Use of Periplaneta americana as a Soybean Meal Substitute: A Step towards Sustainable Transformative Poultry Feeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Birds and Housing Conditions
2.3. Formulation of Feeds
2.4. Growth Performances
2.5. Slaughtering
2.6. Hematology and Serum Bio-Chemistry
2.7. Gut Histology
2.8. Meat Quality
2.9. Statistical Analysis
3. Results
3.1. Growth Performances
3.2. Hematology
Complete Blood Count (CBC)
3.3. Serum Bio-Chemistry
3.4. Gut Histology
3.5. Meat Quality
4. Discussion
4.1. Growth Performances
4.2. Hematology
4.3. Serum Bio-Chemistry
4.4. Gut Histology
4.5. Meat Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henchion, M.; Moloney, A.; Hyland, J.; Zimmermann, J.; McCarthy, S. Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 2021, 15, 100287. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Rahman, M.T.; Hossain, M.J.; Basiouni, S.; Khafaga, A.F.; Shehata, A.A.; Hafez, H.M. Poultry production and sustainability in developing countries under the COVID-19 crisis: Lessons learned. Animals 2022, 12, 644. [Google Scholar] [CrossRef]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Khan, S.H. Recent advances in role of insects as alternative protein source in poultry nutrition. J. Appl. Anim. Res. 2018, 46, 1144–1157. [Google Scholar] [CrossRef]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar] [CrossRef]
- Sauer, S. Soy expansion into the agricultural frontiers of the Brazilian Amazon: The agribusiness economy and its social and environmental conflicts. Land Use Policy 2018, 79, 326–338. [Google Scholar] [CrossRef]
- Abro, Z.; Kassie, M.; Tanga, C.; Beesigamukama, D.; Diiro, G. Socio-economic and environmental implications of replacing conventional poultry feed with insect-based feed in Kenya. J. Clean. Prod. 2020, 265, 121871. [Google Scholar] [CrossRef]
- Vellinga, T.V.; van Laar, H.; Thomassen, M.; De Boer, I.; Berkhout, P.; Aiking, H. Milieueffecten van Diervoeders; 1570-8616; Animal Sciences Group: Wageningen, The Netherlands, 2009. [Google Scholar]
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.; Waagbø, R.; Krogdahl, Å.; Lock, E.-J. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019, 503, 609–619. [Google Scholar] [CrossRef]
- Xiao, X.; Jin, P.; Zheng, L.; Cai, M.; Yu, Z.; Yu, J.; Zhang, J. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquacult. Res. 2018, 1, 1569–1577. [Google Scholar] [CrossRef]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef]
- Chia, S.Y.; Macharia, J.; Diiro, G.M.; Kassie, M.; Ekesi, S.; van Loon, J.J.; Dicke, M.; Tanga, C.M. Smallholder farmers’ knowledge and willingness to pay for insect-based feeds in Kenya. PLoS ONE 2020, 15, e0230552. [Google Scholar] [CrossRef]
- Gasco, L.; Finke, M.; Van Huis, A. Can diets containing insects promote animal health? J. Insects Food Feed 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Hossain, S.; Blair, R. Chitin utilisation by broilers and its effect on body composition and blood metabolites. Br. Poult. Sci. 2007, 48, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Bovera, F.; Piccolo, G.; Gasco, L.; Marono, S.; Loponte, R.; Vassalotti, G.; Mastellone, V.; Lombardi, P.; Attia, Y.; Nizza, A. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br. Poult. Sci. 2015, 56, 569–575. [Google Scholar] [CrossRef]
- Borrelli, L.; Coretti, L.; Dipineto, L.; Bovera, F.; Menna, F.; Chiariotti, L.; Nizza, A.; Lembo, F.; Fioretti, A. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci. Rep. 2017, 7, 16269. [Google Scholar] [CrossRef]
- Mannaa, M.; Mansour, A.; Park, I.; Lee, D.-W.; Seo, Y.-S. Insect-based agri-food waste valorization: Agricultural applications and roles of insect gut microbiota. Environ. Sci. Ecotechnol. 2024, 17, 100287. [Google Scholar] [CrossRef] [PubMed]
- Churchward-Venne, T.A.; Pinckaers, P.J.; van Loon, J.J.; van Loon, L.J. Consideration of insects as a source of dietary protein for human consumption. Nutr. Rev. 2017, 75, 1035–1045. [Google Scholar] [CrossRef]
- Premalatha, M.; Abbasi, T.; Abbasi, T.; Abbasi, S. Energy-efficient food production to reduce global warming and ecodegradation: The use of edible insects. Renew. Sustain. Energy Rev. 2011, 15, 4357–4360. [Google Scholar] [CrossRef]
- Schmitt, E.; Belghit, I.; Johansen, J.; Leushuis, R.; Lock, E.-J.; Melsen, D.; Kathirampatti Ramasamy Shanmugam, R.; Van Loon, J.; Paul, A. Growth and safety assessment of feed streams for black soldier fly larvae: A case study with aquaculture sludge. Animals 2019, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Cadinu, L.A.; Barra, P.; Torre, F.; Delogu, F.; Madau, F.A. Insect rearing: Potential, challenges, and circularity. Sustainability 2020, 12, 4567. [Google Scholar] [CrossRef]
- Dossey, A.T.; Morales-Ramos, J.A.; Rojas, M.G. Insects as Sustainable Food Ingredients: Production, Processing and Food Applications; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Bulak, P.; Proc, K.; Pawłowska, M.; Kasprzycka, A.; Berus, W.; Bieganowski, A. Biogas generation from insects breeding post production wastes. J. Clean. Prod. 2020, 244, 118777. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed 2016, 2, 83–90. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; De Smet, S.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef]
- Ballitoc, D.A.; Sun, S. Ground yellow mealworms (Tenebrio molitor L.) feed supplementation improves growth performance and carcass yield characteristics in broilers. Open Sci. Repos. Agric. 2013, 18, e23050425. [Google Scholar] [CrossRef]
- Laudadio, V.; Passantino, L.; Perillo, A.; Lopresti, G.; Passantino, A.; Khan, R.; Tufarelli, V. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult. Sci. 2012, 91, 265–270. [Google Scholar] [CrossRef]
- Sajjad, M.; Sajjad, A.; Chishti, G.; Binyameen, M.; Abbasi, A.; Haq, I.; Gaafar, A.; Hodhod, M. Evaluation of blow fly, Chrysomya megacephala (Calliphoridae: Diptera) as an alternate source of protein in broiler feed. J. Insects Food Feed 2024, 1, 1–19. [Google Scholar] [CrossRef]
- Sajjad, M.; Binyameen, M.; Sajjad, A.; Sarmad, M.; Abbasi, A.; Khan, E.; Haq, I.; Subhan, M.; Alhimaidi, A.; Amran, R. Replacing soybean meal with lesser mealworm Alphitobius diaperinus improves broiler productive performances, haematology, intestinal morphology and meat quality. J. Insects Food Feed 2024, 1, 1–22. [Google Scholar] [CrossRef]
