Comparative Transcriptome Analysis Reveals Different Responses in Three Developmental Stages of Mythimna loreyi to Cold Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing and Low-Temperature Treatments
2.2. RNA Extraction, cDNA Library Construction, and Sequencing
2.3. RNA-Seq Analysis of Data
2.4. Differential Expression Gene Analysis
2.5. GO and KEGG Enrichment Analysis of DEGs
2.6. Validation of RNA-Seq Analysis by qRT-PCR
3. Results
3.1. Sequencing, Assembly, and Transcriptome Functional Annotation
3.2. Analysis of Differentially Expressed Genes
3.3. Gene Functional Annotations of DEGs
3.4. KEGG Enrichment Analysis of DEGs
3.5. Changes in the Expression Level of Genes Encoding Metabolic Enzymes
3.6. Changes in the Expression Level of HSPs Genes
3.7. Changes in the Expression Level of CP Genes
3.8. Validation of RNA-Seq Analysis by qRT-PCR
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chandler, K.J.; Benson, A.J. Evaluation of armyworm infestation in North Queensland surgarcane on crops. Proc. Aust. Soc. Sug. Cane Technol. 1991, 13, 79–82. [Google Scholar]
- Singh, R.; Mrig, K.K.; Chaudhary, J.P. Incidence and survival of Mythimna species on cereal crops in Hisar. Indian J. Agr. Sci. 1987, 1, 59–60. [Google Scholar]
- Qin, J.Y.; Liu, Y.Q.; Zhang, L.; Cheng, Y.X.; Sappington, T.W.; Jiang, X.F. Effects of moth age and rearing temperature on the flight performance of the loreyi leafworm, Mythimna loreyi (Lepidoptera: Noctuidae), in Tethered and free flight. J. Econ. Entomol. 2018, 3, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.Y.; Min, K.; Kim, H.J.; Kim, J. Development of a species diagnostic molecular tool for an invasive pest, Mythimna loreyi, using LAMP. Insects 2020, 11, 817. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Chen, Q.; Guo, P.; Miao, J.; Xia, P.L.; Gong, Z.J.; Jiang, Y.L.; Li, T.; Wu, Y.Q. Research progress on the occurrence, damage and control of Mythimna loreyi (Lepidoptera: Noctuidae). Acta Entomol. Sin. 2022, 4, 522–532. [Google Scholar]
- Jalaeian, M.; Farahpour-haghani, A.; Esfandiari, M. First report of damage caused by Leucania loreyi (Lep.: Noctuidae) on rice in Guilan province. Plant Pest. Res. 2017, 3, 77–80. [Google Scholar]
- Duan, Y.; Guo, P.; Chen, Q.; Wu, Y.Q.; Miao, J.; Gong, Z.J.; Li, T.; Jiang, Y.L. Population dynamics of Mythimna separata and M. loreyi in Yuanyang, Henan province, during 2015–2019. Plant Prot. 2021, 4, 234–238. [Google Scholar]
- Hirai, K. The influence of rearing temperature and density on the development of two Leucania species, M. loreyi dup. and L. seperata walker (Lepidoptera: Noctuidae). Appl. Ent. Zool. 1975, 10, 234–237. [Google Scholar] [CrossRef]
- Li, G.B.; Wang, H.X.; Hu, W.X. Route of the seasonal migration of the oriental armyworm moth in the eastern part of China as indicated by a three-year result of releasing and recapturing of marked moths. J. Plant Prot. 1964, 2, 101–109. [Google Scholar]
- Qin, J.Y.; Lan, J.J.; Zhang, L.; Cheng, Y.X.; Jiang, X.F. Determination of supercooling point and freezing point of larvae and pupae of Mythimna loreyi (Duponchel). China Plant Prot. 2018, 8, 33–38. [Google Scholar]
