Oxidative Stress Response of Honey Bee Colonies (Apis mellifera L.) during Long-Term Exposure at a Frequency of 900 MHz under Field Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Honey Bee Colonies and Exposure Conditions
2.2. Sample Preparation and Assays of Oxidative Stress Parameters
2.3. Statistical Analysis
3. Results
Oxidative Stress Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ITU. Measuring Digital Development: Facts and Figures. 2022. Available online: https://www.itu.int/hub/publication/d-ind-ict_mdd-2022/ (accessed on 15 February 2024).
- Bandara, P.; Carpenter, D.O. Planetary Electromagnetic Pollution: It Is Time to Assess Its Impact. Lancet Planet. Health 2018, 2, e512–e514. [Google Scholar] [CrossRef] [PubMed]
- Alkis, M.E.; Bilgin, H.M.; Akpolat, V.; Dasdag, S.; Yegin, K.; Yavas, M.C.; Akdag, M.Z. Effect of 900-, 1800-, and 2100-MHz Radiofrequency Radiation on DNA and Oxidative Stress in Brain. Electromagn. Biol. Med. 2019, 38, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Schuermann, D.; Mevissen, M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int. J. Mol. Sci. 2021, 22, 3772. [Google Scholar] [CrossRef]
- Mina, D.; Sagonas, K.; Fragopoulou, A.F.; Pafilis, P.; Skouroliakou, A.; Margaritis, L.H.; Tsitsilonis, O.E.; Valakos, E.D. Immune Responses of a Wall Lizard to Whole-Body Exposure to Radiofrequency Electromagnetic Radiation. Int. J. Radiat. Biol. 2016, 92, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Sharma, R.S.; Singh, R. Immunotoxicity of Radiofrequency Radiation. Environ. Pollut. 2022, 309, 119793. [Google Scholar] [CrossRef] [PubMed]
- Smith-Roe, S.L.; Wyde, M.E.; Stout, M.D.; Winters, J.W.; Hobbs, C.A.; Shepard, K.G.; Green, A.S.; Kissling, G.E.; Shockley, K.R.; Tice, R.R.; et al. Evaluation of the Genotoxicity of Cell Phone Radiofrequency Radiation in Male and Female Rats and Mice Following Subchronic Exposure. Environ. Mol. Mutag. 2020, 61, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Ruediger, H.W. Genotoxic Effects of Radiofrequency Electromagnetic Fields. Pathophysiology 2009, 16, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Verschaeve, L.; Juutilainen, J.; Lagroye, I.; Miyakoshi, J.; Saunders, R.; de Seze, R.; Tenforde, T.; van Rongen, E.; Veyret, B.; Xu, Z. In Vitro and in Vivo Genotoxicity of Radiofrequency Fields. Mut. Res./Rev. Mut. Res. 2010, 705, 252–268. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Nath, R.; Mathur, A.K.; Sharma, R.S. Effect of Radiofrequency Radiation on Reproductive Health. Indian J. Med. Res. 2018, 148, S92–S99. [Google Scholar] [CrossRef]
- Yadav, H.; Rai, U.; Singh, R. Radiofrequency Radiation: A Possible Threat to Male Fertility. Reprod. Toxicol. 2021, 100, 90–100. [Google Scholar] [CrossRef]
- Jaffar, F.H.F.; Osman, K.; Ismail, N.H.; Chin, K.-Y.; Ibrahim, S.F. Adverse Effects of Wi-Fi Radiation on Male Reproductive System: A Systematic Review. Tohoku J. Exp. Med. 2019, 248, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Cucurachi, S.; Tamis, W.L.M.; Vijver, M.G.; Peijnenburg, W.J.G.M.; Bolte, J.F.B.; de Snoo, G.R. A Review of the Ecological Effects of Radiofrequency Electromagnetic Fields (RF-EMF). Environ. Int. 2013, 51, 116–140. [Google Scholar] [CrossRef] [PubMed]