- Malematja, E.; Manyelo, T.; Sebola, N.; Mabelebele, M. The role of insects in promoting the health and gut status of poultry. Comp. Clin. Pathol. 2023, 32, 501–513. [Google Scholar] [CrossRef]
- Qaisrani, S.; Moquet, P.; Van Krimpen, M.; Kwakkel, R.; Verstegen, M.; Hendriks, W. Protein source and dietary structure influence growth performance, gut morphology, and hindgut fermentation characteristics in broilers. Poult. Sci. 2014, 93, 3053–3064. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; Ferrocino, I.; Grego, E.; Dabbou, S.; Gai, F.; Gasco, L.; Cocolin, L.; Capucchio, M.T.; Schiavone, A. Yellow mealworm inclusion in diets for heavy-size broiler chickens: Implications for intestinal microbiota and mucin dynamics. Animals 2020, 10, 1909. [Google Scholar] [CrossRef]
- Mousavi, S.; Zahedinezhad, S.; Loh, J.Y. A review on insect meals in aquaculture: The immunomodulatory and physiological effects. Int. Aquat. Res. 2020, 12, 100–115. [Google Scholar]
- Wang, J.; Peng, K. Developmental morphology of the small intestine of African ostrich chicks. Poult. Sci. 2008, 87, 2629–2635. [Google Scholar] [CrossRef] [PubMed]
- Cutrignelli, M.I.; Messina, M.; Tulli, F.; Randazzo, B.; Olivotto, I.; Gasco, L.; Loponte, R.; Bovera, F. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Res. Vet. Sci. 2018, 117, 209–215. [Google Scholar] [CrossRef]
- Islam, M.M.; Yang, C.-J. Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poult. Sci. 2017, 96, 27–34. [Google Scholar] [CrossRef]
- DiGiacomo, K.; Leury, B. Insect meal: A future source of protein feed for pigs? Animal 2019, 13, 3022–3030. [Google Scholar] [CrossRef]
- Detilleux, J.; Moula, N.; Dawans, E.; Taminiau, B.; Daube, G.; Leroy, P. A probabilistic structural equation model to evaluate links between gut microbiota and body weights of chicken fed or not fed insect larvae. Biology 2022, 11, 357. [Google Scholar] [CrossRef]
- Loponte, R.; Nizza, S.; Bovera, F.; De Riu, N.; Fliegerova, K.; Lombardi, P.; Vassalotti, G.; Mastellone, V.; Nizza, A.; Moniello, G. Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larvae meals (Tenebrio molitor and Hermetia illucens). Res. Vet. Sci. 2017, 115, 183–188. [Google Scholar] [CrossRef]
- Tang, M.; Ma, Q.; Chen, X.; Ji, C. Effects of dietary metabolizable energy and lysine on carcass characteristics and meat quality in Arbor Acres broilers. Asian-Australas J. Anim. Sci. 2007, 20, 1865–1873. [Google Scholar] [CrossRef]
- Pieterse, E.; Pretorius, Q.; Hoffman, L.; Drew, D. The carcass quality, meat quality and sensory characteristics of broilers raised on diets containing either Musca domestica larvae meal, fish meal or soya bean meal as the main protein source. Anim. Prod. Sci. 2013, 54, 622–628. [Google Scholar] [CrossRef]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef] [PubMed]
- Allegretti, G.; Talamini, E.; Schmidt, V.; Bogorni, P.C.; Ortega, E. Insect as feed: An emergy assessment of insect meal as a sustainable protein source for the Brazilian poultry industry. J. Clean. Prod. 2018, 171, 403–412. [Google Scholar] [CrossRef]
- Sajid, Q.U.A.; Asghar, M.U.; Tariq, H.; Wilk, M.; Płatek, A. Insect Meal as an Alternative to Protein Concentrates in Poultry Nutrition with Future Perspectives (An Updated Review). Agriculture 2023, 13, 1239. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Kenis, M.; Rabitsch, W.; Auger-Rozenberg, M.-A.; Roques, A. How can alien species inventories and interception data help us prevent insect invasions? Bull. Entomol. Res. 2007, 97, 489–502. [Google Scholar] [CrossRef]
- Lourenço, F.; Calado, R.; Medina, I.; Ameixa, O.M. The potential impacts by the invasion of insects reared to feed livestock and pet animals in europe and other regions: A critical review. Sustainability 2022, 14, 6361. [Google Scholar] [CrossRef]
- Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.-J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422, 193–201. [Google Scholar] [CrossRef]
- Ukoroije, R.B.; Bawo, D.S. Cockroach (Periplaneta americana): Nutritional value as food and feed for man and livestock. Asian Food Sci. J. 2020, 15, 37–46. [Google Scholar]
- Demick, J. Cockroach farms multiplying in China. Los Angeles Times Oct. 2013, 15, 2013. [Google Scholar]
- Sule, S.; Ojetayo, T.; Sotolu, A. Cockroach (Periplanata americana) meal nutritive composition. Magnesium (Mg) 2020, 1180, 37–46. [Google Scholar]
- Baiphethi, M.N.; Jacobs, P.T. The contribution of subsistence farming to food security in South Africa. Agrekon 2009, 48, 459–482. [Google Scholar] [CrossRef]
- Adetunmbi, T. The potential of insects as alternative animal protein source for livestock feeding. Glob. J. Agric. Sci. 2023, 22, 47–61. [Google Scholar] [CrossRef]
- Abdullahi, S.; Abdulwahab, K.; Abubakar, G.S. Gross margin analysis of modern groundnut oil extraction in Gombe metropolis Gombe State, Nigeria. World J. Agric. Res. 2017, 5, 58–63. [Google Scholar] [CrossRef]
- Ross. Ross 308 Nutrition Specifications; Aviagen: Midlothian, UK, 2022. [Google Scholar]
- Gariglio, M.; Dabbou, S.; Biasato, I.; Capucchio, M.T.; Colombino, E.; Hernández, F.; Madrid, J.; Martínez, S.; Gai, F.; Caimi, C. Nutritional effects of the dietary inclusion of partially defatted Hermetia illucens larva meal in Muscovy duck. J. Anim. Sci. Biotechnol. 2019, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, M.; Sajjad, A.; Chishti, G.; Khan, E.; Mozūraitis, R.; Binyameen, M. Insect Larvae as an Alternate Protein Source in Poultry Feed Improve the Performance and Meat Quality of Broilers. Animals 2024, 14, 2053. [Google Scholar] [CrossRef]
- Ab Aziz, M.F.; Hayat, M.N.; Kaka, U.; Kamarulzaman, N.H.; Sazili, A.Q. Physico-chemical characteristics and microbiological quality of broiler chicken pectoralis major muscle subjected to different storage temperature and duration. Foods 2020, 9, 741. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.W. Avian Hematology and Cytology; Iowa State University Press: Ames, IA, USA, 1995. [Google Scholar]
- Germana, S.; Elisabetta, M.; Tarantola, M.; Maria, S.G.; Luca, D.; Schiavone, A. Acute phase proteins and heterophil to lymphocyte ratio in laying hens kept in different housing systems. Vet. Rec. 2010, 167, 749–751. [Google Scholar]
- Ferreira, T.; Rasband, W. ImageJ User Guide—IJ 1.46. 2012. Available online: http://imagej.nih.gov/ij/docs/guide (accessed on 26 September 2023).
