Effects of Disinfectants on Bacterium Paenibacillus larvae in Laboratory Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection and Cultivation of Microorganisms
2.2. Disinfectant Effect Test
2.2.1. Agar Diffusion
2.2.2. Sporocidal Effect of Disinfectants
2.2.3. Determination of ATP Level
2.2.4. Effects of the Disinfectant on the Contaminant Surface
2.2.5. Statistical Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forsgren, E.; Laugen, A.T. Prognostic value of using bee and hive debris samples for the detection of American foulbrood disease in honey bee colonies. Apidologie 2014, 45, 10–20. [Google Scholar] [CrossRef]
- Genersch, E.; Forsgren, E.; Pentikäinen, J.; Ashiraileva, A.; Rauch, S.; Kilwinski, J.; Fries, I. Reclassification of Paenibacillus larvae subsp. pulfifaciens and Paenibacillus larvae subsp. Paenibacillus larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 2006, 56, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Bakonyi, T.; Irmgard, D.; Grabensteiner, E.; Nowotny, N. Development and evaluation of PCR assays for the detection of Paenibacillus larvae in honey samples: Comparison with isolation and biochemical characterization. Appl. Environ. Microbiol. 2003, 69, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Spivak, M.; Reuter, G.S. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behaviour. Apidologie 2021, 32, 555–565. [Google Scholar] [CrossRef]
- De Graaf, D.C.; De Vos, P.; Heyndrickx, M.; Van Trappen, S.; Peiren, N.; Jacobs, F.J. Identification of Paenibacillus larvae to the subspecies level: An obstacle for AFB diagnosis. J. Invertebr. Pathol. 2006, 91, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.; Brødsgaard, C.J. American foulbrood: A review of its biology, diagnosis and control. Bee World 1999, 80, 5–23. [Google Scholar] [CrossRef]
- Genersch, E. Honey bee pathology: Current threats to honey bees and beekeeping. Appl. Microbiol. Biotechnol. 2010, 87, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Bednář, M.; Dolánek, J.; Haklová, M.; Jaša, T.; Kamler, F.; Titěra, D.; Veselý, V. Hygiene in the Apiary; Titera, D., Ed.; Bee Research Institute Dol: Dol, Czech Republic, 2009; pp. 14–20. [Google Scholar]
- Dobbelaere, W.; Graaf, D.C.; Peeters, J.E.; Jacobs, F.J. Development of a fast and reliable diagnostic method for American foulbrood disease (Paenibacillus larvae subsp. larvae) using a 16S rRNA gene based PCR. Apidologie 2021, 32, 363–370. [Google Scholar] [CrossRef]
- Alippi, A.M.; Lopez, A.C.; Aguilar, O.M. A PCR-based method that permits specific detection of Paenibacillus larvae subsp. larvae, the cause of American Foulbrood of honey bees, at the subspecies level. Lett. Appl. Microbiol. 2004, 39, 25–33. [Google Scholar] [CrossRef]
- Dobbelaere, W.; Graaf, D.C.; Reybroeck, E.; Desmedt, E.; Peters, J.E.; Jacobs, F.J. Disinfection of wooden structures contaminated with Paenibacillus larvae subsp. larvae spores. J. Appl. Microbiol. 2001, 91, 211–216. [Google Scholar] [CrossRef]
- Budge, G.E.; Barret, B.; Jones, B.; Pietravalle, S.; Marris, G.; Chantawannakul, P.; Thwaites, R.; Hall, J.; Cuthbertson, A.G.S.; Brown, M.A. The occurrence of Melissococcus plutonius in healthy colonies of Apis mellifera and the efficacy of European foulbrood control measures. J. Invertebr. Pathol. 2010, 105, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Naquet, N. Honeybee Veterinary Medicine: Apis mellifera L.; 5m Publishing: Sheffield, UK, 2015. [Google Scholar]
- Tlak Gajger, I.; Mañes, A.M.; Formato, G.; Mortarino, M.; Toporcak, J. Veterinarians and beekeeping: What roles, expectations and future perspectives?—A review paper. Vet. Arhiv. 2021, 91, 437–443. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Kosanović, M.; Bilandžić, N.; Sedak, M.; Čalopek, B. Variations in lead, cadmium, arsenic, and mercury concentrations during honeybee wax processing using casting technology. Arh. Hig. Rada Toksikol. 2016, 67, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Tlak Gajger, I.; Kosanović, M.; Oreščanin, V.; Kos, S.; Bilandžić, N. Mineral content in honeybee wax combs as a measurement of the impact of environmental factors. Bull. Environ. Contam. Toxicol. 2019, 103, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Kosanović, M.; Bilandžić, N.; Sedak, M.; Kos, S.; Tlak Gajger, I. Koncentracije arsena, kadmija i žive u pčelinjem vosku (Apis mellifera) tijekom njegove prerade iz saća u satne osnove. Vet. Stanica 2019, 50, 19–25. [Google Scholar]
