google Scholar] [CrossRef]
- Guseman, A.J.; Miller, K.; Kunkle, G.; Dively, G.P.; Pettis, J.S.; Evans, J.D.; vanEngelsdorp, D.; Hawthorne, D.J. Multi-drug resistance transporters and a mechanism-based strategy for assessing risks of pesticide combinations to honey bees. PLoS ONE 2016, 11, e014842. [Google Scholar] [CrossRef] [PubMed]
- Ardalani, H.; Vidkjaer, N.H.; Laursen, B.B.; Kryger, P.; Fomsgaard, I.S. Dietary quercetin impacts the concentration of pesticides in honey bees. Chemosphere 2021, 262, 127848. [Google Scholar] [CrossRef] [PubMed]
- Ardalani, H.; Vidkjaer, N.H.; Kryger, P.; Fiehn, O.; Fomsgaard, I.S. Metabolomics unveils the influence of dietary phytochemicals on residual pesticide concentrations in honeybees. Environ. Intl. 2021, 152, 106503. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.S.; Nasr, M.E.; Locke, S.J. Geographical races of Apis cerana Fabricius in China and their distribution. Review of recent Chinese publications and a preliminary statistical analysis. Apidology 1989, 20, 9–20. [Google Scholar] [CrossRef]
- Theisen-Jones, H.; Bienefeld, K. The Asian honey bee (Apis cerana) is significantly in decline. Bee World 2017, 93, 90–97. [Google Scholar] [CrossRef]
- Sang, H.; Li, Y.; Sun, C. Conservation genomic analysis of the Asian honeybee in China reveals climate factors underlying its population decline. Insects 2022, 13, 953. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, Z.; Luo, W.; Cao, L.; Liu, H. Low concentration of quercetin reduces the lethal and sublethal effects of imidacloprid on Apis cerana (Hymenoptera: Apidae). J. Econ. Entomol. 2021, 114, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Cameron, S.A.; Sadd, B.M. Global trends in bumble bee health. Annu. Rev. Entomol. 2020, 65, 209–232. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhao, X.; Wu, L.; Zhao, J.; Yang, Y.; Zhang, Y. Differences in pollination efficiency among three bee species in a greenhouse and their effects on yield and fruit quality of northern highbush ‘bluecrop’ blueberry. Hortscience 2021, 56, 603–607. [Google Scholar] [CrossRef]
- Couvillon, M.J.; Fitzpatrick, G.; Dornhaus, A. Ambient air temperature does not predict whether small or large workers forage in bumble bees (Bombus impatiens). Psyche 2010, 536430. [Google Scholar] [CrossRef]
- Stelzer, R.J.; Chittka, L.; Carlton, M.; Ings, T.C. Winter active bumble bees (Bombus terrestris) achieve higher foraging rates in urban Britain. PLoS ONE 2010, 5, e9559. [Google Scholar] [CrossRef]
- Wilmsen, S.; Gottlieb, R.; Junker, R.R.; Lunau, K. Bumblebees require visual pollen stimuli to initiate and multimodel stimuli to complete a full behavioral sequence in close-range flower orientation. Ecol. Evol. 2017, 7, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Riveros, A.J.; Gronenberg, W. The flavonoid rutin protects the bumble bee Bombus impatiens against cognitive impairment by imidacloprid and fipronil. J. Exptl. Biol. 2022, 225, jeb244526. [Google Scholar] [CrossRef] [PubMed]
- Bowers, M.D.; Boockvar, K.; Collinge, S.K. Iridoid glycosides of Chelone glabra (Scrophulariaceae) and their sequestration by larvae of a sawfly, Tenthredo grandis (Tenthredinidae). J. Chem. Ecol. 1993, 19, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Crockett, S.L.; Boevé, J.-L. Flavonoid glycosides and naphthodianthrones in the sawfly Tenthredo zonula and its host-plants, Hypericum perforatum and H. hirsutum. J. Chem. Ecol. 2011, 37, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.S.; Glover, A.N.; Everson, K.M.; Coyle, D.R.; Linnen, C.R. Identification, biology, and management of conifer sawflies (Hymenoptera: Diprionidae) in eastern North America. J. Integr. Pest Manag. 2023, 14, 1–16. [Google Scholar] [CrossRef]