- Balmori, A. Electromagnetic Radiation as an Emerging Driver Factor for the Decline of Insects. Sci. Total Environ. 2021, 767, 144913. [Google Scholar] [CrossRef] [PubMed]
- Thill, A.; Cammaerts, M.-C.; Balmori, A. Biological Effects of Electromagnetic Fields on Insects: A Systematic Review and Meta-Analysis. Rev. Environ. Health 2023. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, C.; Dajoz, I.; Meriguet, J.; Loreau, M. Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities. PLoS Biol. 2006, 4, e1. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef]
- Rollin, O.; Benelli, G.; Benvenuti, S.; Decourtye, A.; Wratten, S.D.; Canale, A.; Desneux, N. Weed-Insect Pollinator Networks as Bio-Indicators of Ecological Sustainability in Agriculture. A Review. Agron. Sustain. Dev. 2016, 36, 8. [Google Scholar] [CrossRef]
- Favre, D. Mobile Phone-Induced Honeybee Worker Piping. Apidologie 2011, 42, 270–279. [Google Scholar] [CrossRef]
- Lopatina, N.G.; Zachepilo, T.G.; Kamyshev, N.G.; Dyuzhikova, N.A.; Serov, I.N. Effect of Non-Ionizing Electromagnetic Radiation on Behavior of the Honeybee, Apis mellifera L. (Hymenoptera, Apidae). Entmol. Rev. 2019, 99, 24–29. [Google Scholar] [CrossRef]
- Odemer, R.; Odemer, F. Effects of Radiofrequency Electromagnetic Radiation (RF-EMF) on Honey Bee Queen Development and Mating Success. Sci. Total Environ. 2019, 661, 553–562. [Google Scholar] [CrossRef]
- Sharma, V.P.; Kumar, N.R. Changes in Honeybee Behaviour and Biology under the Influence of Cellphone Radiations. Curr. Sci. 2010, 98, 1376–1378. [Google Scholar]
- Harst, W.; Kuhn, J.; Stever, H. Can Electromagnetic Exposure Cause a Change in Behaviour? Studying Possible Non-Thermal Influences on Honey Bees—An Approach within the Framework of Educational Informatics. Acta Syst.-IIAS Int. J. 2006, 6, 1–6. Available online: https://api.semanticscholar.org/CorpusID:204874037 (accessed on 5 April 2024).
- Favre, D. Disturbing Honeybees’ Behavior with Electromagnetic Waves: A Methodology. J. Behav. 2017, 2, 1010. [Google Scholar]
- Favre, D.; Johansson, O. Does enhanced electromagnetic radiation disturb honeybees’ behaviour? observations during new year’s eve 2019. Int. J. Res.-Granthaalayah 2020, 8, 7–14. [Google Scholar] [CrossRef]
- Taye, R.R.; Deka, M.K.; Rahman, A.; Bathari, M. Effect of Electromagnetic Radiation of Cell Phone Tower on Foraging Behaviour of Asiatic Honey Bee, Apis cerana F. (Hymenoptera: Apidae). J. Entomol. Zool. Stud. 2017, 5, 1527–1529. [Google Scholar]
- Treder, M.; Müller, M.; Fellner, L.; Traynor, K.; Rosenkranz, P. Defined Exposure of Honey Bee Colonies to Simulated Radiofrequency Electromagnetic Fields (RF-EMF): Negative Effects on the Homing Ability, but Not on Brood Development or Longevity. Sci. Total Environ. 2023, 896, 165211. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Vilić, M.; Tucak, P.; Malarić, K. Effect of Electromagnetic Field on Some Behaviour Modality of Honeybee Colonies (Apis mellifera) in Field Conditions. J. Anim. Vet. Adv. 2001, 18, 61–64. [Google Scholar] [CrossRef]