- Okayama, A.; Sakogava, T.; Nakajima, C.; Hayama, T. Sporicidal activities of disinfectants of Paenibacillus larvae. J. Vet. Med. Sci. 1997, 59, 953–954. [Google Scholar] [CrossRef] [PubMed]
- APHA. Hive Cleaning and Sterilization; Animal and Plant Health Agency, National Bee Unit, National Agri–Food Innovation Campus: Sand Hutton, UK, 2014; pp. 1–15. [Google Scholar]
- Tsourkas, P.K. Paenibacillus larvae bacteriophages: Obscure past, promising future. Microb. Genom. 2020, 6, e000329. [Google Scholar] [CrossRef] [PubMed]
- González, M.J.; Marioli, J.M. Antibacterial activity of water extracts and essential oils of various aromatic plants against Paenibacillus larvae, the causative agent of American Foulbrood. J. Invertebr. Pathol. 2010, 104, 209–213. [Google Scholar] [CrossRef]
- Kiriamburi, J.; Muturi, J.; Mugweru, J.; Forsgren, E.; Nilsson, A. Short communication: Efficacy of two commercial disinfectants on Paenibacillus larvae spores. Front. Vet. Sci. 2022, 12, 884425. [Google Scholar] [CrossRef]
- Flesar, J.; Havlik, J.; Kloucek, P.; Rada, V.; Titera, D.; Bednar, M.; Stropnicky, M.; Kokoska, L. In vitro growth-inhibitory effect of plant-derived extracts and compounds against Paenibacillus larvae and their acute oral toxicity to adult honey bees. Vet. Microbiol. 2010, 145, 129–133. [Google Scholar] [CrossRef]
- Santos, R.C.V.; Lopes, L.Q.S.; Alves, C.F.S.; Fausto, V.P.; Pizzutti, K.; Barboza, V.; Souza, M.E.; Raffin, R.P.; Gomes, P.; Takamatsu, D.; et al. Antimicrobial activity of tea tree oil nanopartcles against American and European foulbrood disease agents. J. Asia-Pac. Entomol. 2014, 17, 342–347. [Google Scholar] [CrossRef]
- Vaucher, R.A.; Giongo, J.L.; Bolzan, L.P.; Côrrea, M.S.; Fausto, V.P.; Alves, C.F.S.; Lopes, L.Q.S.; Boligon, A.A.; Athayde, M.L.; Moreira, A.P.; et al. Antimicrobial activity of nanostructured Amazonian oils against Paenibacillus species and their toxicity on larvae and adult worker bees. J. Asia-Pac. Entomol. 2015, 18, 205–210. [Google Scholar] [CrossRef]
- Young, S.B.; Setlow, P. Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. Appl. Environ. Microbiol. 2003, 95, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Goda, H.; Yamaoka, H.; Nakayama-Imaohji, H.; Kawata, H.; Horiuchi, I.; Fujita, Y.; Nagao, T.; Tada, A.; Terada, A.; Kuwahara, T. Microbicidal effects of weakly acidified chlorous acid water against feline calicivirus and Clostridium difficile spores under protein-rich conditions. PLoS ONE 2017, 12, e0176718. [Google Scholar] [CrossRef] [PubMed]
- Fukuzaki, S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 2006, 11, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Juven, B.J.; Pierson, M.D. Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation. J. Food Prot. 1996, 59, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Sattar, S.A.; Springthorpe, V.S.; Rochon, M.A. A product based on accelerated and stabilized hydrogen peroxide: Evidence for broad-spectrum germicidal activity. Can. J. Infect. Control 1998, 13, 123–130. [Google Scholar]
- Wardle, M.D.; Renninger, G.M. Bactericidal effect of hydrogen peroxide on spacecraft isolates. Appl. Microbiol. 1975, 30, 710–711. [Google Scholar] [CrossRef]
- Finnegan, M.; Linley, E.; Denyer, S.P.; Mcdonnell, G.; Simons, C.; Maillard, J.Y. Mode of action of hydrogen peroxide and other oxidizing agents: Differences between liquid and gas forms. J. Antimicrob. Chemother. 2010, 65, 2108–2115. [Google Scholar] [CrossRef]
- Best, M.; Springthorpe, V.S.; Sattar, S.A. Feasibility of a combined carrier test for disinfectants: Studies with a mixture of five types of microorganisms. Am. J. Infect. Control 1994, 22, 152–162. [Google Scholar] [CrossRef]
- Mcdonnell, G. Biocides: Modes of action and mechanisms of resistance. In Disinfection and Decontamination: Principles, Applications and Related Issues; Manivannan, G., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 87–124. [Google Scholar]
- Gerba, C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Microbiol. 2015, 81, 464–469. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament; The Council of the European Union. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Off. J. Eur. Union 2005, 70, 1–16. Available online: http://data.europa.eu/eli/reg/2005/396/oj (accessed on 15 March 2024).