- Kaić, A.; Janječić, Z.; Žanetić, A.; Kelava Ugarković, N.; Potočnik, K. EZ-DripLoss assessment in chicken breast meat using different sample areas, fiber orientation, and measurement intervals. Animals 2021, 11, 1095. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J.; Prache, S.; Dransfield, E. Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Sci. 2002, 62, 179–185. [Google Scholar] [CrossRef]
- Elahi, U.; Xu, C.-C.; Wang, J.; Lin, J.; Wu, S.-G.; Zhang, H.-J.; Qi, G.-H. Insect meal as a feed ingredient for poultry. Anim. Biosci. 2022, 35, 332–348. [Google Scholar] [CrossRef]
- Zampiga, M.; Calini, F.; Sirri, F. Importance of feed efficiency for sustainable intensification of chicken meat production: Implications and role for amino acids, feed enzymes and organic trace minerals. World’s Poult. Sci. J. 2021, 77, 639–659. [Google Scholar] [CrossRef]
- Beski, S.S.; Swick, R.A.; Iji, P.A. Specialized protein products in broiler chicken nutrition: A review. Anim. Nutr. 2015, 1, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, P.; Martinez, D.; Weil, J.; Suesuttajit, N.; Umberson, C.; Mullenix, G.; Hilton, K.; Beitia, A.; Coon, C. Physiological growth trend of current meat broilers and dietary protein and energy management approaches for sustainable broiler production. Animal 2021, 15, 100284. [Google Scholar] [CrossRef]
- Boorman, K.; Ellis, G. Maximum nutritional response to poor-quality protein and amino acid utilisation. Br. Poult. Sci. 1996, 37, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, J.; Hong, E.; Jang, A.; Kang, H.; Oh, J.; Kim, B.; Park, B. Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J. Environ. Biol. 2009, 30, 609–614. [Google Scholar]
- Biasato, I.; De Marco, M.; Rotolo, L.; Renna, M.; Lussiana, C.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Costa, P.; Gai, F. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1104–1112. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.; Biasibetti, E.; Tarantola, M.; Bianchi, C. Effects of yellow mealworm larvae (Tenebrio molitor) inclusion in diets for female broiler chickens: Implications for animal health and gut histology. Anim. Feed Sci. Technol. 2017, 234, 253–263. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Sterpone, L. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poult. Sci. 2018, 97, 540–548. [Google Scholar] [CrossRef]
- Vasilopoulos, S.; Giannenas, I.; Savvidou, S.; Bonos, E.; Rumbos, C.I.; Papadopoulos, E.; Fortomaris, P.; Athanassiou, C.G. Growth performance, welfare traits and meat characteristics of broilers fed diets partly replaced with whole Tenebrio molitor larvae. Anim. Nutr. 2023, 13, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Poorghasemi, M.; Seidavi, A.; Qotbi, A.A.A.; Laudadio, V.; Tufarelli, V. Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian-Australas. J. Anim. Sci. 2013, 26, 705. [Google Scholar] [CrossRef] [PubMed]
- Van Harn, J.; Dijkslag, M.; Van Krimpen, M. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poult. Sci. 2019, 98, 4868–4877. [Google Scholar] [CrossRef]
- Wang, T.; Ling, H.; Zhang, W.; Zhou, Y.; Li, Y.; Hu, Y.; Peng, N.; Zhao, S. Protease or Clostridium butyricum addition to a low-protein diet improves broiler growth performance. Appl. Microbiol. Biotechnol. 2022, 106, 7917–7931. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Li, M.; Wang, G.; Wang, K.; Shang, R.; Wang, Z.; Li, L. Evaluation of the low inclusion of full-fatted Hermetia illucens larvae meal for layer chickens: Growth performance, nutrient digestibility, and gut health. Front. Vet. Sci. 2020, 7, 585843. [Google Scholar] [CrossRef]
- Hancz, C.; Sultana, S.; Nagy, Z.; Biró, J. The Role of Insects in Sustainable Animal Feed Production for Environmentally Friendly Agriculture: A Review. Animals 2024, 14, 1009. [Google Scholar] [CrossRef]
- De Verdal, H.; Narcy, A.; Bastianelli, D.; Chapuis, H.; Même, N.; Urvoix, S.; Le Bihan-Duval, E.; Mignon-Grasteau, S. Improving the efficiency of feed utilization in poultry by selection. 1. Genetic parameters of anatomy of the gastro-intestinal tract and digestive efficiency. BMC Genet. 2011, 12, 59. [Google Scholar] [CrossRef]
- Tschirner, M.; Simon, A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed 2015, 1, 249–259. [Google Scholar]
- Kim, S.; Chung, T.; Park, H.; Shin, M.; Park, I.; Choi, I. Effects of diet composition on growth performance and feed conversion efficiency in Alphitobius diaperinus larvae. J. Entomol. Acarol. Res. 2019, 51. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Gort, G.; Dicke, M.; van Loon, J.J. Effects of dietary protein and carbohydrate on life-history traits and body protein and fat contents of the black soldier fly Hermetia illucens. Physiol. Entomol. 2019, 44, 148–159. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, D.-H.; Jeong, S.-B.; Lee, J.-W.; Kim, T.-H.; Lee, H.-G.; Lee, K.-W. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult. Sci. 2020, 99, 3133–3143. [Google Scholar] [CrossRef]