- Ghimire, R.P.; Markkanen, J.M.; Kivimäenpää, M.; Lyytikäinen-Saarenmaa, P.; Holopainen, J.K. Needle removal by sawfly larvae increases branch-level VOC emissions and reduces below-ground emissions of Scots pine. Environ. Sci. Technol. 2013, 47, 4325–4332. [Google Scholar] [CrossRef]
- Larsson, S.; Lundgren, L.; Ohmart, C.P.; Gref, R. Weak responses of pine sawfly larvae to high needle flavonoid concentrations in Scots pine. J. Chem. Ecol. 1992, 18, 271–282. [Google Scholar] [CrossRef]
- Lundgren, L.N.; Theander, O. Cis- and trans-dihydroquercetin glucosides from needles of Pinus sylvestris. Phytochemistry 1988, 27, 829–832. [Google Scholar] [CrossRef]
- Laracine-Pittet, C.; Lebreton, P. Flavonoid variability within Pinus sylvestris. Phytochemistry 1988, 27, 2663–2666. [Google Scholar] [CrossRef]
- Roitto, M.; Rautio, P.; Markkola, A.; Julkunen-Tiitto, R.; Varama, M.; Saravesi, K.; Tuomi, J. Induced accumulation of phenolics and sawfly performance in Scots pine in response to previous defoliation. Tree Physiol. 2008, 29, 207–216. [Google Scholar] [CrossRef]
- Vihakas, M.; Tähtinen, P.; Ossipov, V.; Salminen, J.-P. Flavonoid metabolites in the hemolymph of European pine sawfly (Neodiprion sertifer) larvae. J. Chem. Ecol. 2012, 38, 538–546. [Google Scholar] [CrossRef]
- Lahtinen, M.; Kapari, L.; Ossipov, V.; Salminen, J.-P.; Haukioja, E.; Pihlaja, K. Biochemical transformation of birch leaf phenolics in larvae of six species of sawflies. Chemoecology 2005, 15, 153–159. [Google Scholar] [CrossRef]
- Nygaard, P.H.; Bøhler, F.; Øyen, B.-H.; Tveite, B. Long-term spatiotemporal dynamics in a mountain birch (Betula pubescens ssp. czerepanovii) forest in south-east Norway. Plant-Environ. Interact. 2022, 3, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Lahtinen, M.; Kapari, L.; Haukioja, E.; Pihlaja, K. Effects of increased content of leaf surface flavonoids on the performance of mountain birch feeding sawflies vary for early and late season species. Chemoecology 2006, 16, 159–167. [Google Scholar] [CrossRef]
- Vihakas, M.A.; Kapari, L.; Salminen, J.-P. New types of flavonol oligoglycosides accumulate in the hemolymph of birch-feeding sawfly larvae. J. Chem. Ecol. 2010, 36, 864–872. [Google Scholar] [CrossRef]
- Islam, S.Q.; Ichiryu, J.; Sato, M.; Yamasaki, T. D-Catechin: An oviposition stimulant for the cerambycid beetle, Monochamus alternatus, from Pinus densiflora. J. Pesticide Sci. 1997, 22, 338–341. [Google Scholar] [CrossRef]
- Togashi, K.; Miyauchi, O.; Kusumoto, D.; Matsushita, N. Commensal relation between Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) and Monochamus alternatus (Coleoptera: Cerambycidae) within pine trees. Appl. Entomol. Zool. 2016, 51, 53–62. [Google Scholar] [CrossRef]
- Hammerbacher, A.; Kaandasamy, D.; Ullah, C.; Schmidt, A.; Wright, L.P.; Gershenzon, J. Flavonone-3-hydroxylase plays an important role in the biosynthesis of spruce phenolic defenses against bark beetles and their fungal associates. Front. Plant Sci. 2019, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Wadke, N.; Kandasamy, D.; Vogel, H.; Lah, L.; Wingfield, B.D.; Paetz, C.; Wright, L.P.; Gershenzon, J.; Hammerbacher, A. The bark-beetle-associated fungus, Endoconidiophora polonica, utilizes the phenolic defense compounds of its host as a carbon source. Pl. Physiol. 2016, 171, 914–931. [Google Scholar] [CrossRef]
- Zhao, T.; Kandasamy, D.; Krokene, P.; Chen, J.; Gershenzon, J.; Hammerbacher, A. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunnelling behavior. Fungal Ecol. 2019, 38, 71–79. [Google Scholar] [CrossRef]
