Comparative Morphology of the Wing Base Structure Illuminates Higher-Level Phylogeny of Holometabola
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Examined Taxa
2.2. Terminology
2.3. Phylogenetic Analysis
3. Results
3.1. Comparative Morphology of the Wing Base Structures
3.1.1. Hymenoptera (Figure 2)
3.1.2. Amphiesmenoptera (Figure 3)
3.1.3. Antliophora (Figure 4)
3.1.4. Coleopterida (Figure 5)
3.1.5. Neuropterida (Figure 6, Figure 7 and Figure 8)
3.2. Character Description of Wing Base Structures Used for Phylogenetic Analysis
3.2.1. Forewing
- Shape of ANWP: (0) not triangular, stripe-like, or tubular-like; (1) nearly acute triangular; (2) nearly obtuse triangular; (3) stripe-like; (4) tubular-like. State 1 appeared in Raphidioptera (Figure 8A,C), and state 2 appeared in Megaloptera (Figure 6A,C,E). In Hymenoptera, the tubular-like ANWP of the mesonotum is obviously different from that of other orders in Holometabola (Figure 2A,C,E). (CI = 1, RI = 1).
- Position of ANWP: (0) not anterior to Tg; (1) anterior to Tg. State 1 appeared in Hymenoptera (Figure 2A,C,E). (CI = 1, RI = 1).
- Anterodistal projection of MNWP: (0) absent; (1) present. State 1 appeared exclusively in Trichoptera (Figure 3A), which might indicate a unique evolutionary characteristic of this order. (CI = 1, RI = 1).
- Shape of PNWP: (0) not as for state (1) or (2); (1) long and slender process, at least 2 times longer than wide; (2) vestigial and indistinct. State 1 appeared in Trichoptera, Lepidoptera, Mecoptera, Coleoptera, Megaloptera, Neuroptera, and Raphidioptera (Figure 3A,C,E, Figure 4A, Figure 5A,C,D, Figure 7A,C, and Figure 8A,C). State 2 appeared in Xyelidae of Hymenoptera (Figure 2A), Diptera (Figure 4C–F), and Strepsiptera. (CI = 0.4, RI = 0.7).
- Relationship between Tg and other sclerites: (0) Tg does not cover any sclerite; (1) Tg covers BSc or more; (2) Tg is absent. State 1 appeared in some Hymenoptera and Trichoptera (Figure 2C,E). The tegula is absent in Coleoptera, a phenomenon that may be closely related to the unique elytra of the forewing. (CI = 0.667, RI = 0.857).
- Shape of Tg: (0) circular; (1) triangular; (2) rectangular; (3) absent. State 1 appeared in Lepidoptera. State 2 appeared in Mecoptera (Figure 4A). State 3 appeared in Coleoptera. (CI = 1, RI = 1).
- 1Ax: (0) individual sclerite; (1) fused to notum or absent. State 1 appeared in some Coleoptera, such as Cupedidae and Melolonthidae. (CI = 0.5, RI = 0.5).
- Shape of 1Ax: (0) not strongly swelling; (1) strongly swelling. State 1 appeared exclusively in Hymenoptera (Figure 2A,C,E), and it may be the autapomorphy of this order. (CI = 1, RI = 1).
- Change in width from neck to head of 1Ax: (0) unchanged; (1) widened apically in head, continuous; (2) thinned apically in head, continuous; (3) thinned in boundary, widened in head, discontinuous. State 1 appeared in Neuroptera, Megaloptera, Raphidioptera, Coleoptera, Trichoptera, and Strepsiptera (Figure 3A, Figure 6A,C,E, Figure 7A,C, and Figure 8A,C). State 2 appeared in Lepidoptera (Figure 3C,E). State 3 appeared in Mecoptera and Diptera (Figure 4A,C–F). (CI = 1, RI = 1).
- Anterodistal part of the body of 1Ax: (0) without projection; (1) with a projection. State 1 appeared in Hymenoptera (Figure 2A,C,E), which may be an autapomorphy of this order. (CI = 1, RI = 1).
- Interaction between BR and 2Ax: (0) BR not fused to 2Ax, membranous insertion present; (1) BR approximately as wide as 2Ax and fused to it; (2) BR approximately half as wide as 2Ax and fused to it; (3) BR connected to 2Ax by a narrow, sclerotized stripe. State 1 appeared in Neuroptera, Megaloptera, Hymenoptera, Trichoptera, Lepidoptera, Mecoptera, and some Diptera (Figure 2A,C,E, Figure 3A,C,E, Figure 4A,C,D, Figure 6A,C,E, and Figure 7A,C). State 2 appeared in Raphidioptera (Figure 8A,C), and state 3 appeared in some Coleoptera. (CI = 1, RI = 1).