- Vilić, M.; Tlak Gajger, I.; Tucak, P.; Štambuk, A.; Šrut, M.; Klobučar, G.; Malarić, K.; Žura Žaja, I.; Pavelić, A.; Manger, M.; et al. Effects of Short-Term Exposure to Mobile Phone Radiofrequency (900 MHz) on the Oxidative Response and Genotoxicity in Honey Bee Larvae. J. Apic. Res. 2017, 56, 430–438. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; Potts, S.G.; Vian, A.; Malkemper, E.P.; Young, J.; Tscheulin, T. Risk to Pollinators from Anthropogenic Electro-Magnetic Radiation (EMR): Evidence and Knowledge Gaps. Sci. Total Environ. 2019, 695, 133833. [Google Scholar] [CrossRef]
- Panagopoulos, D.J.; Johansson, O.; Carlo, G.L. Real versus Simulated Mobile Phone Exposures in Experimental Studies. Biomed. Res. Int. 2015, 2015, 607053. [Google Scholar] [CrossRef]
- Luukkonen, J.; Hakulinen, P.; Mäki-Paakkanen, J.; Juutilainen, J.; Naarala, J. Enhancement of Chemically Induced Reactive Oxygen Species Production and DNA Damage in Human SH-SY5Y Neuroblastoma Cells by 872 MHz Radiofrequency Radiation. Mutat. Res. /Fundam. Mol. Mech. Mutagen. 2009, 662, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Kwee, S.; Raskmark, P. Changes in Cell Proliferation Due to Environmental Non-Ionizing Radiation: 2. Microwave Radiation. Bioelectrochem. Bioenerg. 1998, 44, 251–255. [Google Scholar] [CrossRef]
- Sarimov, R.; Malmgren, L.O.G.; Markova, E.; Persson, B.R.R.; Belyaev, I.Y. Nonthermal GSM Microwaves Affect Chromatin Conformation in Human Lymphocytes Similar to Heat Shock. IEEE Trans. Plasma Sci. 2004, 32, 1600–1608. [Google Scholar] [CrossRef]
- Vilić, M.; Žura Žaja, I.; Tkalec, M.; Štambuk, A.; Šrut, M.; Klobučar, G.; Malarić, K.; Tucak, P.; Pašić, S.; Tlak Gajger, I. Effects of a Radio Frequency Electromagnetic Field on Honey Bee Larvae (Apis mellifera) Differ in Relation to the Experimental Study Design. Vet. Arhiv 2021, 91, 427–435. [Google Scholar] [CrossRef]
- Bocchetti, R.; Regoli, F. Seasonal Variability of Oxidative Biomarkers, Lysosomal Parameters, Metallothioneins and Peroxisomal Enzymes in the Mediterranean Mussel Mytilus Galloprovincialis from Adriatic Sea. Chemosphere 2006, 65, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase In Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovich, I. Superoxide Dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Legeay, A.; Achard-Joris, M.; Baudrimont, M.; Massabuau, J.-C.; Bourdineaud, J.-P. Impact of Cadmium Contamination and Oxygenation Levels on Biochemical Responses in the Asiatic Clam Corbicula fluminea. Aquat. Toxicol. 2005, 74, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lázaro, A.; Chroni, A.; Tscheulin, T.; Devalez, J.; Matsoukas, C.; Petanidou, T. Electromagnetic Radiation of Mobile Telecommunication Antennas Affects the Abundance and Composition of Wild Pollinators. J. Insect Conserv. 2016, 20, 315–324. [Google Scholar] [CrossRef]
- Balci, M.; Devrim, E.; Durak, I. Effects of Mobile Phones on Oxidant/Antioxidant Balance in Cornea and Lens of Rats. Curr. Eye Res. 2007, 32, 21–25. [Google Scholar] [CrossRef]
- Burlaka, A.; Tsybulin, O.; Sidorik, E.; Lukin, S.; Polishuk, V.; Tsehmistrenko, S.; Yakymenko, I. Overproduction of Free Radical Species in Embryonal Cells Exposed to Low Intensity Radiofrequency Radiation. Exp. Oncol. 2013, 35, 219–225. [Google Scholar] [PubMed]