- Qin, J.Y.; Zhang, L.; Liu, Y.Q.; Sappington, T.W.; Cheng, Y.X.; Luo, L.Z.; Jiang, X.F. Population projection and development of the Mythimna loreyi (Lepidoptera: Noctuidae) as affected by temperature: Application of an age-stage, two-sex life table. J. Econ. Entomol. 2017, 4, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Garrad, R.; Booth, D.T.; Furlong, M.J. The effect of rearing temperature on development, body size, energetics and fecundity of the diamondback moth. Bull. Entomol. Res. 2016, 2, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, M.; Wu, J.; Xu, X. Transcriptomic analysis of differentially expressed genes in the oriental armyworm Mythimna separata Walker at different temperatures. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 30, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Zhang, X.X.; Chang, Y.W.; Du, Y.Z. Differential response of leafminer flies Liriomyza trifolii (Burgess) and Liriomyza sativae (Blanchard) to rapid cold hardening. Insects 2021, 12, 1041. [Google Scholar] [CrossRef] [PubMed]
- Bale, J.S. Insects and low temperatures: From molecular biology to distributions and abundance. Philos. Trans. R. Soc. Lond. Ser. B. Biol. Sci. 2002, 357, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, H.; Huang, F.; Cheng, D.F.; Wang, J.J.; Zhang, Y.H.; Sun, J.R.; Guo, W.C. Effect of temperature on the occurrence and distribution of colorado potato beetle (Coleoptera: Chrysomelidae) in China. Environ. Entomol. 2014, 2, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Liu, J.; Guan, Z.; Li, C. Duration of low temperature exposure affects egg hatching of the colorado potato beetle and emergence of overwintering adults. Insects 2021, 7, 609. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.E.J. Insect cold-hardiness: To freeze or not to freeze. BioScience 1989, 39, 308–313. [Google Scholar] [CrossRef]
- Clark, M.S.; Worland, M.R. How insects survive the cold: Molecular mechanisms-a review. J. Comp. Physiol. B 2008, 178, 917–933. [Google Scholar] [CrossRef]
- Li, N.G.; Toxopeus, J.; Moos, M.; Sørensen, J.G.; Sinclair, B.J. A comparison of low temperature biology of Pieris rapae from Ontario, Canada, and Yakutia, far eastern Russia. Comp. Biochem. Phys. A 2020, 242, 110649. [Google Scholar] [CrossRef]
- Vesala, L.; Salminen, T.S.; Laiho, A.; Hoikkala, A.; Kankare, M. Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions. Insect Mol. Biol. 2012, 21, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Dunning, L.T.; Dennis, A.B.; Park, D.; Sinclair, B.J.; Newcomb, R.D.; Buckley, T.R. Identification of cold-responsive genes in a New Zealand alpine stick insect using RNA-Seq. Comp. Biochem. Physiol. D Genom. Proteom. 2013, 8, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Wang, Y.; Deng, J.; Liu, X.; Fang, Y.; Rao, Q.; Wu, H. Comparative transcriptome analysis reveals the mechanism related to fluazinam stress of Panonychus citri (Acarina: Tetranychidae). Insects 2020, 11, 730. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.R.; Shan, Y.M.; Tan, Y.; Zhang, Z.R.; Pang, B.P. Comparative analysis of transcriptome responses to cold stress in Galeruca daurica (Coleoptera: Chrysomelidae). J. Insect Sci. 2019, 19, 8. [Google Scholar] [CrossRef]