- Number of lobes of 3Ax: (0) 3; (1) 2. State 1 appeared in Hymenoptera (Figure 2A,C,E). (CI = 1, RI = 1).
- Shape of 3Ax: (0) plate-like; (1) slender proximal lobe; (2) slender proximal and anterior or distal lobe; (3) stripe-like. State 1 appeared in Trichoptera, Lepidoptera, Mecoptera, and Diptera (Figure 3A,C,E and Figure 4A,C–F). State 2 appeared in Raphidioptera (Figure 8A,C). State 3 appeared in Hymenoptera (Figure 2A,C,E). (CI = 1, RI = 1).
- BR and DMP: (0) separated; (1) fused to a plate; (2) absent. State 1 appeared in Lepidoptera (Figure 3C,E). State 2 appeared in Strepsiptera. (CI = 1, RI = 1).
- DMP: (0) not strongly swelling; (1) strongly swelling; (2) absent. State 1 appeared in Hymenoptera (Figure 2A,C,E). In Strepsiptera, the DMP was absent. (CI = 0.667, RI = 0).
- DMP and PMP: (0) both sclerotized, but less than 1Ax; (1) both less sclerotized; (2) both as sclerotized as 1Ax; (3) DMP distinctly more sclerotized than PMP; (4) absent. State 1 appeared in Raphidioptera (Figure 6A,C). State 2 appeared in Trichoptera, Lepidoptera, Mecoptera, and Diptera (Figure 3A,C,E and Figure 4A,C–F). State 3 appeared in Hymenoptera (Figure 2A,C,E). In Strepsiptera, the median plates were absent. (CI = 1, RI = 1).
- BA: (0) as large as or smaller than 3Ax; (1) 2 times larger than 3Ax. State 1 appeared in Mecoptera and Diptera (Figure 4A,C–F). (CI = 1, RI = 1).
- Shape of BA: (0) different from 3Ax; (1) almost the same as 3Ax. State 1 appeared in Hymenoptera (Figure 2A,C,E). (CI = 1, RI = 1).
3.2.2. Hindwing
- 26.
- ANWP configuration: (0) neither triangular nor stripe-like; (1) nearly triangular; (2) stripe-like, directed posteriorly; (3) stripe-like, directed anteriorly. State 1 appeared in some Raphidioptera, Coleoptera, Hymenoptera, and Strepsiptera (Figure 2B,D,F, Figure 5A,D, and Figure 8B,D). State 2 appeared in Neuroptera and Megaloptera. (Figure 6B,D,F and Figure 7B,D). (CI = 0.6, RI = 0.875).
- 27.
- 28.
- Shape of pPNWP: (0) absent; (1) neither U-shaped, triangular, or stripe-like; (2) triangular; (3) U-shaped; (4) present, stripe-like. State 1 appeared in Neuroptera and Megaloptera (Figure 6B,D,F and Figure 7B,D). State 2 appeared in Raphidioptera (Figure 8B,D). State 3 appeared in Mecoptera (Figure 4B). State 4 appeared in some Hymenoptera (Figure 2B). (CI = 1, RI = 1).
- 29.
- 30.
- Shape of PNWP: (0) shorter than twice its width; (1) roughly twice as long as its width; (2) roughly three times as long as its width; (3) vestigial. State 1 appeared in Hymenoptera (Figure 2B,D,F). State 2 appeared in Coleoptera, Trichoptera, and Lepidoptera (Figure 3B,D,F and Figure 5A–D). State 3 appeared in Mecoptera, Diptera, and outgroups (Figure 4B and Figure 9A,B). (CI = 0.75, RI = 0.938).
- 31.
- 32.
- HP: (0) fused to end of the costal vein; (1) separated from the costal vein by a membrane; (2) either missing or fused to the costal vein in a manner that is difficult to distinguish. State 1 appeared in some Coleoptera, Mecoptera, and Neuroptera (Figure 4B, Figure 5A–C, and Figure 7B,D). State 2 appeared in Strepsiptera. (CI = 0.4, RI = 0.727).
- 33.