- Kıvrak, E.G.; Yurt, K.K.; Kaplan, A.A.; Alkan, I.; Altun, G. Effects of Electromagnetic Fields Exposure on the Antioxidant Defense System. J. Microsc. Ultrastruct. 2017, 5, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Szymański, Ł.; Sobiczewska, E.; Cios, A.; Szymanski, P.; Ciepielak, M.; Stankiewicz, W. Immunotropic Effects in Cultured Human Blood Mononuclear Cells Exposed to a 900 MHz Pulse-Modulated Microwave Field. J. Radiat. Res. 2020, 61, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Weirich, G.F.; Collins, A.M.; Williams, V.P. Antioxidant Enzymes in the Honey Bee, Apis mellifera. Apidologie 2002, 33, 3–14. [Google Scholar] [CrossRef]
- Tawfik, A.I.; Ahmed, Z.H.; Abdel-Rahman, M.F.; Moustafa, A.M. Effect of Some Bee Bread Quality on Protein Content and Antioxidant System of Honeybee Workers. Int. J. Trop. Insect. Sci. 2023, 43, 93–105. [Google Scholar] [CrossRef]
- Tawfik, A.I.; Ahmed, Z.H.; Abdel-Rahman, M.F.; Moustafa, A.M. Influence of Winter Feeding on Colony Development and the Antioxidant System of the Honey Bee, Apis mellifera. J. Apic. Res. 2020, 59, 752–763. [Google Scholar] [CrossRef]
- Li, Z.; Hou, M.; Qiu, Y.; Zhao, B.; Nie, H.; Su, S. Changes in Antioxidant Enzymes Activity and Metabolomic Profiles in the Guts of Honey Bee (Apis mellifera) Larvae Infected with Ascosphaera Apis. Insects 2020, 11, 419. [Google Scholar] [CrossRef] [PubMed]
- Farjan, M.; Dmitryjuk, M.; Lipiński, Z.; Biernat-Łopieńska, E.; Żółtowska, K. Supplementation of the Honey Bee Diet with Vitamin C: The Effect on the Antioxidative System of Apis mellifera Carnica Brood at Different Stages. J. Apic. Res. 2012, 51, 263–270. [Google Scholar] [CrossRef]
- Haber, M.; Mishyna, M.; Itzhak Martinez, J.J.; Benjamin, O. Edible Larvae and Pupae of Honey Bee (Apis mellifera): Odor and Nutritional Characterization as a Function of Diet. Food Chem. 2019, 292, 197–203. [Google Scholar] [CrossRef]
Sampling Time | Weather Conditions | Temperature on Sampling Day |
---|---|---|
2 weeks (April) | Cloudy | 18 °C |
5 months (September) | Clear | 24 °C |
1 year (April) | Clear | 17 °C |
Sampling Time | Location | Electric Field Level (mV m−1) | GST (Unit mg−1 proteins) | ||
---|---|---|---|---|---|
Larvae (N = 30) | Pupae (N = 20) | Midguts (N = 50) | |||
2 weeks | MI | 70 | 0.16 ± 0.02 ab | 0.18 ± 0.004 b | 0.04 ± 0.003 ab |
LI | 30 | 0.18 ± 0.004 ab | 0.26 ± 0.03 ab | 0.04 ± 0.01 ab | |
HI | 1000 | 0.17 ± 0.02 ab | 0.25 ± 0.01 ab | 0.05 ± 0.004 a | |
5 months | MI | 70 | 0.15 ± 0.01 a | 0.24 ± 0.02 ab | 0.04 ± 0.003 ab |
LI | 30 | 0.16 ± 0.01 ab | 0.29 ± 0.02 a | 0.04 ± 0.002 b | |
HI | 1000 | 0.19 ± 0.01 ab | 0.27 ± 0.03 a | 0.04 ± 0.001 ab | |
1 year | MI | 70 | 0.18 ± 0.02 ab | 0.21 ± 0.01 ab | 0.03 ± 0.003 b |
LI | 30 | 0.18 ± 0.01 ab | 0.26 ± 0.01 ab | 0.04 ± 0.002 b | |
HI | 1000 | 0.21 ± 0.02 b | 0.23 ± 0.02 ab | 0.03 ± 0.003 ab |
Sampling Time | Location | Electric Field Level (mV m−1) | CAT (Unit mg−1 proteins) | ||
---|---|---|---|---|---|
Larvae (N = 30) | Pupae (N = 20) | Midguts (N = 50) | |||
2 weeks | MI | 70 | 26.06 ± 2.54 abc | 22.76 ± 2.22 b | 85.43 ± 6.49 c |
LI | 30 | 33.46 ± 1.30 ab | 24.19 ± 1.89 b | 113.50 ± 5.69 abc | |
HI | 1000 | 26.35 ± 1.40 abc | 22.97 ± 1.33 b | 119.62 ± 12.02 ab | |