- Lalev, M.; Hristakieva, P.; Mincheva, N.; Oblakova, M.; Ivanova, I. Insect meal as alternative protein ingredient in broiler feed. Bulg. J. Agric. Sci. 2022, 28, 743–751. [Google Scholar]
- Elahi, U.; Wang, J.; Ma, Y.-B.; Wu, S.-G.; Wu, J.; Qi, G.-H.; Zhang, H.-J. Evaluation of yellow mealworm meal as a protein feedstuff in the diet of broiler chicks. Animals 2020, 10, 224. [Google Scholar] [CrossRef] [PubMed]
- Kierończyk, B.; Rawski, M.; Józefiak, A.; Mazurkiewicz, J.; Świątkiewicz, S.; Siwek, M.; Bednarczyk, M.; Szumacher-Strabel, M.; Cieślak, A.; Benzertiha, A. Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Technol. 2018, 240, 170–183. [Google Scholar] [CrossRef]
- Kamely, M.; He, W.; Wakaruk, J.; Whelan, R.; Naranjo, V.; Barreda, D.R. Impact of reduced dietary crude protein in the starter phase on immune development and response of broilers throughout the growth period. Front. Vet. Sci. 2020, 7, 436. [Google Scholar] [CrossRef]
- Zulkifli, N.F.N.M.; Seok-Kian, A.Y.; Seng, L.L.; Mustafa, S.; Kim, Y.-S.; Shapawi, R. Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLoS ONE 2022, 17, e0263924. [Google Scholar] [CrossRef]
- Dho, M.; Candian, V.; Tedeschi, R. Insect Antimicrobial Peptides: Advancements, Enhancements and New Challenges. Antibiotics 2023, 12, 952. [Google Scholar] [CrossRef]
- Londok, J.J.M.R.; Rompis, J.E.G. Hematological Parameters in Broiler Chicken Consumed Lauric Acid and Feed Fiber. In Proceedings of the 9th International Seminar on Tropical Animal Production (ISTAP 2021), Yogyakarta, Indonesia, 21–22 September 2022; pp. 144–147. [Google Scholar]
- Burel, C.; Lessire, M.; Juin, H.; Rousseau, P.; Hallouis, J.-M.; Aguirre, P.; Terrier, F.; Surget, A.; Pegourie, G.; Meteau, K. Feeding value of insect meals in trout and poultry: Digestibility and effect on quality of products. In Proceedings of the Insectinov 2-Production D’insectes: Alimentation-Applications-Nouvelles Filières Industrielles, Romainville, France, 10–12 October 2017; p. 38. [Google Scholar]
- Vilela, J.d.S.; Alvarenga, T.I.; Andrew, N.R.; McPhee, M.; Kolakshyapati, M.; Hopkins, D.L.; Ruhnke, I. Technological quality, amino acid and fatty acid profile of broiler meat enhanced by dietary inclusion of black soldier fly larvae. Foods 2021, 10, 297. [Google Scholar] [CrossRef]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef]
- El-Gobary, G.; El-Zoghby, A.F.; El-Sheikh, N.; Hamdy, A.S. Effect of chito-oligosaccharide as feed additives on egg production and performance of laying hens. Egypt. J. Chem. Environ. Health 2016, 2, 183–194. [Google Scholar] [CrossRef]
- Khambualai, O.; Yamauchi, K.-e.; Tangtaweewipat, S.; Cheva-Isarakul, B. Effects of dietary chitosan diets on growth performance in broiler chickens. J. Poult. Sci. 2008, 45, 206–209. [Google Scholar] [CrossRef]
- Prajapati, B.; Patel, R. Nutrition, dietary supplements and herbal medicines: A safest approach for obesity. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 39–45. [Google Scholar]
- Sypniewski, J.; Kierończyk, B.; Benzertiha, A.; Mikołajczak, Z.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.; Sassek, M.; Rawski, M.; Czekała, W.; Józefiak, D. Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: Effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Br. Poult. Sci. 2020, 61, 294–302. [Google Scholar] [CrossRef]
- Alagawany, M.; Ashour, E.A.; El-Kholy, M.S.; Abou-Kassem, D.E.; Roshdy, T.; Abd El-Hack, M.E. Consequences of varying dietary crude protein and metabolizable energy levels on growth performance, carcass characteristics and biochemical parameters of growing geese. Anim. Biotechnol. 2022, 33, 638–646. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Marono, S.; Piccolo, G.; Parisi, G.; Iaconisi, V.; Gasco, L.; Nizza, A. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J. Anim. Sci. 2016, 94, 639–647. [Google Scholar] [CrossRef]
- Sedgh-Gooya, S.; Torki, M.; Darbemamieh, M.; Khamisabadi, H.; Abdolmohamadi, A. Effect of dietary inclusion of yellow mealworm (Tenebrio molitor) larvae meal on productive performance, egg quality indices and blood parameters of laying hens. Anim. Prod. Sci. 2021, 61, 1365–1372. [Google Scholar] [CrossRef]
- Schiavone, A.; Dabbou, S.; De Marco, M.; Cullere, M.; Biasato, I.; Biasibetti, E.; Capucchio, M.; Bergagna, S.; Dezzutto, D.; Meneguz, M. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 2018, 12, 2032–2039. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Gasco, L.; Chatzifotis, S.; Piccolo, G. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev. Comp. Immunol. 2018, 81, 204–209. [Google Scholar] [CrossRef]