- Length ratio of 1Ax and metanotum: (0) notum more than 3.5 times longer; (1) notum 3–3.5 times longer; (2) notum 2.4–3 times longer; (3) notum 1.4–2.4 times longer. State 1 appeared in Raphidioptera and some Hymenoptera (Figure 2D,F and Figure 8B,D). State 2 appeared in outgroups, Trichoptera, and Lepidoptera (Figure 3B,D,F and Figure 9A,B). (CI = 0.6, RI = 0.818). State 3 appeared in Coleoptera (Figure 5A–D).
- 34.
- Neck of 1Ax: (0) narrower than head region, with a straight distal margin; (1) narrower than the head region, with a concave distal margin; (2) about as wide as the indistinct head region; (3) projection at the distal margin; (4) extremely short or absent. State 1 appeared in Raphidioptera, Megaloptera, Coleoptera, Lepidoptera, Mecoptera, and Strepsiptera (Figure 3D,F, Figure 4B, Figure 5A–D, Figure 6B,D, and Figure 8B,D). State 2 appeared in some Diptera. State 3 appeared in some Neuroptera and Trichoptera (Figure 3B and Figure 7B,D). State 4 appeared in all Hymenoptera (Figure 2B,D,F), but in Tenthredinidae and Diprionidae, the head of 1Ax was present, differing from Beutel et al. [17] who reported the head of the hindwing 1Ax as absent. (CI = 0.667, RI = 0.750).
- 35.
- Neck of 1Ax: (0) present; (1) absent. State 1 appeared in Hymenoptera (Figure 2B,D,F). (CI = 1, RI = 1).
- 36.
- Proximal lobe of the body of 1Ax: (0) distinctly longer than the distal lobe; (1) as long as the distal lobe; (2) shorter than the distal lobe. State 1 appeared in some Coleoptera, Hymenoptera, some Mecoptera, and Strepsiptera (Figure 2B,D,F, Figure 4B, and Figure 5B–D). State 2 appeared in Neuroptera, Megaloptera, Raphidioptera, Trichoptera, Lepidoptera, and some Mecoptera (Figure 3B,D,F, Figure 6B,D,F, Figure 7B,D, and Figure 8B,D). (CI = 0.333, RI = 0.636).
- 37.
- Anterodistal part of the body of 1Ax: (0) without projection; (1) with a projection. State 1 appeared in some Megaloptera (Figure 6B,D). (CI = 1, RI = 1).
- 38.
- Angle between the neck and the body of 1Ax: (0) wider than 130°; (1) less than 130°; (2) neck absent. State 1 appeared in Neuroptera, Megaloptera, Raphidioptera, Coleoptera, Trichoptera, Lepidoptera, some Diptera, and Strepsiptera (Figure 3B,D,F, Figure 5A–D, Figure 6B,D, Figure 7B,D, and Figure 8B,D). (CI = 0.667, RI = 0.8).
- 39.
- Contact between 2Ax and 1Ax: (0) proximo-cranial part of 2Ax articulates with 1Ax, proximo-caudal part separated from 1Ax by a membrane; (1) proximo-caudal part of 2Ax articulates with 1Ax, proximo-cranial part separated from 1Ax by a membrane; (2) articulation formed by proximo-cranial and proximo-caudal parts, each separated from 1Ax by a narrow membranous area. State 1 appeared in Megaloptera, Raphidioptera, Hymenoptera, Trichoptera, and some Mecoptera (Figure 2B,D,F, Figure 3B, Figure 5A–D, and Figure 6B,D). State 2 appeared in Lepidoptera (Figure 3D,F). (CI = 0.4, RI = 0.571).
- 40.
- Contact of 1Ax and 2Ax: (0) 1Ax does not cover 2Ax; (1) 1Ax covers 2Ax. (CI = 1, RI = 1). State 1 appeared in Coleoptera. (Figure 5B–D).
- 41.
- Shape of 2Ax: (0) not as in state (1) or state (2); (1) almost stripe-like but bends distally apically; (2) almost rectangular and does not bend. State 1 appeared in Neuroptera, Megaloptera, and Raphidioptera (Figure 6B,D,F, Figure 7B,D, and Figure 8B,D). State 2 appeared in Hymenoptera (Figure 2B,D,F). (CI = 1, RI = 1).
- 42.
- Size of 2Ax: (0) larger than the distal lobe of the body of 1Ax; (1) approximately equal in length to the distal lobe of 1Ax’s body. State 1 appeared in Hymenoptera, Neuroptera, Raphidioptera, Megaloptera, some Coleoptera, some Trichoptera, Lepidoptera, and Strepsiptera (Figure 2B, Figure 3B,D, Figure 5B–D, Figure 6B,D, Figure 7B,D, and Figure 8B,D). (CI = 0.167, RI = 0.375).