- Doskotch, R.W.; Chatterji, S.K.; Peacock, J.W. Elm bark derived feeding stimulant for the smaller European elm bark beetle. Science 1970, 167, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Hessenauer, P.; Fijarczyk, A.; Martin, H.; Prunier, J.; Charron, G.; Chapuis, J.; Bernier, L.; Tanguay, P.; Hamelin, R.C.; Landry, C.R. Hybridization and introgression drive genome evolution of Dutch elm disease pathogens. Nature Ecol. Evol. 2020, 4, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Doskotch, R.W.; Mikhail, A.A.; Chatterji, S.K. Structure of the water-soluble feeding stimulant for Scolytus multistriatus: A revision. Phytochemistry 1973, 12, 1153–1155. [Google Scholar] [CrossRef]
- Kim, K.S.; Sappington, T.S. Boll weevil (Anthonomus grandis Boheman) (Coleoptera: Curculionidae) dispersal in the southern United States: Evidence from mitochondrial DNA variation. Environ. Entomol. 2004, 33, 457–470. [Google Scholar] [CrossRef]
- Perkin, L.L.; Perez, J.L.; Suh, C.P.-C. The identification of boll weevil, Anthonomus grandis grandis (Coleoptera: Curculionidae), genes involved in pheromone production and pheromone biosynthesis. Insects 2021, 12, 893. [Google Scholar] [CrossRef]
- Perkin, L.L.; Cohen, Z.P.; Carlson, J.W.; Suh, C.P.-C. The transcriptomic response of the boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), following exposure to the organophosphate insecticide malathion. Insects 2023, 14(2), 197. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, F.G.; Jenkins, J.J.; Parrott, W.L. Influence of constituents of the cotton plant on feeding, oviposition, and development of the boll weevil. J. Econ. Entomol. 1967, 60, 1294–1297. [Google Scholar] [CrossRef]
- Hedin, P.A.; Miles, L.R.; Thompson, A.C.; Minyard, J.P. Constituents of a cotton bud. Formulation of a boll weevil feeding stimulant mixture. J. Agric. Food Chem. 1968, 16, 505–513. [Google Scholar] [CrossRef]
- Lee, G.; Choi, H.; Joo, Y.; Kim, S.-G. Flavone-associated resistance of two Lemna species to duckweed weevil attack. Ecol. Evol. 2022, 12, e9459. [Google Scholar] [CrossRef]
- Matsumoto, H.; Tebayashi, S.; Kuwahara, Y.; Matsuyama, S.; Suzuki, T.; Fujii, K. Identification of taxifolin present in the azuki bean as an oviposition stimulant of the azuki bean weevil. J. Pest. Sci. 1994, 19, 181–186. [Google Scholar] [CrossRef]
- Somta, P.; Talekar, N.S.; Srinives, P. Characterization of Callosobruchus chinensis (L.) resistance in Vigna umbellata (Thumb.) Ohwi & Ohashi. J. Stored Prod. Res. 2006, 42, 313–327. [Google Scholar] [CrossRef]
- Iturralde-García, D.; Riudavets, J.; Castañé, C. Biological control of Callosobruchus chinensis (Coleoptera: Chrysomelidae) in stored chickpeas through the release of natural enemies. Biol. Control 2020, 149, 104322. [Google Scholar] [CrossRef]
- Ueno, T.; Kuwahara, Y.; Fujii, K.; Taper, M.L.; Toquenaga, Y.; Suzuki, T. D-Catechin: An oviposition stimulant of azuki bean weevil Callosobruchus chinensis in the host azuki bean. J. Pesticide Sci. 1990, 15, 573–578. [Google Scholar] [CrossRef]
- Salunke, B.K.; Kotkar, H.M.; Mendki, P.S.; Upasani, S.M.; Maheshwari, V.L. Efficacy of flavonoids in controlling Callosobruchus chinensis (L.) (Coleoptera: Bruchidae), a post-harvest pest of grain legumes. Crop Prot. 2005, 24, 888–893. [Google Scholar] [CrossRef]
- Matsuda, K.; Matsuo, H. A flavonoid, luteolin-7-glucoside, as well as salicin and populin, stimulating the feeding of leaf beetles attacking salicaceous plants. Appl. Entomol. Zool. 1985, 20, 305–313. [Google Scholar] [CrossRef]
- Canty, R.; Ruzzier, E.; Cronk, Q.; Percy, D. Salix transect of Europe: Patterns in the most abundant chrysomelid beetle (Coleoptera: Chrysomelidae) herbivores of willow in Greece to Artic Norway. Biodivers. Data J. 2016, 4, e10194. [Google Scholar] [CrossRef]