- Wang, L.; Etebari, K.; Walter, G.H.; Furlong, M.J. Sex dependent transcriptome responses of the diamondback moth, Plutella xylostella L. to cold stress. Comp. Biochem. Physiol. Part D Genom. Proteom. 2023, 45, 101053. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Y.; Wang, Q.; Zheng, C.; Zhao, D.; Shi, F.; Liu, X.; Tao, J.; Zong, S. Identification of key genes associated with overwintering in Anoplophora glabripennis larva using gene co-expression network analysis. Pest. Manag. Sci. 2021, 2, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Zhang, X.X.; Lu, M.X.; Gong, W.R.; Du, Y.Z. Transcriptome analysis of Liriomyza trifolii (Diptera: Agromyzidae) in response to temperature stress. Comp. Biochem. Phys. D Genom. Proteom. 2020, 34, 100677. [Google Scholar] [CrossRef] [PubMed]
- Barth, M.B.; Buchwalder, K.; Kawahara, A.Y.; Zhou, X.; Liu, S.; Krezdorn, N.; Rotter, B.; Horres, R.; Hundsdoerfer, A.K. Functional characterization of the Hyles euphorbiae hawkmoth transcriptome reveals strong expression of phorbol ester detoxification and seasonal cold hardiness genes. Front. Zool. 2018, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Enriquez, T.; Colinet, H. Cold acclimation triggers lipidomic and metabolic adjustments in the spotted wing drosophila Drosophila suzukii (Matsumara). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 6, 751–763. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, F.; Zhang, W.; Gao, X.; Du, L.; Yun, X.; Li, Y.; Li, L.; Pang, B.; Tan, Y. Comparative transcriptome analysis of Galeruca daurica reveals cold tolerance mechanisms. Genes 2023, 12, 2177. [Google Scholar] [CrossRef]
- Sinclair, B.J.; Williams, C.M.; Terblanche, J.S. Variation in thermal performance among insect populations. Physiol. Biochem. Zool. 2012, 6, 594–606. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Baren, M.J.V.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Natureogy Biotechnol. 2010, 5, 511–515. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 10, R106. [Google Scholar]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Wang, L.K.; Feng, Z.X.; Wang, X.; Wang, X.W.; Zhang, X.G. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010, 1, 136–138. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, D.; Wang, M.J.; Song, X.M.; Ye, X.F.; Jashenko, R.; Ji, R. Transcriptome analysis of the response to low temperature acclimation in Calliptamus italicus eggs. BMC Genom. 2022, 1, 482. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 4, 402–408. [Google Scholar] [CrossRef]
- Mediouni, B.J.J.; Soltani, A.; Djebbi, T.; Mejri, I.; Kanyesigye, D.; Otim, M.H. The maize caterpillar Mythimna (= Leucania) loreyi (Duponchel, 1827) (Lepidoptera: Noctuidae): Identification, distribution, population density and damage in Tunisia. Insects 2023, 10, 786. [Google Scholar] [CrossRef]
- Vatanparast, M.; Park, Y. Differential transcriptome analysis reveals genes related to low- and high-temperature stress in the fall armyworm, Spodoptera frugiperda. Front. Physiol. 2022, 12, 827077. [Google Scholar] [CrossRef]
- Suzuki, R.; Fujimoto, Z.; Shiotsuki, T.; Tsuchiya, W.; Momma, M.; Tase, A.; Miyazawa, M.; Yamazaki, T. Structural mechanism of JH delivery in hemolymph by JHBP of silkworm, Bombyx mori. Sci. Rep. 2011, 1, 133. [Google Scholar] [CrossRef]