- 43.
- Proximal part of 2Ax: (0) not extending under the body of 1Ax; (1) extending under the body of 1Ax. State 1 appeared in some Coleoptera (Figure 5B–D). (CI = 1, RI = 1).
- 44.
- Anterior part of 2Ax: (0) bends proximally; (1) bends distally. State 1 appeared in Megaloptera (Figure 6B,D,F). (CI = 1, RI = 1).
- 45.
- Contact between BR and 2Ax: (0) separated; (1) connected by a narrow, sclerotized stripe; (2) fused directly. State 1 appeared in some Coleoptera (Figure 5A,D). State 2 appeared in Neuroptera, Raphidioptera, Megaloptera, Trichoptera, Lepidoptera, and Mecoptera (Figure 3B,D,F, Figure 4B, Figure 6B,D,F, Figure 7B,D, Figure 8B,D, and Figure 9A,B). (CI = 0.5, RI = 0.714).
- 46.
- 47.
- 3Ax: (0) lacking a detached sclerite; (1) featuring a separate sclerite located between 1Ax and 3Ax. State 1 appeared in Coleoptera (Figure 5A–D). (CI = 1, RI = 1).
- 48.
- 49.
- 50.
- Shape of 3Ax: (0) plate-like; (1) slender proximal lobe. State 1 appeared in Coleoptera (Figure 5A–D). (CI = 1, RI = 1).
- 51.
- 52.
- 53.
- Size of BA: (0) indistinguishable or not comparable; (1) smaller than 3Ax; (2) distinctly larger than 3Ax; (3) as large as 3Ax. State 1 appeared in Neuroptera, Raphidioptera, Megaloptera, Coleoptera, and Strepsiptera (Figure 5A–D, Figure 6B,D, Figure 7B,D, and Figure 8B,D). State 2 appeared in Hymenoptera (Figure 2B,D,F). (CI = 1, RI = 1).
3.3. Phylogenetic Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, N.; An, S.H.; Yin, X.M.; Zhao, T.; Wang, X.Y. Insufficient resolving power of mitogenome data in deciphering deep phylogeny of Holometabola. J. Syst. Evol. 2016, 54, 545–559. [Google Scholar] [CrossRef]
- Beutel, R.G.; Friedrich, F.; Economo, E.P. Patterns of morphological simplification and innovation in the megadiverse Holometabola (Insecta). Cladistics 2022, 38, 227–245. [Google Scholar] [CrossRef]
- Hinton, H. The phylogeny of the panorpoid orders. Ann. Rev. Entomol. 1958, 3, 181–206. [Google Scholar] [CrossRef]
- Castro, L.R.; Dowton, M. The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of Perga condei (Hymenoptera: Symphyta: Pergidae). Mol. Phylogenet. Evol. 2005, 34, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Beutel, R.G.; Pohl, H. Endopterygote systematics—Where do we stand and what is the goal (Hexapoda, Arthropoda)? Syst. Entomol. 2006, 31, 202–219. [Google Scholar] [CrossRef]
- Hörnschemeyer, T. Phylogenetic significance of the wing-base of the Holometabola (Insecta). Zool. Scr. 2002, 31, 17–29. [Google Scholar] [CrossRef]
- Simon, S.; Strauss, S.; von Haeseler, A.; Hadrys, H.J.M.b. A phylogenomic approach to resolve the basal pterygote divergence. Mol. Biol. Evol. 2009, 26, 2719–2730. [Google Scholar] [CrossRef]
- Zdobnov, E.M.; Bork, P. Quantification of insect genome divergence. Trends Genet. 2007, 23, 16–20. [Google Scholar] [CrossRef]
- Savard, J.; Tautz, D.; Richards, S.; Weinstock, G.M.; Gibbs, R.A.; Werren, J.H.; Tettelin, H.; Lercher, M.J. Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Res. 2006, 16, 1334–1338. [Google Scholar] [CrossRef]
- Meusemann, K.; von Reumont, B.M.; Simon, S.; Roeding, F.; Strauss, S.; Kuck, P.; Ebersberger, I.; Walzl, M.; Pass, G.; Breuers, S.; et al. A phylogenomic approach to resolve the arthropod tree of life. Mol. Biol. Evol. 2010, 27, 2451–2464. [Google Scholar] [CrossRef]
- Kukalová-Peck, J. Relationships among coleopteran suborders and major endoneopteran lineages: Evidence from hind wing characters. Eur. J. Entomol. 2004, 101, 95–144. [Google Scholar] [CrossRef]