- The European Parliament; The Council of the European Union. Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products. Off. J. Eur. Union 2012, 167, 1–123. [Google Scholar]
- Sudhaus, N.; Pina-Pérez, M.C.; Martínez, A.; Klein, G. Inactivation kinetics of spores of Bacillus cereus strains treated by a peracetic acid-based disinfectant at different concentrations and temperatures. Foodborne Pathog. Dis. 2012, 9, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Kunigk, L.; Almeida, M.C.B. Action of peracetic acid on Escherichia coli and Staphylococcus aureus in suspension or settled on stainless steel surfaces. Braz. J. Microbiol. 2001, 32, 38–41. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, K.; Hao, J.; Liu, D. Preparation of peracetic acid from hydrogen peroxide, part II: Kinetics for spontaneous decomposition of peracetic acid in the liquid phase. J. Mol. Catal. A Chem. 2008, 284, 58–68. [Google Scholar] [CrossRef]
- Paliy, A.P. Antibacterial effect of “Ecocide C” disinfectant against mycobacteria. Ukr. J. Ecol. 2018, 8, 141–147. [Google Scholar] [CrossRef]
- Herńndez, A.; Martró, E.; Matas, L.; Martín, M.; Ausina, V. Assessment of in-vitro efficacy of 1% Virkon against bacteria, fungi, viruses and spores by means of AFNOR guidelines. J. Hosp. Infect. 2000, 46, 203–209. [Google Scholar]
- Zakaria, Z.; Gairola, S.; Mohd Shariff, N. Effective microorganisms (EM) technology for water quality restoration and potential for sustainable water resources and management. In Proceedings of the 5th International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 5–8 July 2010; pp. 1–8. [Google Scholar]
- Namsivayam, S.K.R.; Narendrakumar, G.; Kumar, J.A. Evaluation of effective microorganism (EM) for treatment of domestic sewage. J. Exp. Sci. 2011, 2, 30–32. [Google Scholar]
- Yun-Hee, M.; Kwang-Bae, L.; Young-Jun, K.; Yoon-Mo, K. Current status of EM (Effective Microorganisms) utilization. KSBBJ 2011, 26, 365–373. [Google Scholar]
- Tlak Gajger, I.; Vlainić, J.; Šoštarić, P.; Prešern, J.; Bubnič, J.; Smodiš Škerl, M.I. Effects on some therapeutical, biochemical, and immunological parameters of honey bee (Apis mellifera) exposed to probiotic treatments, in field and laboratory conditions. Insects 2020, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Joeng, J.O.; Park, S.H. A Study on the composting process of food waste by seeding the isolated effective microorganism. J. Environ. Health Sci. 2000, 26, 1–10. [Google Scholar]
- Chui, C.H.; Hau, D.K.P.; Lau, F.Y.; Cheng, G.Y.M.; Wong, R.S.M.; Gambari, R.; Kok, S.H.L.; Lai, K.B.; Teo, I.T.N.; Leung, T.W.T.; et al. Apoptotic potential of the concentrated effective microorganism fermentation extract on human cancer cells. Int. J. Mol. Med. 2006, 17, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Kizerwetter-Świda, M.; Binek, M. Assessment of potentially probiotic properties of Lactobacillus strains isolated from chickens. Pol. J. Vet. Sci. 2016, 19, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.; Na, C.S.; Park, J.H.; Han, S.K.; Nam, Y.M.; Kwon, J.T. Effect of feeding multiple probiotics on performance and fecal noxious gas emission in broiler chicks. Korean J. Poult. Sci. 2004, 3, 229–235. [Google Scholar]