5 months | MI | 70 | 20.98 ± 1.17 c | 38.23 ± 3.72 a | 109.65 ± 3.67 abc |
LI | 30 | 22.57 ± 2.63 bc | 39.59 ± 4.1 a | 122.68 ± 4.70 ab | |
HI | 1000 | 36.10 ± 3.78 a | 28.22 ± 3.09 ab | 89.83 ± 6.29 c | |
1 year | MI | 70 | 24.18 ± 1.63 bc | 24.26 ± 1.53 b | 90.54 ± 2.00 bc |
LI | 30 | 36.07 ± 3.17 a | 28.52 ± 1.29 ab | 101.39 ± 5.09 abc | |
HI | 1000 | 34.16 ± 3.39 ab | 24.13 ± 0.82 b | 130.87 ± 10.18 a |
Sampling Time | Location | Electric Field Level (mV m−1) | SOD (Unit mg−1 proteins) | ||
---|---|---|---|---|---|
Larvae (N = 30) | Pupae (N = 20) | Midguts (N = 50) | |||
2 weeks | MI | 70 | 3.97 ± 0.51 | 3.70 ± 0.63 ab | 3.07 ± 0.30 bc |
LI | 30 | 4.45 ± 0.49 | 5.87 ± 1.23 ab | 4.13 ± 0.50 bc | |
HI | 1000 | 5.29 ± 0.32 | 4.99 ± 1.03 ab | 3.63 ± 0.38 bc | |
5 months | MI | 70 | 3.61 ± 0.58 | 2.73 ± 0.63 ab | 4.69 ± 0.50 bc |
LI | 30 | 5.46 ± 0.37 | 2.11 ± 0.25 b | 3.71 ± 0.30 bc | |
HI | 1000 | 4.64 ± 0.31 | 3.38 ± 0.50 ab | 6.52 ± 0.58 ab | |
1 year | MI | 70 | 4.14 ± 0.41 | 4.85 ± 0.77 ab | 2.56 ± 0.25 c |
LI | 30 | 5.41 ± 0.58 | 4.13 ± 0.66 ab | 6.08 ± 1.63 abc | |
HI | 1000 | 3.75 ± 0.39 | 7.54 ± 1.75 ab | 9.34 ± 1.31 a |
Sampling Time | Location | Electric Field Level (mV m−1) | TBARS (Unit mg−1 proteins) | ||
---|---|---|---|---|---|
Larvae (N = 30) | Pupae (N = 20) | Midguts (N = 50) | |||
2 weeks | MI | 70 | 0.41 ± 0.07 c | 0.28 ± 0.02 | 1.78 ± 0.16 b |
LI | 30 | 0.40 ± 0.07 c | 0.27 ± 0.02 | 2.28 ± 0.10 ab | |
HI | 1000 | 0.72 ± 0.16 ab | 0.18 ± 0.04 | 3.15 ± 0.40 a | |
5 months | MI | 70 | 0.69 ± 0.11 abc | 0.29 ± 0.02 | 1.70 ± 0.16 b |
LI | 30 | 0.88 ± 0.14 abc | 0.22 ± 0.07 | 1.72 ± 0.15 b | |
HI | 1000 | 1.02 ± 0.15 ab | 0.19 ± 0.04 | 2.44 ± 0.24 ab | |
1 year | MI | 70 | 0.47 ± 0.08 bc | 0.21 ± 0.03 | 2.50 ± 0.30 ab |
LI | 30 | 1.09 ± 0.16 a | 0.21 ± 0.05 | 2.63 ± 0.08 ab | |
HI | 1000 | 1.26 ± 0.12 a | 0.15 ± 0.02 | 3.00 ± 0.15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilić, M.; Žura Žaja, I.; Tkalec, M.; Tucak, P.; Malarić, K.; Popara, N.; Žura, N.; Pašić, S.; Gajger, I.T. Oxidative Stress Response of Honey Bee Colonies (Apis mellifera L.) during Long-Term Exposure at a Frequency of 900 MHz under Field Conditions. Insects 2024, 15, 372. https://doi.org/10.3390/insects15050372
Vilić M, Žura Žaja I, Tkalec M, Tucak P, Malarić K, Popara N, Žura N, Pašić S, Gajger IT. Oxidative Stress Response of Honey Bee Colonies (Apis mellifera L.) during Long-Term Exposure at a Frequency of 900 MHz under Field Conditions. Insects. 2024; 15(5):372. https://doi.org/10.3390/insects15050372
Chicago/Turabian StyleVilić, Marinko, Ivona Žura Žaja, Mirta Tkalec, Perica Tucak, Krešimir Malarić, Nato Popara, Nikolino Žura, Selim Pašić, and Ivana Tlak Gajger. 2024. "Oxidative Stress Response of Honey Bee Colonies (Apis mellifera L.) during Long-Term Exposure at a Frequency of 900 MHz under Field Conditions" Insects 15, no. 5: 372. https://doi.org/10.3390/insects15050372
APA StyleVilić, M., Žura Žaja, I., Tkalec, M., Tucak, P., Malarić, K., Popara, N., Žura, N., Pašić, S., & Gajger, I. T. (2024). Oxidative Stress Response of Honey Bee Colonies (Apis mellifera L.) during Long-Term Exposure at a Frequency of 900 MHz under Field Conditions. Insects, 15(5), 372. https://doi.org/10.3390/insects15050372