- Hu, H.; Yin, X.; Pang, S.; Jiang, Y.; Weng, Q.; Hu, Q.; Wang, J. Mechanism of destruxin a inhibits juvenile hormone binding protein transporting juvenile hormone to affect insect growth. Pestic. Biochem. Physiol. 2023, 197, 105654. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Shiotsuki, T.; Wang, Z.; Xu, X.; Huang, Y.; Li, M.; Li, K.; Tan, A. Depletion of juvenile hormone esterase extends larval growth in Bombyx mori. Insect Biochem. Mol. Biol. 2017, 81, 72–79. [Google Scholar] [CrossRef]
- Song, Y.; Gu, F.; Liu, Z.; Li, Z.; Wu, F.; Sheng, S. The key role of fatty acid synthase in lipid metabolism and metamorphic development in a destructive insect pest, Spodoptera litura (Lepidoptera: Noctuidae). Int. J. Mol. Sci. 2022, 16, 9064. [Google Scholar] [CrossRef]
- Tao, Y.D.; Liu, Y.; Wan, X.S.; Xu, J.; Fu, D.Y.; Zhang, J.Z. High and low temperatures differentially affect survival, reproduction, and gene transcription in male and female moths of Spodoptera frugiperda. Insects 2023, 12, 958. [Google Scholar] [CrossRef]
- Huang, L.H.; Wang, C.Z.; Kang, L. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. J. Insect Physiol. 2009, 3, 279–285. [Google Scholar] [CrossRef]
- Cheng, J.; Su, Q.; Xia, J.; Yang, Z.; Shi, C.; Wang, S.; Wu, Q.; Li, C.; Zhang, Y. Comparative transcriptome analysis of differentially expressed genes in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) at different acute stress temperatures. Genomics 2020, 5, 3739–3750. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.M.; Zhuang, G.D.; Zheng, H.X.; Zhang, X.H. Comparative transcriptome analysis of Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae-Bruchinae) after heat and cold stress exposure. J. Therm. Biol. 2023, 112, 103479. [Google Scholar] [CrossRef]
- Chen, H.; Xu, X.L.; Li, Y.P.; Wu, J.X. Characterization of heat shock protein 90, 70 and their transcriptional expression patterns on high temperature in adult of Grapholita molesta (Busck). Insect Sci. 2014, 4, 439–448. [Google Scholar] [CrossRef]
- Li, H.; Zhao, X.; Qiao, H.; He, X.; Tan, J.; Hao, D. Comparative transcriptome analysis of the heat stress response in Monochamus alternatus Hope (Coleoptera: Cerambycidae). Front. Physiol. 2020, 10, 1568. [Google Scholar] [CrossRef]
- Shen, X.N.; Wang, X.D.; Wan, F.H.; Lü, Z.C.; Liu, W.X. Gene expression analysis reveals potential regulatory factors response to temperature stress in Bemisia tabaci Mediterranean. Genes 2023, 5, 1013. [Google Scholar] [CrossRef]
- Cui, M.; Hu, P.; Wang, T.; Tao, J.; Zong, S. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus. PLoS ONE 2017, 12, e0187105. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Zhang, X.X.; Chang, Y.W.; Du, Y.Z. Comparative transcriptome analysis of Liriomyza trifolii (Burgess) and Liriomyza sativae (Blanchard) (Diptera: Agromyzidae) in response to rapid cold hardening. PLoS ONE 2022, 12, e0279254. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Neal, S.; Robertson, R.; Westwood, J.; Walker, V.K. Cold hardening and transcriptional change in Drosophila melanogaster. Insect Mol. Biol. 2005, 14, 607–613. [Google Scholar] [CrossRef]
Sample | Raw Reads | Clean Reads | Clean Bases | Q20 (%) | Q30 (%) | GC (%) | Genome (%) |
---|---|---|---|---|---|---|---|
ML-Lck1 | 45861858 | 45081946 | 6.76 G | 98.12 | 94.33 | 46.87 | 87.45 |
ML-Lck2 | 43440550 | 42760148 | 6.41 G | 98.31 | 94.80 | 47.32 | 87.88 |