- Matsuda, K. Feeding stimulation of flavonoids for various leaf beetles (Coleoptera: Chrysomelidae). Appl. Entomol. Zool. 1978, 13, 228–230. [Google Scholar] [CrossRef]
- Sporer, T.; Körnig, J.; Beran, F. Ontogenetic differences in the chemical defense of flea beetles influence their predation risk. Funct. Ecol. 2020, 34, 1370–1379. [Google Scholar] [CrossRef]
- Yang, Z.-L.; Nour-Eldin, H.H.; Hänninger, S.; Reichelt, M.; Crocoll, C.; Seitz, F.; Vogel, H.; Beran, F. Sugar transporters enable leaf beetle to accumulate plant defense compounds. Nature Comm. 2021, 12, 2658. [Google Scholar] [CrossRef]
- Nielsen, J.K.; Larsen, L.M.; Sørensen, H. Host plant selection of the horseradish flea beetle Phyllotreta armoraciae (Coleoptera: Chrysomelidae): Identification of two flavonol glycosides stimulating feeding in combination with glucosinolates. Entomol. Exp. Appl. 1979, 26, 40–48. [Google Scholar] [CrossRef]
- Onyilagha, J.C.; Gruber, M.Y.; Hallett, R.H.; Holowachuk, J.; Buckner, A.; Soroka, J.J. Constitutive flavonoids deter flea beetle insect feeding in Camelina sativa L. Biochem. Syst. Ecol. 2012, 42, 128–133. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Cheng, X.; Liu, S.; Wei, Q.; Scott, I.M. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pest. Biochem. Physiol. 2016, 127, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Balaško, M.K.; Mikac, K.M.; Bažok, R.; Lemic, D. Modern techniques in Colorado potato beetle (Leptinotarsa decemlineata Say) control and resistance management: History review and future perspectives. Insects 2020, 11, 581. [Google Scholar] [CrossRef] [PubMed]
- Dowd, P.F. Responses of Carpophilus hemipterus larvae and adults to selected secondary metabolites of maize. Entomol. Exp. Appl. 1990, 54, 29–36. [Google Scholar] [CrossRef]
- James, D.G.; Vogele, B. Development and survivorship of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus humeralis (F.) (Coleoptera: Nitidulidae) over a range of constant temperatures. Aust. J. Entomol. 2000, 39, 180–184. [Google Scholar] [CrossRef]
- Soltani, A.; Haouel-Hamdi, S.; Ajmi, I.S.; Djebbi, T.; Abada, M.; Yangui, I.; Chouachi, N.; Hassine, K.; Majdoub, H.; Messaoud, C.; et al. nanoparticles. Intl. J. Environ. Health Res. 2023, 33, 1243–1253. [Google Scholar] [CrossRef]
- Levy, E.C.; Ishaaya, I.; Gurevitz, E.; Cooper, R.; Lavie, D. Isolation and identification of host compounds eliciting attraction and bite stimuli in the fruit tree bark beetle, Scolytus mediterraneus. J. Agric. Food Chem. 1974, 22, 376–379. [Google Scholar] [CrossRef]
- Gurevitz, E.; Ishaaya, I. Behavioural response of the fruit tree bark beetle, Scolytus mediterraneus, to host and non-host plants. Entomol. Exp. Appl. 1972, 15, 175–182. [Google Scholar] [CrossRef]
- Mendel, Z.; Ben-Yehuda, S.; Marcus, R.; Nestel, D. Distribution and extent of damage by Scolytus spp. to stone and pome fruit orchards in Israel. Insect Sci. Appl. 1997, 17, 175–181. [Google Scholar] [CrossRef]
- Adeyemi, M.M.; Adebote, D.A.; Amupitan, J.O.; Oyewale, A.O.; Agbaji, A.S. Antifeedant activity of quercetin isolated from the stem bark of Bobgunnia madagascariensis (Desv.) J.H.Kirkbr & Wiersema. (Caesalpiniaceae). Aust. J. Basic Appl. Sci. 2010, 4, 3342–3346. [Google Scholar]
- Stevenson, P.C.; Nyirenda, S.P.; Veitch, N.C. Highly glycosylated flavonoids from the pods of Bobgunnia madagascariensis. Tetrahedron Lett. 2010, 51, 4727–4730. [Google Scholar] [CrossRef]
- Shanovich, H.N.; Ribeiro, A.V.; Koch, R.L. Seasonal abundance, defoliation, and parasitism of Japanese beetle (Coleoptera: Scarabaeidae) in two apple cultivars. J. Econ. Entomol. 2021, 114, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Strangi, A.; Paoli, F.; Nardi, F.; Shimizu, K.; Kimoto, T.; Lovinella, I.; Bosio, G.; Roversi, P.F.; Carapelli, A.; Marianelli, L. Tracing the dispersal route of the invasive Japanese beetle Popillia japonica. J. Pest Sci. 2024, 97, 613–629. [Google Scholar] [CrossRef]