- Kristensen, N.P. Phylogeny of endopterygote insects, the most successful lineage of living organisms. Eur. J. Entomol. 1999, 96, 237–253. [Google Scholar]
- Wheeler, W.C.; Whiting, M.; Wheeler, Q.D.; Carpenter, J.M. The Phylogeny of the Extant Hexapod Orders. Cladistics 2001, 17, 113–169. [Google Scholar] [CrossRef]
- Beutel, R.G.; Gorb, S.N. Ultrastructure of attachment specializations of hexapods (Arthropoda): Evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 2001, 39, 177–207. [Google Scholar] [CrossRef]
- Song, F.; Li, H.; Jiang, P.; Zhou, X.; Liu, J.; Sun, C.; Vogler, A.P.; Cai, W. Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models. Genome Biol. Evol. 2016, 8, 1411–1426. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, F.; Beutel, R.G. Goodbye Halteria? The thoracic morphology of Endopterygota (Insecta) and its phylogenetic implications. Cladistics 2010, 26, 579–612. [Google Scholar] [CrossRef] [PubMed]
- Beutel, R.G.; Friedrich, F.; Hörnschemeyer, T.; Pohl, H.; Hünefeld, F.; Beckmann, F.; Meier, R.; Misof, B.; Whiting, M.F.; Vilhelmsen, L. Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics 2011, 27, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Longhorn, S.J.; Pohl, H.W.; Vogler, A.P. Ribosomal protein genes of holometabolan insects reject the Halteria, instead revealing a close affinity of Strepsiptera with Coleoptera. Mol. Phylogenet. Evol. 2010, 55, 846–859. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.D.; Farrell, B.D. 9-genes reinforce the phylogeny of Holometabola and yield alternate views on the phylogenetic placement of Strepsiptera. PLoS ONE 2010, 5, e11887. [Google Scholar] [CrossRef]
- Ishiwata, K.; Sasaki, G.; Ogawa, J.; Miyata, T.; Su, Z.H. Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol. Phylogenet. Evol. 2011, 58, 169–180. [Google Scholar] [CrossRef]
- Wiegmann, B.M.; Trautwein, M.D.; Kim, J.W.; Cassel, B.K.; Bertone, M.A.; Winterton, S.L.; Yeates, D.K. Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol. 2009, 7, 34. [Google Scholar] [CrossRef]
- Kjer, K.M.; Carle, F.L.; Litman, J.; Ware, J.L. A molecular phylogeny of Hexapoda. Arthropod Syst. Phylogeny 2006, 64, 35–44. [Google Scholar] [CrossRef]
- Whiting, M.F. Phylogeny of the holometabolous insect orders: Molecular evidence. Zool. Scr. 2002, 31, 3–15. [Google Scholar] [CrossRef]
- Yeates, D.K.; Cameron, S.L.; Trautwein, M. A view from the edge of the forest: Recent progress in understanding the relationships of the insect orders. Aust. J. Entomol. 2012, 51, 79–87. [Google Scholar] [CrossRef]
- Kjer, K.M. Aligned 18S and insect phylogeny. Syst. Biol. 2004, 53, 506–514. [Google Scholar] [CrossRef]
- Boussau, B.; Walton, Z.; Delgado, J.A.; Collantes, F.; Beani, L.; Stewart, I.J.; Cameron, S.A.; Whitfield, J.B.; Johnston, J.S.; Holland, P.W.; et al. Strepsiptera, phylogenomics and the long branch attraction problem. PLoS ONE 2014, 9, e107709. [Google Scholar] [CrossRef]
- Niehuis, O.; Hartig, G.; Grath, S.; Pohl, H.; Lehmann, J.; Tafer, H.; Donath, A.; Krauss, V.; Eisenhardt, C.; Hertel, J.; et al. Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Curr. Biol. 2012, 22, 1309–1313. [Google Scholar] [CrossRef]
- Peters, R.S.; Meusemann, K.; Petersen, M.; Mayer, C.; Wilbrandt, J.; Ziesmann, T.; Donath, A.; Kjer, K.M.; Aspöck, U.; Aspöck, H.; et al. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evol. Biol. 2014, 14, 52. [Google Scholar] [CrossRef]