ML-Lck3 | 41811480 | 41257116 | 6.19 G | 98.28 | 94.71 | 46.85 | 87.41 |
ML-Lt1 | 41850648 | 41309902 | 6.20 G | 98.36 | 94.87 | 46.78 | 87.87 |
ML-Lt2 | 41701374 | 40990290 | 6.15 G | 98.30 | 94.79 | 46.76 | 87.80 |
ML-Lt2 | 44947624 | 44250252 | 6.64 G | 98.29 | 94.70 | 46.87 | 87.51 |
ML-Pck1 | 46227564 | 45271816 | 6.79 G | 98.08 | 94.31 | 46.89 | 86.87 |
ML-Pck2 | 46664572 | 45687604 | 6.85 G | 98.13 | 94.39 | 46.43 | 87.23 |
ML-Pck3 | 49603322 | 48836742 | 7.33 G | 98.06 | 94.16 | 45.27 | 85.48 |
ML-Pt1 | 45422798 | 44217254 | 6.63 G | 98.09 | 94.31 | 46.72 | 87.09 |
ML-Pt2 | 46297872 | 45608812 | 6.84 G | 98.11 | 94.30 | 45.62 | 86.21 |
ML-Pt3 | 45883070 | 44873890 | 6.73 G | 98.06 | 94.23 | 46.40 | 85.48 |
ML-Ack1 | 45339252 | 44392486 | 6.66 G | 98.31 | 94.91 | 45.90 | 87.51 |
ML-Ack2 | 46758158 | 45718742 | 6.86 G | 98.12 | 94.40 | 46.52 | 87.12 |
ML-Ack3 | 46380166 | 45431862 | 6.81 G | 97.77 | 93.55 | 45.98 | 86.24 |
ML-At1 | 45297954 | 44457258 | 6.67 G | 98.06 | 94.31 | 46.24 | 86.92 |
ML-At2 | 46342744 | 45417112 | 6.81 G | 97.74 | 93.71 | 46.25 | 84.22 |
ML-At3 | 49549586 | 48729888 | 7.31 G | 98.19 | 94.45 | 45.18 | 86.57 |
GO Terms | Larvae (%) | Pupae (%) | Adults (%) |
---|---|---|---|
Biological process | 229 (34.08) | 115 (31.08) | 68 (34.69) |
Cellular component | 120 (17.86) | 63 (17.03) | 32 (16.33) |
Molecular function | 323 (48.07) | 192 (51.89) | 96 (48.98) |
Total | 672 (77.33) | 370 (71.15) | 196 (55.84) |
Stage | GO Term | DEGs | Genes | p-Value | Padj |
---|---|---|---|---|---|
Larvae | cofactor binding | 39 (12.07) | 385 (6.26) | 4.44 × 10−5 | 0.004542 |
flavin adenine dinucleotide binding | 17 (5.26) | 110 (1.79) | 5.10 × 10−5 | 0.004542 | |
coenzyme binding | 22 (6.81) | 179 (2.91) | 0.000152 | 0.009061 | |
iron-sulfur cluster binding | 9 (2.79) | 42 (0.68) | 0.000260 | 0.009244 | |
metal cluster binding | 9 (2.79) | 42 (0.68) | 0.000260 | 0.009244 | |
oxidoreductase activity | 43 (13.31) | 489 (7.95) | 0.000460 | 0.013652 | |
electron transfer activity | 8 (2.48) | 42 (0.68) | 0.0013036 | 0.033148 | |
Pupae | vitamin binding | 7 (3.65) | 34 (0.55) | 6.83 × 10−5 | 0.011332 |
pyridoxal phosphate binding | 6 (3.13) | 30 (0.49) | 0.000272 | 0.015069 | |
vitamin B6 binding | 6 (3.13) | 30 (0.49) | 0.000272 | 0.015069 | |
Adults | odorant binding | 7 (7.29) | 83 (1.35) | 0.000286 | 0.031746 |
Stage | Pathway | Number | Ratio | Padj |
---|---|---|---|---|
Larva | Drug metabolism—other enzymes | 16 | 0.087 | 0.016 |
Ribosome | 17 | 0.092 | 0.016 | |
Porphyrin metabolism | 10 | 0.054 | 0.018 | |
Caffeine metabolism | 6 | 0.033 | 0.036 | |
Peroxisome | 16 | 0.087 | 0.036 | |
Metabolism of xenobiotics by cytochrome P450 | 12 | 0.065 | 0.039 | |
Biosynthesis of cofactors | 19 | 0.100 | 0.039 | |
Ascorbate and aldarate metabolism | 9 | 0.049 | 0.049 | |
Drug metabolism—cytochrome P450 | 10 | 0.054 | 0.049 | |
Pentose and glucuronate interconversions | 9 | 0.049 | 0.049 | |
Retinol metabolism | 8 | 0.043 | 0.075 | |
Arginine and proline metabolism | 6 | 0.033 | 0.122 | |
Nucleotide metabolism | 9 | 0.049 | 0.298 | |
Proteasome | 5 | 0.027 | 0.440 | |
Pyrimidine metabolism | 6 | 0.033 | 0.520 | |
Cysteine and methionine metabolism | 5 | 0.027 | 0.520 | |
Purine metabolism | 10 | 0.054 | 0.520 | |
Base excision repair | 4 | 0.022 | 0.520 | |