- Abbasi, M.; Mahdavi, A.; Samie, A.; Jahanian, R. Effects of different levels of dietary crude protein and threonine on performance, humoral immune responses and intestinal morphology of broiler chicks. Braz. J. Poult. Sci. 2014, 16, 35–44. [Google Scholar] [CrossRef]
- Günther, C.; Neumann, H.; Neurath, M.F.; Becker, C. Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium. Gut 2013, 62, 1062–1071. [Google Scholar] [CrossRef]
- Cano-Cebrián, M.-J.; Dahlgren, D.; Kullenberg, F.; Peters, K.; Olander, T.; Sjöblom, M.; Lennernäs, H. Chemotherapeutics combined with luminal irritants: Effects on small-intestinal mannitol permeability and villus length in rats. Int. J. Mol. Sci. 2022, 23, 1021. [Google Scholar] [CrossRef]
- Biasato, I.; Ferrocino, I.; Biasibetti, E.; Grego, E.; Dabbou, S.; Sereno, A.; Gai, F.; Gasco, L.; Schiavone, A.; Cocolin, L. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet. Res. 2018, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Lauwaerts, A.; Ferrocino, I.; Biasato, I.; Sirri, F.; Zampiga, M.; Bergagna, S.; Pagliasso, G.; Gariglio, M.; Colombino, E. Modified black soldier fly larva fat in broiler diet: Effects on performance, carcass traits, blood parameters, histomorphological features and gut microbiota. Animals 2021, 11, 1837. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, X.; Li, Q.; Zhang, Z.; Li, W.; Jiang, X. Evaluation for meat quality performance of broiler chicken. J. Anim. Vet. Adv. 2011, 10, 949–954. [Google Scholar] [CrossRef]
- Benzertiha, A.; Kierończyk, B.; Rawski, M.; Kołodziejski, P.; Bryszak, M.; Józefiak, D. Insect oil as an alternative to palm oil and poultry fat in broiler chicken nutrition. Animals 2019, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Wideman, N.; O’bryan, C.; Crandall, P. Factors affecting poultry meat colour and consumer preferences—A review. World’s Poult. Sci. J. 2016, 72, 353–366. [Google Scholar] [CrossRef]
- Benahmed, S.; Askri, A.; de Rauglaudre, T.; Létourneau-Montminy, M.-P.; Alnahhas, N. Effect of reduced crude protein diets supplemented with free limiting amino acids on body weight, carcass yield, and breast meat quality in broiler chickens. Poult. Sci. 2023, 102, 103041. [Google Scholar] [CrossRef]
- Leiber, F.; Gelencsér, T.; Stamer, A.; Amsler, Z.; Wohlfahrt, J.; Früh, B.; Maurer, V. Insect and legume-based protein sources to replace soybean cake in an organic broiler diet: Effects on growth performance and physical meat quality. Renew. Agric. Food Syst. 2017, 32, 21–27. [Google Scholar] [CrossRef]
- Murawska, D.; Daszkiewicz, T.; Sobotka, W.; Gesek, M.; Witkowska, D.; Matusevičius, P.; Bakuła, T. Partial and total replacement of soybean meal with full-fat black soldier fly (Hermetia illucens L.) larvae meal in broiler chicken diets: Impact on growth performance, carcass quality and meat quality. Animals 2021, 11, 2715. [Google Scholar] [CrossRef]
- Kim, B.; Kim, H.R.; Lee, S.; Baek, Y.-C.; Jeong, J.Y.; Bang, H.T.; Ji, S.Y.; Park, S.H. Effects of dietary inclusion level of microwave-dried and press-defatted black soldier fly (Hermetia illucens) larvae meal on carcass traits and meat quality in broilers. Animals 2021, 11, 665. [Google Scholar] [CrossRef]
Nutrient Composition (%) | H. illucens | P. americana |
---|---|---|
Dry matter (as such basis) | 91.00 | 92.00 |
Crude protein | 42.00 | 40.40 |
Crude fat | 32.60 | 11.02 |
Ash | 10.70 | 6.78 |
Crude fiber | 9.40 | 6.08 |
Nitrogen-free extract | 5.30 | 29.72 |
Calcium | 2.10 | 1.29 |
Phosphorus (available) | 0.94 | 0.52 |
Energy Content (kcal/kg) | H. illucens | P. americana |
Gross energy | 5010 | 4250 |
Metabolizable energy a | 1464 | 1239 |
Essential amino acids (%) | H. illucens | P. americana |
Arginine | 2.26 | 5.36 |
Lysine | 3.13 | 8.20 |
Methionine | 1.22 | 2.37 |
Threonine | 1.88 | 3.53 |
Leucine | 3.11 | 7.86 |
Isoleucine | 2.54 | 4.02 |
Valine | 3.08 | 4.21 |
Dispensable Amino Acids (%) | H. illucens | P. americana |
Cysteine | 0.40 | 3.65 |
Tryptophan | 0.27 | 1.66 |
Glycine | 3.06 | 3.43 |
Glutamic acid | 11.32 | 12.07 |
Proline | 2.89 | 2.50 |
Tyrosine | 3.31 | 3.31 |
Phenylalanine | 4.32 | 3.47 |
Starter Meals | |||||||
---|---|---|---|---|---|---|---|
Ingredients (%) | Control | HI4 | HI8 | HI12 | PA4 | PA8 | PA12 |
Corn grain | 51.17 | 51.93 | 54.35 | 55.57 | 51.92 | 54.10 | 54.80 |
Wheat bran | 4.00 | 4.00 | 3.00 | 3.00 | 4.00 | 3.00 | 3.00 |
Rice polishing | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 3.00 |
Soybean oil | 4.00 | 3.00 | 1.80 | 0.80 | 3.00 | 2.00 | 2.40 |
Soybean meal | 28.50 | 25.00 | 21.00 | 17.00 | 25.00 | 21.00 | 17.00 |
Fish meal | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
HI meals | - | 4.00 | 8.00 | 12.00 | - | - | - |
PA meals | - | - | - | - | 4.00 | 8.00 | 12.00 |
L-Lysine HCl | 0.03 | - | - | - | - | - | - |
DL-Methionine | 0.15 | 0.12 | 0.10 | 0.07 | 0.12 | 0.10 | 0.07 |