- Fulcher, A.F.; Ranney, T.G.; Burton, J.D. Role of foliar phenolics in host plant resistance of Malus taxa to adult Japanese beetles. HortScience 1998, 33, 862–865. [Google Scholar] [CrossRef]
- Patton, C.A.; Ranney, T.G.; Burton, J.D.; Walgenbach, J.F. Feeding responses of Japanese beetle to naturally occurring metabolites found in Rosaceous plants. J. Environ. Hort. 1997, 15, 222–227. [Google Scholar] [CrossRef]
- Skrzecz, I.; Sowinski, A.; Janiszewski, W. Effects of botanical antifeedants on Melolontha melolontha grub feeding on Scots pine roots. Folia For. Polonica, Ser. A. 2014, 56, 135–140. [Google Scholar] [CrossRef]
- Malusá, E.; Tartanus, M.; Furmanczyk, E.M.; Łabanowska, B.H. Holistic approach to control Melolontha spp. in organic strawberry plantations. Organic Agric. 2020, 10 (Suppl. 1), S13–S22. [Google Scholar] [CrossRef]
- Pedrazzini, C.; Strasser, H.; Zemp, N.; Holderegger, R.; Widmer, F.; Enkerli, J. Spatial and temporal patterns in the population genomics of the European cockchafer Melolontha melolontha in the Alpine region. Evol. Appl. 2023, 16, 1586–1597. [Google Scholar] [CrossRef]
- Luthar, Z.; Germ, M.; Likar, M.; Golob, A.; Vogel-Mikuš, K.; Pongrac, P.; Kušar, A.; Pravst, I.; Kreft, I. Breeding buckwheat for increased levels of rutin, quercetin and other bioactive compounds with potential antiviral effects. Plants 2020, 9, 1638. [Google Scholar] [CrossRef]
- Diaz Napal, G.N.; Defago, M.T.; Valladares, G.R.; Palacios, S.M. Response of Epilachna paenulata to two flavonoids, pinocembrin and quercetin, in a comparative study. J. Chem. Ecol. 2010, 36, 898–904. [Google Scholar] [CrossRef]
- Camarano, S.; Gonzáles, A.; Rossini, C. Biparental endowment of endogenous defensive alkaloids in Epilachna paenulata. J. Chem. Ecol. 2009, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Camarano, S.; Gonzáles, A.; Rossini, C. Origin of Epilachna paenulata defensive alkaloids: Incorporation of [1-13C]-sodium acetate and [methyl-2H3]-stearic acid. J. Insect Physiol. 2012, 58, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Krafsur, E.S.; Obrycki, J.J. Coleomegilla maculata (Coleoptera: Coccinellidae) is a species complex. Ann. Entomol. Soc. Am. 2000, 93, 1156–1163. [Google Scholar] [CrossRef]
- Choate, B.A.; Lundgren, J.G. Why eat extrafloral nectar? Understanding food selection by Coleomegilla maculata (Coleoptera: Coccinellidae). BioControl 2013, 58, 359–367. [Google Scholar] [CrossRef]
- Riddick, E.W.; Wu, Z.; Eller, F.J.; Berhow, M.A. Do bioflavonoids in Juniperus virginiana heartwood stimulate oviposition in the ladybird Coleomegilla maculata? Intl. J. Insect Sci. 2018, 10, 1179543318758409. [Google Scholar] [CrossRef] [PubMed]
- Riddick, E.W.; Wu, Z.; Eller, F.J.; Berhow, M.A. Utilization of quercetin as an oviposition stimulant by lab-cultured Coleomegilla maculata in the presence of conspecifics and a tissue substrate. Insects 2018, 9, 77. [Google Scholar] [CrossRef]
- Franzmann, B.A. Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae, a predacious ladybird new in Australia. Aust. J. Entomol. 2002, 41, 375–377. [Google Scholar] [CrossRef]
- Sarkar, S.C.; Milroy, S.P.; Xu, W. Potential of variegated lady beetle Hippodamia variegata in management of invasive tomato potato psyllid Bactericera cockerelli. Pest Manag. Sci. 2023, 79, 821–832. [Google Scholar] [CrossRef]