- Meusemann, K.; Trautwein, M.; Friedrich, F.; Beutel, R.; Wiegmann, B.; Donath, A.; Podsiadlowski, L.; Petersen, M.; Niehuis, O.; Mayer, C.; et al. Are fleas highly modified Mecoptera? Phylogenomic resolution of Antliophora (Insecta: Holometabola). bioRxiv 2020, 11. [Google Scholar] [CrossRef]
- Whiting, M.F. Mecoptera is paraphyletic: Multiple genes and phylogeny of Mecoptera and Siphonaptera. Zool. Scr. 2002, 31, 93–104. [Google Scholar] [CrossRef]
- Tihelka, E.; Giacomelli, M.; Huang, D.; Pisani, D.; Donoghue, P.; Cai, C. Fleas are parasitic scorpionflies. Palaeoentomology 2020, 3, 641–653. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.T.; Yao, C.; Deng, Y.P.; Nie, Y.; Liu, G.H. Mitochondrial phylogenomics provides insights into the taxonomy and phylogeny of fleas. Parasit Vectors 2022, 15, 223. [Google Scholar] [CrossRef]
- Aspöck, U.; Haring, E.; Aspöck, H. The phylogeny of the Neuropterida: Long lasting and current controversies and challenges (Insecta: Endopterygota). Arthropod Syst. Phylogeny 2012, 70, 119–129. [Google Scholar] [CrossRef]
- Song, N.; Lin, A.; Zhao, X. Insight into higher-level phylogeny of Neuropterida: Evidence from secondary structures of mitochondrial rRNA genes and mitogenomic data. PLoS ONE 2018, 13, e0191826. [Google Scholar] [CrossRef] [PubMed]
- Winterton, S.L.; Lemmon, A.R.; Gillung, J.P.; Garzon, I.J.; Badano, D.; Bakkes, D.K.; Breitkreuz, L.C.V.; Engel, M.S.; Lemmon, E.M.; Liu, X.; et al. Evolution of lacewings and allied orders using anchored phylogenomics (Neuroptera, Megaloptera, Raphidioptera). Syst. Entomol. 2017, 43, 330–354. [Google Scholar] [CrossRef]
- Misof, B.; Liu, S.; Meusemann, K.; Peters, R.S.; Donath, A.; Mayer, C.; Frandsen, P.B.; Ware, J.; Flouri, T.; Beutel, R.G.; et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 2014, 346, 763–767. [Google Scholar] [CrossRef]
- Aspöck, U.; Aspöck, H. Phylogenetic relevance of the genital sclerites of Neuropterida (Insecta: Holometabola). Syst. Entomol. 2008, 33, 97–127. [Google Scholar] [CrossRef]
- Winterton, S.L.; Hardy, N.B.; Wiegmann, B.M. On wings of lace: Phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data. Syst. Entomol. 2010, 35, 349–378. [Google Scholar] [CrossRef]
- Aspöck, U. Phylogeny of the Neuropterida (Insecta: Holometabola). Zool. Scr. 2002, 31, 51–55. [Google Scholar] [CrossRef]
- Machado, R.J.P.; Gillung, J.P.; Winterton, S.L.; Garzón-Orduña, I.J.; Lemmon, A.R.; Lemmon, E.M.; Oswald, J.D. Owlflies are derived antlions: Anchored phylogenomics supports a new phylogeny and classification of Myrmeleontidae (Neuroptera). Syst. Entomol. 2018, 44, 418–450. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Garzón-Orduña, I.; Winterton, S.; Yan, Y.; Aspöck, U.; Aspöck, H.; Yang, D. Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics 2016, 33, 617–636. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Winterton, S.L.; Liu, Z. Ancestral gene organization in the mitochondrial genome of Thyridosmylus langii (McLachlan, 1870) (Neuroptera: Osmylidae) and implications for lacewing evolution. PLoS ONE 2013, 8, e62943. [Google Scholar] [CrossRef]
- Cameron, S.L.; Sullivan, J.; Song, H.; Miller, K.B.; Whiting, M.F. A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool. Scr. 2009, 38, 575–590. [Google Scholar] [CrossRef]
- Song, N.; Li, X.X.; Zhai, Q.; Bozdogan, H.; Yin, X.M. The Mitochondrial Genomes of Neuropteridan Insects and Implications for the Phylogeny of Neuroptera. Genes 2019, 10, 108. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Wang, L.; Liu, X.; Yang, D.; Rokas, A. Gene Selection and Evolutionary Modeling Affect Phylogenomic Inference of Neuropterida Based on Transcriptome Data. Int. J. Mol. Sci. 2019, 20, 1072. [Google Scholar] [CrossRef]