- Tlak Gajger, I.; Nejedli, S.; Cvetnić, L. Influence of Probiotic Feed Supplement on Nosema spp. Infection Level and the Gut Microbiota of Adult Honeybees (Apis mellifera L.). Microorganisms 2023, 11, 610. [Google Scholar] [CrossRef]
Bacterium Paenibacillus larvae | Method for Determination of Disinfectant Effects | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Disinfectant product | Inhibition zone diameter (mm) | Suspension test for viable bacteria | Surface disinfectant test | Sporicidal suspension test | |||||||
Determination of the amount of ATP (ATP units) | Logarithms of reducing spores (log 10) | ||||||||||
5 | 15 | 30 | 60 | 5 | 15 | 30 | 60 | 30 | 60 | ||
Exposure to disinfectant (min) | |||||||||||
Bee Protect H forte | 36.75 | - | - | - | 172.00 | - | - | - | - | - | <1 |
Bee Protect F | 24.75 | - | - | - | 102.20 | - | - | - | - | - | <1 |
Genox 100% | 30.10 | 71.80 | 333.50 | 483.50 | 513.50 | 76.00 | 102.10 | 481.80 | 440.40 | 3 | 3 |
Genox 10% | 23.20 | 64.20 | 90.40 | 151.20 | 175.60 | 61.10 | 120.40 | 154.30 | 170.20 | 1 | 1 |
Genoll 10% | 9.50 | 72.33 | 93.20 | 101.60 | 107.50 | 68.00 | 94.20 | 103.40 | 120.30 | - | - |
Despadac | 19.25 | 52.40 | 247.50 | 775.50 | - | 84.20 | 182.20 | 543.00 | - | 2 | - |
Despadac Secure | 14.75 | 98.80 | 275.50 | 755.00 | - | 102.60 | 192.40 | 490.00 | - | 1 | - |
Ecocid S | 41.63 | 80.20 | 346.50 | 539.80 | 838.50 | 50.80 | 340.00 | 542.80 | 840.20 | 6 | |
Sekusept aktiv 2% | 44.63 | 893.80 | 942.40 | 930.00 | 875.50 | 843.20 | 896.80 | 860.00 | 864.20 | 6 | 5 |
Sekusept aktiv 1% | - | 75.20 | 102.00 | 297.50 | 880.00 | 52.40 | 68.20 | 360.40 | 875.60 | 3 | 1 |
Incidin Oxyfoam S | 47.52 | 830.70 | 801.10 | - | - | 826.60 | 836.40 | - | - | 6 | 6 |
EM® probiotic for bees | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tlak Gajger, I.; Tomljanović, Z.; Mutinelli, F.; Granato, A.; Vlainić, J. Effects of Disinfectants on Bacterium Paenibacillus larvae in Laboratory Conditions. Insects 2024, 15, 268. https://doi.org/10.3390/insects15040268
Tlak Gajger I, Tomljanović Z, Mutinelli F, Granato A, Vlainić J. Effects of Disinfectants on Bacterium Paenibacillus larvae in Laboratory Conditions. Insects. 2024; 15(4):268. https://doi.org/10.3390/insects15040268
Chicago/Turabian StyleTlak Gajger, Ivana, Zlatko Tomljanović, Franco Mutinelli, Anna Granato, and Josipa Vlainić. 2024. "Effects of Disinfectants on Bacterium Paenibacillus larvae in Laboratory Conditions" Insects 15, no. 4: 268. https://doi.org/10.3390/insects15040268
APA StyleTlak Gajger, I., Tomljanović, Z., Mutinelli, F., Granato, A., & Vlainić, J. (2024). Effects of Disinfectants on Bacterium Paenibacillus larvae in Laboratory Conditions. Insects, 15(4), 268. https://doi.org/10.3390/insects15040268