- Zahedi, A.; Razmjou, J.; Rafiee-Dastjerdi, H.; Leppla, N.C.; Golizadeh, A.; Hassanpour, M.; Ebadollahi, A. Tritrophic interactions of cucumber cultivar, Aphis gossypii (Hemiptera: Aphididae), and its predator Hippodamia variegata (Coleoptera: Coccinellidae). J. Econ. Entomol. 2019, 112, 1774–1779. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, X.; Shen, H.; Xue, H.; Tian, T.; Zhang, Q.; Hu, J.; Tong, H.; Zhang, Y.; Su, Q. Flavonoid-producing tomato plants have a direct negative effect on the zoophytophagous biological control agent Orius sauteri. Insect Sci. 2023, 30, 173–184. [Google Scholar] [CrossRef]
- Yang, F.; Shen, H.; Huang, T.; Yao, Q.; Hu, J.; Tang, J.; Zhang, R.; Tong, H.; Wu, Q.; Zhang, Y.; et al. Flavonoid production in tomato mediates both direct and indirect plant defences against whiteflies in tritrophic interactions. Pest Manag. Sci. 2023, 79, 4644–4654. [Google Scholar] [CrossRef] [PubMed]
- Stamp, N.E.; Erskine, T.; Paradise, C.J. Effects of rutin-fed caterpillars on an invertebrate predator depend on temperature. Oecologia 1991, 88, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.; Arpaia, S.; Cardinali, A.; Venere, D.D.; Linsalata, V. Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. J. Agric. Food Chem. 2000, 48, 5316–5320. [Google Scholar] [CrossRef] [PubMed]
- Goławska, S.; Sprawka, I.; Łukasik, I.; Goławski, A. Are naringenin and quercetin useful chemicals in pest management strategies? J. Pest Sci. 2014, 87, 173–180. [Google Scholar] [CrossRef]
- Goławska, S.; Łukasik, I.; Goławski, A.; Kapusta, I.; Janda, B. Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum). Pol. J. Environ. Stud. 2010, 19, 913–920. [Google Scholar]
- Goławska, S.; Łukasik, I.; Kapusta, I.; Janda, B. Do the contents of luteolin, tricin, and chrysoeriol glycosides in alfalfa (Medicago sativa L.) affect the behavior of pea aphid (Acyrthosiphon pisum)? Pol. J. Environ. Stud. 2012, 21, 1613–1619. [Google Scholar]
- Goławska, S.; Łukasik, I. Antifeedant activity of luteolin and genistein against the pea aphid, Acyrthosiphon pisum. J. Pest. Sci. 2012, 85, 443–450. [Google Scholar] [CrossRef]
- Yuan, E.; Yan, H.; Gao, J.; Guo, H.; Ge, F.; Sun, Y. Increases in genistein in Medicago sativa confer resistance against the Pisum host race of Acyrthosiphon pisum. Insects 2019, 10(4), 97. [Google Scholar] [CrossRef]
- Stec, K.; Kordan, B.; Gabryś, B. Effect of soy leaf flavonoids on pea aphid probing behavior. Insects 2021, 12, 756. [Google Scholar] [CrossRef]
- Stec, K.; Kordan, B.; Gabryś, B. Quercetin and rutin as modifiers of aphid probing behavior. Molecules 2021, 26, 3622. [Google Scholar] [CrossRef]
- Ali, J.; Bayram, A.; Mukarram, M.; Zhou, F.; Karim, M.F.; Hafez, M.M.A.; Mahamood, M.; Yusuf, A.A.; King, P.J.H.; Adil, M.F.; et al. Peach–potato aphid Myzus persicae: Current management strategies, challenges, and proposed solutions. Sustainability 2023, 15, 11150. [Google Scholar] [CrossRef]
- Mewis, I.; Khan, M.A.M.; Glawisching, E.; Schreiner, M.; Ulrichs, C. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PLoS ONE 2012, 7, e48661. [Google Scholar] [CrossRef] [PubMed]
- Kariyat, R.R.; Gaffoor, I.; Sattar, S.; Dixon, C.W.; Frock, N.; Moen, J.; Moraes, C.M.; Mescher, M.C.; Thompson, G.A.; Chopra, S. Sorghum 3-deoxyanthocyanidin flavonoids confer resistance against corn leaf aphid. J. Chem. Ecol. 2019, 45, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Anjali, M.S.; Sridevi, G.; Prabhakar, M.; Pushpavathi, B.; Laxmi, N.J. Dynamic changes in carotenoid content and flavonoid content and relative water content (RWC) by corn leaf aphid infestation on sorghum. J. Pharmacog. Phytochem. 2017, 6, 1240–1245. [Google Scholar]
- Ateyyat, M.; Abu-Romman, S.; Abu-Darwish, M.; Ghabeish, I. Impact of flavonoids against woolly apple aphid, Eriosoma lanigerum (Hausmann) and its sole parasitoid, Aphelinus mali (Hald.). J. Agric. Sci. 2012, 4, 227–236. [Google Scholar] [CrossRef]