Sphingolipid metabolism | 4 | 0.022 | 0.520 | |
Sulfur metabolism | 2 | 0.011 | 0.520 | |
Pupa | Longevity regulating pathway—multiple species | 14 | 0.144 | 5.56 × 10−7 |
Protein processing in endoplasmic reticulum | 16 | 0.165 | 3.85 × 10−5 | |
Wnt signaling pathway | 7 | 0.072 | 0.156 | |
Spliceosome | 9 | 0.093 | 0.156 | |
Insect hormone biosynthesis | 4 | 0.041 | 0.298 | |
Endocytosis | 8 | 0.082 | 0.298 | |
Tyrosine metabolism | 3 | 0.031 | 0.298 | |
Phenylalanine metabolism | 2 | 0.021 | 0.474 | |
Sphingolipid metabolism | 3 | 0.031 | 0.603 | |
Ubiquinone and other terpenoid-quinone biosynthesis | 3 | 0.031 | 0.678 | |
MAPK signaling pathway—fly | 5 | 0.052 | 0.678 | |
TGF-beta signaling pathway | 3 | 0.031 | 0.678 | |
Caffeine metabolism | 2 | 0.021 | 0.782 | |
mTOR signaling pathway | 5 | 0.052 | 0.789 | |
Amino sugar and nucleotide sugar metabolism | 3 | 0.031 | 0.789 | |
Phototransduction—fly | 2 | 0.021 | 0.789 | |
Starch and sucrose metabolism | 2 | 0.021 | 0.849 | |
Terpenoid backbone biosynthesis | 2 | 0.021 | 0.849 | |
Hippo signaling pathway—fly | 3 | 0.031 | 0.849 | |
Drug metabolism—other enzymes | 5 | 0.052 | 0.849 | |
Adult | Tyrosine metabolism | 3 | 0.064 | 0.129 |
Biosynthesis of cofactors | 7 | 0.149 | 0.129 | |
Phenylalanine metabolism | 2 | 0.043 | 0.129 | |
Ubiquinone and other terpenoid-quinone biosynthesis | 3 | 0.064 | 0.129 | |
Histidine metabolism | 2 | 0.043 | 0.129 | |
Lysine degradation | 3 | 0.064 | 0.129 | |
Insect hormone biosynthesis | 3 | 0.064 | 0.129 | |
Pyruvate metabolism | 3 | 0.064 | 0.220 | |
Pantothenate and CoA biosynthesis | 2 | 0.043 | 0.220 | |
Glycolysis/Gluconeogenesis | 3 | 0.064 | 0.220 | |
Arachidonic acid metabolism | 3 | 0.064 | 0.220 | |
Ascorbate and aldarate metabolism | 3 | 0.064 | 0.220 | |
Motor proteins | 4 | 0.085 | 0.220 | |
Circadian rhythm—fly | 2 | 0.043 | 0.220 | |
Tryptophan metabolism | 2 | 0.043 | 0.244 | |
Starch and sucrose metabolism | 2 | 0.043 | 0.244 | |
Drug metabolism—cytochrome P450 | 3 | 0.064 | 0.250 | |
beta-Alanine metabolism | 2 | 0.043 | 0.250 | |
Arginine and proline metabolism | 2 | 0.043 | 0.250 | |
Peroxisome | 4 | 0.085 | 0.250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Chen, Q.; Bilal, M.; Wu, Y.; Gong, Z.; Wu, R.; Miao, J. Comparative Transcriptome Analysis Reveals Different Responses in Three Developmental Stages of Mythimna loreyi to Cold Stress. Insects 2024, 15, 554. https://doi.org/10.3390/insects15070554
Duan Y, Chen Q, Bilal M, Wu Y, Gong Z, Wu R, Miao J. Comparative Transcriptome Analysis Reveals Different Responses in Three Developmental Stages of Mythimna loreyi to Cold Stress. Insects. 2024; 15(7):554. https://doi.org/10.3390/insects15070554
Chicago/Turabian StyleDuan, Yun, Qi Chen, Muhammad Bilal, Yuqing Wu, Zhongjun Gong, Renhai Wu, and Jin Miao. 2024. "Comparative Transcriptome Analysis Reveals Different Responses in Three Developmental Stages of Mythimna loreyi to Cold Stress" Insects 15, no. 7: 554. https://doi.org/10.3390/insects15070554
APA StyleDuan, Y., Chen, Q., Bilal, M., Wu, Y., Gong, Z., Wu, R., & Miao, J. (2024). Comparative Transcriptome Analysis Reveals Different Responses in Three Developmental Stages of Mythimna loreyi to Cold Stress. Insects, 15(7), 554. https://doi.org/10.3390/insects15070554