Common salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Limestone | 1.75 | 1.55 | 1.35 | 1.16 | 1.55 | 1.50 | 1.40 |
Micro Min Premix a | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Vitamin Premix a | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Nutrient composition, % | Control | HI4 | HI8 | HI12 | PA4 | PA8 | PA12 |
Dry matter | 89.40 | 89.40 | 89.50 | 89.40 | 89.40 | 89.50 | 89.40 |
Crude protein | 23.00 | 23.03 | 23.00 | 22.98 | 23.03 | 23.00 | 23.02 |
Ether extract | 6.65 | 6.72 | 6.80 | 6.86 | 6.62 | 6.70 | 6.76 |
Crude fiber | 4.06 | 4.22 | 4.27 | 4.36 | 4.22 | 4.27 | 4.26 |
Ash | 3.62 | 3.85 | 3.96 | 3.80 | 3.85 | 3.96 | 3.80 |
Nitrogen-free extract (NFE) b | 61.00 | 60.98 | 60.84 | 60.94 | 60.98 | 60.84 | 60.94 |
Calcium | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
Phosphorus (available) c | 0.51 | 0.51 | 0.52 | 0.52 | 0.51 | 0.52 | 0.52 |
Lysine | 1.32 | 1.32 | 1.33 | 1.33 | 1.32 | 1.33 | 1.33 |
Methionine | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Threonine | 0.88 | 0.89 | 0.90 | 0.90 | 0.89 | 0.90 | 0.90 |
Valine | 1.03 | 1.04 | 1.03 | 1.04 | 1.04 | 1.03 | 1.04 |
Arginine | 1.41 | 1.41 | 1.42 | 1.40 | 1.41 | 1.42 | 1.40 |
Leucine | 1.46 | 1.46 | 1.44 | 1.45 | 1.46 | 1.44 | 1.45 |
Isoleucine | 0.88 | 0.89 | 0.88 | 0.89 | 0.89 | 0.88 | 0.89 |
Energy content (kcal/kg) | Control | HI4 | HI8 | HI12 | PA4 | PA8 | PA12 |
Gross Energy d | 4606 | 4593 | 4598 | 4604 | 4593 | 4598 | 4604 |
Metabolizable Energy e | 2980 | 2978 | 2973 | 2974 | 2978 | 2973 | 2974 |
Grower Meals | |||||||
---|---|---|---|---|---|---|---|
Ingredients (%) | Control | HI4 | HI8 | HI12 | PA4 | PA8 | PA12 |
Corn grain | 51.17 | 51.93 | 54.35 | 55.57 | 55.00 | 56.10 | 57.20 |
Wheat bran | 4.00 | 4.00 | 3.00 | 3.00 | 5.00 | 4.00 | 3.00 |
Rice polishing | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Soybean oil | 4.00 | 3.00 | 1.80 | 0.80 | 3.30 | 3.00 | 2.80 |
Soybean meal | 28.50 | 25.00 | 21.00 | 17.00 | 22.00 | 18.30 | 14.50 |
Fish meal | 6.00 | 6.00 | 6.00 | 6.00 | 5.00 | 5.00 | 5.00 |
HI meals | - | 4.00 | 8.00 | 12.00 | - | - | - |
PA meals | - | - | - | - | 4.00 | 8.00 | 12.00 |
L-Lysine HCl | 0.03 | - | - | - | - | - | - |
DL-Methionine | 0.15 | 0.12 | 0.10 | 0.07 | 0.05 | - | - |
Common salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Limestone | 1.75 | 1.55 | 1.35 | 1.16 | 1.25 | 1.20 | 1.10 |
Micro Min Premix a | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Vitamin Premix a | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Nutrient composition, % | Control | HI4 | HI8 | HI12 | PA4 | PA8 | PA12 |
Dry matter | 89.40 | 89.40 | 89.50 | 89.40 | 89.30 | 89.50 | 89.40 |
Crude protein | 23.00 | 23.03 | 23.00 | 22.98 | 21.50 | 21.51 | 21.50 |
Ether extract | 6.65 | 6.72 | 6.80 | 6.86 | 7.08 | 7.10 | 7.09 |
Crude fiber | 4.06 | 4.22 | 4.27 | 4.36 | 4.18 | 4.27 | 4.31 |
Ash | 3.62 | 3.85 | 3.96 | 3.80 | 3.55 | 3.68 | 3.81 |
Nitrogen-free extract (NFE) b | 61.00 | 60.98 | 60.84 | 60.94 | 62.20 | 61.89 | 61.13 |
Calcium | 0.95 | 0.95 | 0.95 | 0.95 | 0.75 | 0.75 | 0.75 |
Phosphorus (available) c | 0.51 | 0.51 | 0.52 | 0.52 | 0.42 | 0.42 | 0.43 |
Lysine | 1.32 | 1.32 | 1.33 | 1.33 | 1.19 | 1.19 | 1.19 |
Methionine | 0.55 | 0.55 | 0.55 | 0.55 | 0.51 | 0.51 | 0.51 |
Threonine | 0.88 | 0.89 | 0.90 | 0.90 | 0.79 | 0.79 | 0.79 |
Valine | 1.03 | 1.04 | 1.03 | 1.04 | 0.92 | 0.91 | 0.92 |
Arginine | 1.41 | 1.41 | 1.42 | 1.40 | 1.27 | 1.28 | 1.27 |
Leucine | 1.46 | 1.46 | 1.44 | 1.45 | 1.30 | 1.31 | 1.30 |
Isoleucine | 0.88 | 0.89 | 0.88 | 0.89 | 0.81 | 0.80 | 0.80 |
Energy content (kcal/kg) | Control | HI4 | HI8 | HI12 | PA4 | PA8 | PA12 |
Gross Energy d | 4606 | 4593 | 4598 | 4604 | 4659 | 4664 | 4671 |
Metabolizable Energy e | 2980 | 2978 | 2973 | 2974 | 3049 | 3048 | 3051 |
Finisher Meals | |||||||
---|---|---|---|---|---|---|---|
Ingredients (%) | Control | HI4 | HI8 | HI12 | PA4 | PA8 | PA12 |
Corn grain | 57.27 | 58.65 | 61.00 | 63.24 | 58.17 | 59.47 | 60.85 |
Wheat bran | 5.00 | 5.00 | 4.00 | 3.00 | 5.00 | 4.00 | 3.00 |
Rice polishing | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Soybean oil | 5.50 | 4.30 | 3.20 | 2.00 | 4.80 | 4.40 | 4.10 |
Soybean meal | 22.50 | 18.50 | 14.50 | 10.70 | 18.50 | 14.50 | 10.70 |
Fish meal | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
HI meals | - | 4.00 | 8.00 | 12.00 | - | - | - |
PA meals | - | - | - | - | 4.00 | 8.00 | 12.00 |
L-Lysine HCl | 0.04 | 0.03 | 0.03 | - | - | - | - |
DL-Methionine | 0.14 | 0.12 | 0.09 | 0.06 | 0.08 | 0.03 | - |
Common salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Limestone | 1.15 | 1.00 | 0.78 | 0.60 | 1.05 | 1.00 | 0.95 |
Micro Min Premix a | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Vitamin Premix a | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Nutrient composition, % | Control | HI4 | HI8 | HI12 | PA4 | PA8 | PA12 |