- Ateyyat, M.; Al-Antary, T. Susceptibility of nine apple cultivars to woolly apple aphid, Eriosoma lanigerum (Homoptera: Aphididae) in Jordan. Intl. J. Pest Manag. 2009, 55, 79–84. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Yang, X.-M.; Lu, B.; Zhou, L.-H.; Wu, K.-M. Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers. Sci. Rep. 2017, 7, 1920. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, C.; Luo, J.; Niu, L.; Hua, H.; Zhang, S.; Cui, J. Potential of cucurbitacin B and epigallocatechin gallate as biopesticides against Aphis gossypii. Insects 2021, 12, 32. [Google Scholar] [CrossRef]
- Dreyer, D.L.; Jones, K.C. Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: Aphid feeding deterrents in wheat. Phytochemistry 1981, 20, 2489–2493. [Google Scholar] [CrossRef]
- Rey, D.; David, J.P.; Besnard, G.; Jullien, J.L.; Lagneau, C.; Meyran, J.C. Comparative sensitivity of larval mosquitoes to vegetable polyphenols versus conventional insecticides. Entomol. Exp. Appl. 2001, 98, 361–367. [Google Scholar] [CrossRef]
- Flor-Weiler, L.B.; Behle, R.W.; Berhow, M.A.; McCormick, S.P.; Vaughn, S.F.; Muturi, E.J.; Hay, W.T. Bioactivity of brassica seed meals and its compounds as ecofriendly larvicides against mosquitoes. Sci. Rep. 2023, 13, 3936. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.V.; Chattopadhyay, S.K.; Reddy, G.C. Flavonoids with mosquito larval toxicity. J. Agric. Food Chem. 1990, 38, 1427–1430. [Google Scholar] [CrossRef]
- Inaba, K.; Ebihara, K.; Senda, M.; Yoshino, R.; Sakuma, C.; Koiwai, K.; Takaya, D.; Watanabe, C.; Watanabe, A.; Kawashima, Y.; et al. Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppero-bo in Aedes aegypti. BMC Biology 2022, 20, 43. [Google Scholar] [CrossRef] [PubMed]
- Perumalsamy, H.; Jang, M.J.; Kim, J.-R.; Kadarkarai, M.; Ahn, Y.-J. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Milletta pinnata seed toward three mosquito species. Parasites Vectors 2015, 8, 237. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.; and Jebanesan, A. Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitol. Res. 2008, 104, 19–25. [Google Scholar] [CrossRef]
- Silva Pessoa, L.Z.; Duarte, J.L.; Anjos Ferreira, R.M.; Faria Motta Oliveira, A.E.M.; Cruz, R.A.S.; Faustino, S.M.M.; Carvalho, J.C.T.; Fernandes, C.P.; Souto, R.N.P.; Araujo, R.S. Nanosuspension of quercetin: Preparation, characterization and effects against Aedes aegypti larvae. Rev. Bras. Farmacog. 2018, 28, 618–625. [Google Scholar] [CrossRef]
- Xu, B.; Wang, Y.; Liu, X.; Yuan, F.; Su, N.; Chen, Y.; Wu, Y.; Zhang, Q. Effects of CryIAc and secondary metabolites in Bt transgenic cottonseed on Lycoriella pleuroti Yang et Zhang (Diptera: Sciaridae). Environ. Entomol. 2006, 35, 807–810. [Google Scholar] [CrossRef]
- Hales, K.G.; Korey, C.A.; Larracuente, A.M.; Roberts, D.M. Genetics on the fly: A primer on the Drosophila model system. Genetics 2015, 201, 815–842. [Google Scholar] [CrossRef]
- Schramm, D.D.; Collins, H.E.; Hawley, R.S.; German, J.B. Unaltered meiotic chromosome segregation in Drosophila melanogaster raised on a 5% quercetin diet. Food Chem. Toxicol. 1998, 36, 585–589. [Google Scholar] [CrossRef]
- Pree, D.J. Resistance to development of larvae of the apple maggot in crab apples. J. Econ. Entomol. 1977, 70, 611–614. [Google Scholar] [CrossRef]
- Kumar, S.; Yee, W.L.; Neven, L.G. Mapping global potential risk of establishment of Rhagoletis pomonella (Diptera: Tephritidae) using MaxEnt and CLIMEX niche models. J. Econ. Entomol. 2016, 109, 2043–2053. [Google Scholar] [CrossRef] [PubMed]
- Šarić, A.; Kalafatić, M.; Rusak, G.; Kovačević, G.; Franjević, D.; Gutzeit, H.O. Postembryonic development of Drosophila melanogaster Meigen, 1830 under the influence of quercetin. Entomol. News 2007, 118, 235–240. [Google Scholar] [CrossRef]