- Vasilikopoulos, A.; Misof, B.; Meusemann, K.; Lieberz, D.; Flouri, T.; Beutel, R.G.; Niehuis, O.; Wappler, T.; Rust, J.; Peters, R.S.; et al. An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evol. Biol. 2020, 20, 64. [Google Scholar]
- Zhao, C.; Liu, X.; Yang, D. Wing base structural data support the sister relationship of megaloptera and neuroptera (insecta: Neuropterida). PLoS ONE 2014, 9, e114695. [Google Scholar] [CrossRef]
- Zhao, C.; Ang, Y.; Wang, M.; Gao, C.; Zhang, K.; Tang, C.; Liu, X.; Li, M.; Yang, D.; Meier, R. Contribution to understanding the evolution of holometaboly: Transformation of internal head structures during the metamorphosis in the green lacewing Chrysopa pallens (Neuroptera: Chrysopidae). BMC Evol. Biol. 2020, 20, 79. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, M.; Gao, C.; Li, M.; Zhang, K.; Yang, D.; Liu, X. Evolution of holometaboly revealed by developmental transformation of internal thoracic structures in a green lacewing Chrysopa pallens (Neuroptera: Chrysopidae). Insect Sci. 2022, 29, 767–782. [Google Scholar] [CrossRef]
- Beutel, R.G.; Friedrich, F.; Whiting, M.F. Head morphology of Caurinus (Boreidae, Mecoptera) and its phylogenetic implications. Arthropod Struct. Dev. 2008, 37, 418–433. [Google Scholar] [CrossRef]
- Wheeler, Q.D. Undisciplined thinking: Morphology and Hennig’s unfinished revolution. Syst. Entomol. 2008, 33, 2–7. [Google Scholar] [CrossRef]
- Meier, R.; Lim, G.S. Conflict, convergent evolution, and the relative importance of immature and adult characters in endopterygote phylogenetics. Annu. Rev. Entomol. 2009, 54, 85–104. [Google Scholar] [CrossRef]
- Nachtigall, W.; Wisser, A.; Eisinger, D. Flight of the honey bee. VIII. Functional elements and mechanics of the “flight motor” and the wing joint—One of the most complicated gear-mechanisms in the animal kingdom. J. Comp. Physiol. B 1998, 168, 323–344. [Google Scholar] [CrossRef]
- Sugimoto, M.; Ogawa, N.; Yoshizawa, K. Morphology of the elytral base sclerites. Arthropod Struct. Dev. 2018, 47, 423–429. [Google Scholar] [CrossRef]
- Yoshizawa, K.; Saigusa, T. Phylogenetic analysis of paraneopteran orders (Insecta: Neoptera) based on forewing base structure, with comments on monophyly of Auchenorrhyncha (Hemiptera). Syst. Entomol. 2001, 26, 1–13. [Google Scholar] [CrossRef]
- Yoshizawa, K. The Zoraptera problem: Evidence for Zoraptera + Embiodea from the wing base. Syst. Entomol. 2007, 32, 197–204. [Google Scholar] [CrossRef]
- Yoshizawa, K.; Wagatsuma, M. Phylogenetic relationships among superfamilies of Cicadomorpha (Hemiptera: Auchenorrhyncha) inferred from the wing base structure. Entomol. Sci. 2012, 15, 408–421. [Google Scholar] [CrossRef]
- Yoshizawa, K.; Ogawa, N.; Dietrich, C.H. Wing base structure supports Coleorrhyncha + Auchenorrhyncha (Insecta: Hemiptera). J. Zool. Syst. Evol. Res. 2017, 55, 199–207. [Google Scholar] [CrossRef]
- Yoshizawa, K. Monophyletic Polyneoptera recovered by wing base structure. Syst. Entomol. 2011, 36, 377–394. [Google Scholar] [CrossRef]
- Brodsky, A.K. The Evolution of Insect Flight; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Ninomiya, T.; Yoshizawa, K. A revised interpretation of the wing base structure in Odonata. Syst. Entomol. 2009, 34, 334–345. [Google Scholar] [CrossRef]
- Goloboff, P.A.; Farris, J.S.; Nixon, K.C. TNT, a free program for phylogenetic analysis. Cladistics 2008, 24, 774–786. [Google Scholar] [CrossRef]