Dry matter | 89.40 | 89.30 | 89.60 | 89.50 | 89.30 | 89.60 | 89.50 |
Crude protein | 19.52 | 19.53 | 19.51 | 19.52 | 19.53 | 29.51 | 19.52 |
Ether extract | 8.06 | 8.08 | 8.11 | 8.13 | 8.08 | 8.11 | 8.10 |
Crude fiber | 3.99 | 4.04 | 4.08 | 4.10 | 4.04 | 4.08 | 4.10 |
Ash | 3.44 | 3.54 | 3.53 | 3.57 | 3.54 | 3.53 | 3.57 |
NFE b | 63.82 | 63.69 | 63.50 | 63.40 | 63.69 | 63.50 | 63.43 |
Calcium | 0.65 | 0.66 | 0.65 | 0.66 | 0.66 | 0.65 | 0.66 |
Phosphorus (available) c | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 |
Lysine | 1.08 | 1.08 | 1.09 | 1.08 | 1.08 | 1.09 | 1.08 |
Methionine | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 |
Threonine | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 |
Valine | 0.84 | 0.84 | 0.84 | 0.85 | 0.84 | 0.84 | 0.85 |
Arginine | 1.17 | 1.18 | 1.17 | 1.18 | 1.18 | 1.17 | 1.18 |
Leucine | 1.19 | 1.19 | 1.19 | 1.20 | 1.19 | 1.19 | 1.20 |
Isoleucine | 0.75 | 0.75 | 0.76 | 0.75 | 0.75 | 0.76 | 0.75 |
Energy content (kcal/kg) | Control | HI4 | HI8 | HI12 | PA4 | PA8 | PA12 |
Gross Energy d | 4733 | 4728 | 4719 | 4713 | 4728 | 4719 | 4713 |
Metabolizable Energy e | 3124 | 3112 | 3105 | 3102 | 3112 | 3105 | 3102 |
Items | Control | Hermetia illucens | Periplaneta americana | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HI4 | HI8 | HI12 | PA4 | PA8 | PA12 | ANOVA | HI Lin. | HI Quad. | PA Lin. | PA Quad. | |||
Live weight, g | |||||||||||||
DOC | 40.18 | 40.06 | 39.95 | 40.06 | 40.02 | 40.03 | 40.08 | 0.06 | 0.99 | 0.83 | 0.51 | 0.634 | 0.752 |
10 d | 247.3 bc | 257.5 abc | 236.39 c | 306.17 ab | 265.67 abc | 294.52 abc | 318.83 a | 3.47 | 0.04 | 0.01 | 0.943 | <0.001 | <0.001 |
24 d | 1022.67 f | 1076.5 e | 1133.33 c | 1216.67 a | 1111.5 d | 1172.83 b | 1205.67 a | 14.58 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
35 d | 1990.3 d | 2012.27 cd | 2120.8 b | 2126.3 ab | 2038.3 c | 2105.4 b | 2159.67 a | 14.05 | <0.001 | <0.001 | 0.009 | <0.001 | <0.001 |
Daily weight gain, g | |||||||||||||
1–10 d | 22.98 f | 24.72 e | 26.58 d | 30.62 b | 25.76 ab | 29.44 c | 31.88 a | 0.66 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
11–24 d | 55.38 f | 58.50 e | 63.38 bc | 64.07 ab | 60.41 d | 62.75 c | 65.05 a | 0.72 | <0.001 | <0.001 | 0.025 | <0.001 | 0.046 |
25–35 d | 82.66 e | 85.07 d | 86.73 c | 89.78 a | 84.26 d | 84.78 d | 87.96 b | 0.51 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
1–35 d | 56.87 d | 57.49 cd | 60.59 b | 60.76 ab | 58.24 c | 60.15 b | 61.71 a | 0.4 | <0.001 | <0.001 | 0.601 | <0.001 | <0.001 |
Feed intake, g | |||||||||||||
1–10 d | 22.74 | 23.84 | 23.18 | 23.59 | 24.36 | 23.84 | 23.11 | 0.42 | 0.98 | 0.660 | 0.720 | 0.655 | 0.506 |
11–24 d | 94.31 | 92.78 | 92.17 | 90.15 | 91.23 | 90.84 | 90.66 | 0.64 | 0.7 | 0.074 | 0.868 | 0.178 | 0.923 |
25–35 d | 177.44 | 177.19 | 176.40 | 176.77 | 177.76 | 176.01 | 178.03 | 0.37 | 0.82 | 0.561 | 0.774 | 0.923 | 0.770 |
1–35 d | 98.16 | 97.94 | 97.25 | 96.84 | 97.79 | 96.90 | 97.27 | 0.3 | 0.91 | 0.329 | 0.928 | 0.367 | 0.839 |
Feed conversion ratio, g/g | |||||||||||||
1–10 d | 0.98 a | 0.93 ab | 0.92 ab | 0.77 bc | 0.92 ab | 0.81 abc | 0.72 c | 0.03 | 0.03 | 0.082 | 0.041 | 0.081 | 0.079 |
11–24 d | 1.70 a | 1.59 b | 1.44 cd | 1.39 d | 1.51 bc | 1.45 cd | 1.43 cd | 0.05 | <0.001 | <0.001 | 0.139 | <0.001 | 0.713 |
25–35 d | 2.14 a | 2.09 bc | 2.05 cd | 2.02 d | 2.11 ab | 2.08 bc | 1.96 e | 0.01 | <0.001 | <0.001 | <0.001 | 0.044 | 0.029 |
1–35 d | 1.73 a | 1.70 ab | 1.60 c | 1.59 c | 1.68 b | 1.61 c | 1.58 c | 0.01 | <0.001 | <0.001 | 0.593 | <0.001 | 0.004 |
Traits | Control | Hermetia illucens | Periplaneta americana | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HI4 | HI8 | HI12 | PA4 | PA8 | PA12 | ANOVA | HI Lin. | HI Quad. | PA Lin. | PA Quad. | |||
Hematology | |||||||||||||
Hb | 8.9 c | 8.33 d | 9.9 ab | 10 ab | 9.67 b | 9.7 b | 10.3 a | 0.15 | <0.001 | 0.12 | 0.001 | 0.592 | 0.946 |
RBCs | 2.83 bc | 2.57 c | 3.03 bc | 3.1 ab | 2.87 bc | 3.03 bc | 3.53 a | 0.08 | 0.02 | 0.03 | 0.561 | 0.175 | 0.348 |
HCT | 32.36 c | 30.07 e | 26.63 f | 35.3 a | 31.06 d | 33.2 b | 35.33 a | 0.64 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
MCV | 98.06 d | 89.73 e | 83.17 f | 113.83 a | 100.13 c | 97.23 d | 105.33 b | 2.06 | <0.001 | 0.004 | <0.001 | 0.981 | <0.001 |
MCH | 31.77 c | 25.73 f | 29.5 e | 32.87 b | 31.23 d | 29.37 e | 34.23 a | 0.58 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
MCHC | 32.43 d | 30.3 e | 33.33 c | 36.27 a | 32.73 d | 34.27 b | 36.53 a | 0.46 | <0.001 | <0.001 | 0.154 | 0.221 | 0.004 |
Platelets | 13,966.67 e | 16,666.17 d | 13,033.23 f | 29,033.13 b | 14,666.47 e | 23,033.33 c | 31,033.30 a | 1552.16 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
TLC | 11,000 d | 6533.33 g | 10,066.67 e | 17,466.67 a | 9200 f | 13,100 c | 14,033.33 b | 744.15 | <0.001 | 0.004 | <0.001 | 0.585 | <0.001 |