- Sharma, R.; Sohal, S.K. Bioefficacy of quercetin against melon fruit fly. Bull. Insectol. 2013, 66, 79–83. [Google Scholar]
- Dhillon, M.K.; Singh, R.; Naresh, J.S.; and Sharma, H.C. The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management. J. Insect Sci. 2005, 5, 40. Available online: https://academic.oup.com/insect-science/ (accessed on 6 April 2024). [CrossRef] [PubMed]
- Sharma, R.; Sohal, S.K. Oviposition response of melon fruit fly, Bactrocera cucurbitae (Coquillett) to different phenolic compounds. J. Biopest. 2016, 9, 46–51. [Google Scholar] [CrossRef]
- Puri, S.; Singh, S.; Sohal, S.K. Inhibitory effect of chrysin on growth, development and oviposition behaviour of melon fruit fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Phytoparasitica 2022, 50, 151–162. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef]
- Shah, F.L.A.; Ramzi, A.B.; Baharum, S.N.; Noor, N.M.; Goh, H.-H.; Leow, T.C.; Oslan, S.N.; Sabri, S. Recent advancement of engineering microbial hosts for the biotechnological production of flavonoids. Mol. Biol. Rep. 2019, 46, 6647–6659. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Sun, X.; Yan, Y.; Yuan, Q.; Wang, J.; Shen, X. Metabolic engineering of microorganisms for the production of flavonoids. Front. Bioeng. Biotechnol. 2020, 8, 589069. [Google Scholar] [CrossRef]
- Mei, J.; Chen, X.; Wang, P.; Wu, Y.; Yi, Y.; Ying, G. Production of taxifolin from astilbin by fungal biotransformation. Catalysts 2022, 12, 1037. [Google Scholar] [CrossRef]
- Sun, J.; Sun, W.; Zhang, G.; Lv, B.; Li, C. High efficient production of plant flavonoids by microbial cell factories: Challenges and opportunities. Metab. Eng. 2022, 70, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.M.S.; López, B.G.-C.; Diniz, S.N.; Antunes, A.A.; Garcia, D.M.; Oliveira, C.R.; Marcucci, M.C. Quantification of flavonoids in Brazilian orange peels and industrial orange juice processing wastes. Agric. Sci. 2017, 8, 631–644. [Google Scholar] [CrossRef]
- Victor, M.M.; David, J.M.; Cortez, M.V.M.; Leite, J.L.; Silva, G.S.B. A high-yield process for extraction of hesperidin from orange (Citrus sinensis L. osbeck) peels waste, and its transformation to diosmetin, a valuable and bioactive flavonoid. Waste Biomass Valor. 2021, 12, 313–320. [Google Scholar] [CrossRef]
Taxa | Flavonoids | Statistics | Flavonoid Glycosides | Statistics | ||||
---|---|---|---|---|---|---|---|---|
Harmless (n) | Harmful (n) | Z | P | Harmless (n) | Harmful (n) | Z | P | |
Butterflies | 0.75 (6) | 0.25 (2) | 1.26 | 0.21 | 0.83 (20) | 0.17 (4) | 2.68 | 0.007 |
Bees | 0.90 (27) | 0.10 (3) | 3.42 | <0.001 | 1 (1) | 0 | == | == |
Sawflies | 0 | 1 (3) | == | == | 0.89 (16) | 0.11 (2) | 2.61 | 0.009 |
Beetles | 0.57 (33) | 0.43 (25) | 1.05 | 0.29 | 0.69 (18) | 0.31 (8) | 1.82 | 0.07 |
True Bugs | 0.15 (3) | 0.85 (17) | 2.56 | 0.01 | 0 | 1 (5) | == | == |
True Flies | 0.14 (4) | 0.86 (24) | 3.03 | 0.002 | 0 | 1 (12) | == | == |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riddick, E.W. Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials. Insects 2024, 15, 956. https://doi.org/10.3390/insects15120956
Riddick EW. Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials. Insects. 2024; 15(12):956. https://doi.org/10.3390/insects15120956
Chicago/Turabian StyleRiddick, Eric Wellington. 2024. "Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials" Insects 15, no. 12: 956. https://doi.org/10.3390/insects15120956
APA StyleRiddick, E. W. (2024). Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials. Insects, 15(12), 956. https://doi.org/10.3390/insects15120956