- Goloboff, P. NONA. Computer Software and Documentation, version 2.0; The American Museum of Natural History: New York, NY, USA, 1999. [Google Scholar]
- Nixon, K. WinClada; ver. 1.00.08; ScienceOpen, Inc.: Ithaca, NY, USA, 2002. [Google Scholar]
- Swofford, D. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4.0; Sinauer Associates Inc.: Sunderland, MA, USA, 2002. [Google Scholar]
- Franielczyk-Pietyra, B.; Bernas, T.; Sas-Nowosielska, H.; Wegierek, P. Is there a relationship between the morphology of the forewing axillary sclerites and the way the wing folds in aphids (Aphidomorpha, Sternorrhyncha, Hemiptera)? Zoomorphology 2018, 137, 105–117. [Google Scholar] [CrossRef]
- Prokop, J.; Pecharova, M.; Nel, A.; Hörnschemeyer, T. The wing base of the palaeodictyopteran genus Dunbaria Tillyard: Where are we now? Arthropod Struct. Dev. 2018, 47, 339–351. [Google Scholar] [CrossRef]
- McKenna, D.D.; Wild, A.L.; Kanda, K.; Bellamy, C.L.; Beutel, R.G.; Caterino, M.S.; Farnum, C.W.; Hawks, D.C.; Ivie, M.A.; Jameson, M.L.; et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015, 40, 835–880. [Google Scholar] [CrossRef]
- Beutel, R.G.; Pohl, H.; Yan, E.V.; Anton, E.; Liu, S.P.; Ślipiński, A.; McKenna, D.; Friedrich, F. The phylogeny of Coleopterida (Hexapoda)—Morphological characters and molecular phylogenies. Syst. Entomol. 2019, 44, 75–102. [Google Scholar] [CrossRef]
- Pashley, D.P.; McPheron, B.A.; Zimmer, E.A. Systematics of holometabolous insect orders based on 18S ribosomal RNA. Mol. Phylogenet. Evol. 1993, 2, 132–142. [Google Scholar] [CrossRef]
- Whiting, M.F.; Carpenter, J.C.; Wheeler, Q.D.; Wheeler, W.C. The Strepsiptera problem: Phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst. Biol. 1997, 46, 1–68. [Google Scholar] [CrossRef]
- Aspöck, U.; Plant, J.D.; Nemeschkal, H.L. Cladistic analysis of Neuroptera and their systematic position within Neuropterida (Insecta: Holometabola: Neuropterida: Neuroptera). Syst. Entomol. 2001, 26, 73–86. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Winterton, S.L.; Yang, D. The first mitochondrial genome for the fishfly subfamily Chauliodinae and implications for the higher phylogeny of Megaloptera. PLoS ONE 2012, 7, e47302. [Google Scholar] [CrossRef]
- Liu, X.; Lü, Y.; Aspöck, H.; Yang, D.; Aspöck, U. Homology of the genital sclerites of Megaloptera (Insecta: Neuropterida) and their phylogenetic relevance. Syst. Entomol. 2016, 41, 256–286. [Google Scholar] [CrossRef]
- Tihelka, E.; Cai, C.; Giacomelli, M.; Lozano-Fernandez, J.; Rota-Stabelli, O.; Huang, D.; Engel, M.; Donoghue, P.; Pisani, D. The evolution of insect biodiversity. Curr. Biol. 2021, 31, R1299–R1311. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Huang, M.; Yang, D.; Liu, X. Comparative Morphology of the Wing Base Structure Illuminates Higher-Level Phylogeny of Holometabola. Insects 2024, 15, 199. https://doi.org/10.3390/insects15030199
Zhao C, Huang M, Yang D, Liu X. Comparative Morphology of the Wing Base Structure Illuminates Higher-Level Phylogeny of Holometabola. Insects. 2024; 15(3):199. https://doi.org/10.3390/insects15030199
Chicago/Turabian StyleZhao, Chenjing, Mengting Huang, Ding Yang, and Xingyue Liu. 2024. "Comparative Morphology of the Wing Base Structure Illuminates Higher-Level Phylogeny of Holometabola" Insects 15, no. 3: 199. https://doi.org/10.3390/insects15030199
APA StyleZhao, C., Huang, M., Yang, D., & Liu, X. (2024). Comparative Morphology of the Wing Base Structure Illuminates Higher-Level Phylogeny of Holometabola. Insects, 15(3), 199. https://doi.org/10.3390/insects15030199