Heter. | 36.07 d | 44.33 c | 50.33 b | 50.33 b | 36.67 d | 50.33 b | 62.67 a | 1.92 | <0.001 | <0.001 | <0.001 | 0.539 | <0.001 |
Lym. | 33.67 c | 44.67 b | 45 b | 56.67 a | 33.33 c | 45.33 b | 56.33 a | 1.99 | <0.001 | 0.09 | <0.001 | <0.001 | 0.005 |
Mono. | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0.14 | 0.45 | 0.429 | 0.105 | 0.734 | 0.855 |
Serum bio-chemistry | |||||||||||||
Creatinine | 0.53 a | 0.43 ab | 0.4 b | 0.23 c | 0.33 bc | 0.33 bc | 0.23 c | 0.03 | <0.001 | 0.156 | 0.04 | 0.08 | 0.394 |
Glucose | 212.67 a | 201.33 b | 196.33 c | 135.67 f | 204.67 b | 172.33 e | 192.33 d | 1.45 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Cholesterol | 152.67 a | 154.33 a | 142.17 bc | 120.33 d | 140.33 bc | 143.33 b | 138.67 c | 1.2 | <0.001 | 0.173 | 0.007 | <0.001 | 0.224 |
T. Protein | 2.73 d | 3.33 bc | 3.37 bc | 3.53 b | 2.93 d | 3.23 c | 4.13 a | 0.1 | <0.001 | 0.565 | 0.005 | 0.857 | <0.001 |
Alb. | 1.2 d | 1.3 cd | 1.4 bc | 1.5 ab | 1.3 cd | 1.5 ab | 1.6 a | 0.03 | 0.03 | 0.01 | 0.58 | 0.002 | 0.487 |
Glob. | 1.43 e | 1.63 de | 2.17 bc | 2.33 ab | 1.63 de | 1.9 cd | 2.63 a | 0.01 | <0.001 | 0.07 | 0.006 | 0.02 | <0.001 |
Uric acid | 4.63 a | 3.43 d | 4.13 b | 3.63 cd | 4.23 b | 3.83 c | 3.53 d | 0.02 | <0.001 | <0.001 | 0.63 | <0.001 | 0.832 |
Diet | Site | Vh | Cd | Vw | Vh/Cd |
---|---|---|---|---|---|
Control | Jejunum | 1407.2 abcd | 187.76 a | 43.40 ef | 7.92 bcdef |
Ileum | 1026.6 e | 177.82 cd | 43.20 ef | 5.47 g | |
HI4 | Jejunum | 1357.2 abcd | 182.28 b | 61.67 bc | 7.65 bcdef |
Ileum | 1133.0 de | 177.53 cd | 46.01 def | 6.21 fg | |
HI8 | Jejunum | 1421.4 abcd | 175.62 de | 74.70 a | 8.26 abcd |
Ileum | 1106.9 de | 172.03 fg | 47.53 def | 6.31 efg | |
HI12 | Jejunum | 1559.7 ab | 164.26 h | 70.16 ab | 9.38 ab |
Ileum | 1158.5 cde | 166.28 h | 51.05 cde | 7.04 cdefg | |
PA4 | Jejunum | 1473.2 abc | 178.84 c | 50.63 cde | 8.41 abcd |
Ileum | 1237.1 bcde | 175.07 de | 49.09 def | 6.92 defg | |
PA8 | Jejunum | 1392.4 abcd | 173.18 ef | 37.91 f | 8.22 abcde |
Ileum | 1541.7 ab | 169.45 g | 50.79 cde | 8.90 abc | |
PA12 | Jejunum | 1602.7 a | 161.23 i | 74.79 a | 9.95 a |
Ileum | 1478.7 abc | 161.00 i | 55.43 cd | 9.17 ab | |
PSEM | 18.29 | 3.40 | 1.69 | 0.34 | |
Probability | |||||
Meals | <0.001 | <0.001 | <0.001 | <0.001 | |
Sites | <0.001 | <0.001 | <0.001 | <0.001 | |
Meals * Sites | 0.002 | <0.001 | 0.003 | <0.001 |
Traits | Control | Hermetia illucens | Periplaneta americana | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HI4 | HI8 | HI12 | PA4 | PA8 | PA12 | ANOVA | HI Lin. 1 | HI Quad. 1 | PA Lin. 1 | PA Quad. 1 | |||
Meat pH | 6.09 | 6.11 | 6.12 | 6.14 | 6.13 | 6.11 | 6.12 | 0.01 | 0.282 | 0.566 | 0.491 | 0.189 | 0.625 |
Drip loss (%) | 2.45 | 2.32 | 2.45 | 2.19 | 2.30 | 2.11 | 2.42 | 0.81 | 0.693 | 0.427 | 0.507 | 0.304 | 0.985 |
Shear force | 61.03 | 61.02 | 60.84 | 61.07 | 60.86 | 60.88 | 60.93 | 0.03 | 0.159 | 0.805 | 0.120 | 0.219 | 0.435 |
Cooking loss (%) | 33.32 a | 26.12 c | 18.10 e | 18.70 e | 29.32 b | 21.10 d | 20.20 de | 1.68 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
L* | 58.75 a | 57.17 ab | 54.70 bc | 48.94 d | 56.67 abc | 53.14 c | 49.61 d | 0.86 | <0.001 | 0.447 | 0.001 | 0.004 | 0.701 |
a* | 12.35 c | 13.87 b | 16.02 a | 16.29 a | 13.70 b | 16.13 a | 16.23 a | 0.25 | <0.001 | 0.04 | <0.001 | <0.001 | 0.351 |
b* | 19.15 b | 18.44 b | 18.31 b | 21.32 a | 19.28 b | 19.09 b | 21.03 a | 0.6 | 0.03 | 0.026 | <0.001 | <0.001 | 0.868 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, F.; Sajjad, A.; Tahir, R.; Ali, M.; Sajjad, M.; Abbasi, A.; Khan, E.U.; Zafar, S.; Hashem, A.; Avila-Quezada, G.D.; et al. Use of Periplaneta americana as a Soybean Meal Substitute: A Step towards Sustainable Transformative Poultry Feeds. Insects 2024, 15, 632. https://doi.org/10.3390/insects15090632
Mustafa F, Sajjad A, Tahir R, Ali M, Sajjad M, Abbasi A, Khan EU, Zafar S, Hashem A, Avila-Quezada GD, et al. Use of Periplaneta americana as a Soybean Meal Substitute: A Step towards Sustainable Transformative Poultry Feeds. Insects. 2024; 15(9):632. https://doi.org/10.3390/insects15090632
Chicago/Turabian StyleMustafa, Farwa, Asif Sajjad, Roughaina Tahir, Mudssar Ali, Muhammad Sajjad, Asim Abbasi, Ehsaan Ullah Khan, Saba Zafar, Abeer Hashem, Graciela Dolores Avila-Quezada, and et al. 2024. "Use of Periplaneta americana as a Soybean Meal Substitute: A Step towards Sustainable Transformative Poultry Feeds" Insects 15, no. 9: 632. https://doi.org/10.3390/insects15090632
APA StyleMustafa, F., Sajjad, A., Tahir, R., Ali, M., Sajjad, M., Abbasi, A., Khan, E. U., Zafar, S., Hashem, A., Avila-Quezada, G. D., & Abd_Allah, E. F. (2024). Use of Periplaneta americana as a Soybean Meal Substitute: A Step towards Sustainable Transformative Poultry Feeds. Insects, 15(9), 632. https://doi.org/10.3390/insects15090632