Impact of Different Temperatures on Activity of the Pest Monolepta hieroglyphica Motschulsky (Coleoptera: Chrysomelidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Temperature Treatments
2.3. Adult Survival and Reproduction
2.4. Adult Feeding Capacity
2.5. Antioxidant Responses
2.6. Data Analysis
3. Results
3.1. Adult Survival and Reproduction
3.2. Adult Feeding Capacity
3.3. Antioxidant Responses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, G.H.; Yin, W.; Li, Q.; Hu, H.Y. Research progresson Monolepta hieroglyphica (Motschulsky). Chin. Plant Protect. 2016, 36, 19–26. [Google Scholar]
- Li, J.; Zhang, X.F.; Xu, L.L.; Shen, Y.Y.; Li, X.X.; Wang, Z.Y. Genetic structure and Wolbachia infection in geographical populations of Monolepta hieroglyphica (Coleoptera: Chrysomelidae) in South China. Acta Entomol. Sin. 2021, 64, 730–742. [Google Scholar]
- Zhao, X.M.; Zheng, X.; Guo, J.F.; Liu, Y.; Luo, B.J.; Wang, L.X.; Wang, L.D.; Liu, Y.; Li, Q.C.; Wang, Z.Y. Occurrence of Monolepta hieroglyphica adults in cornfields in Qiqihar. Chin. J. Appl. Entomol. 2021, 58, 979–984. [Google Scholar]
- Chen, J.; Zhang, J.P.; Zhang, J.H.; Yu, H.F.; Li, G.W. Food preference of Monolepta hieroglyphica. Chin. Bull. Entomol. 2007, 44, 357–360. [Google Scholar]
- Gao, Y.; Xu, W.; Shi, S.S.; Cui, J.; Xu, B. Catalogue of host plants of Monolepta hieroglyphica (Motschulsky). Hubei Agric. Sci. 2017, 56, 865–869. [Google Scholar]
- Zhang, C.; Yuan, Z.; Wang, Z.Y.; He, K.L.; Bai, S.X. Population dynamics of Monolepta hieroglyphica (Motschulsky) in cornfields. Chin. J. Appl. Entomol. 2014, 51, 668–675. [Google Scholar]
- Liu, H.X. The occurrence and prevention of cotton double spotted leaf beetle in Shihezi general farm, Xinjiang. China Cotton 2016, 4, 41–42. [Google Scholar]
- Shi, S.S.; Wang, X.Q.; Tian, J.; Gao, Y.; Cui, J.; Zhu, S.Y. Occurrence regularity and economic threshold of Monolepta hieroglyphica adults in soybean fields. Chin. J. Oil Crop Sci. 2017, 39, 239–244. [Google Scholar]
- Zhao, X.M.; Zheng, X.; Guo, J.F.; Wang, L.D.; Luo, B.J.; Wang, L.X.; Li, Q.C.; Liu, Y.; Han, Y.H.; Wang, Z.Y. Influences of damaged silks by Monolepta hieroglyphica (Motschulsky) on corn yield. Plant Protect. 2021, 47, 109–114. [Google Scholar]
- Buckley, L.B. Temperature-sensitive development shapes insect phenological responses to climate change. Curr. Opin. Insect Sci. 2022, 52, 100897. [Google Scholar] [CrossRef]
- Lahondère Chloé. Recent advances in insect thermoregulation. J. Exp. Biol. 2023, 226, jeb245751. [Google Scholar]
- Mermer, S.; Maslen, E.A.; Dalton, D.T.; Nielsen, A.L.; Rucker, A.; Lowenstein, D.; Wiman, N.; Bhattarai, M.; Soohoo-Hui, A.; Harris, E.T.; et al. Temperature-dependent life table parameters of brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) in the united states. Insects 2023, 14, 248. [Google Scholar] [CrossRef] [PubMed]
- Kucherov, D.A.; Kipyatkov, V.E. Control of preimaginal development by photoperiod and temperature in the dock leaf beetle Gastrophysa viridula (De Geer) (Coleoptera, Chrysomelidae). Entomol. Rev. 2011, 91, 692–708. [Google Scholar] [CrossRef]
- Kutcherov, D. Thermal reaction norms can surmount evolutionary constraints: Comparative evidence across leaf beetle species. Ecol. Evol. 2016, 6, 4670–4683. [Google Scholar] [CrossRef]
- Kutcherov, D. Temperature effects on the development, body size, and sex ratio of the walnut leaf beetle Gastrolina depressa (Coleoptera: Chrysomelidae). J. Asia-Pac. Entomol. 2016, 19, 153–158. [Google Scholar] [CrossRef]
- Li, G.W.; Chen, X.l.; Zhang, J.P.; Chen, J. Effect of temperature on adult longevity and fecundity of Monolepta hieroglyphica. Acta Entomol. Sin. 2010, 47, 322–325. [Google Scholar]
- Liu, N.Y.; Gou, W.S.; Ma, W.X.; Tang, L.; Hu, G.X.; Sun, Y.D. Effects of temperature on the growth, development and reproduction of Diorhabda rybakowi (Coleoptera: Chrysomelidae). Plant Protect. 2023, 49, 220–226. [Google Scholar]
- Hannigan, S.; Nendel, C.; Krull, M. Effects of temperature on the movement and feeding behaviour of the large lupine beetle, Sitona gressoriu. J. Pest Sci. 2022, 96, 389–402. [Google Scholar] [CrossRef]
- Li, Y.H.; Liu, X.; Guo, E.H.; Fan, H.P.; Wang, L.X.; Zhang, A.Y. Effects of temperature on feeding capacity and activity ability of Monolepta hieroglyphica (Motschulsky) adult. Mod. Agric. Sci. Technol. 2019, 12, 79–80. [Google Scholar]
- Shi, S.S.; Cui, J.; Qi, L.Z.; Wu, T.T.; Xu, X.M. Effects of temperature on feeding amount and hunger tolerance of Colposcelis signata (Motschulsky) adult. J. Jilin Agric. Univ. 2013, 35, 406–410. [Google Scholar]
- Li, W.M.; Zheng, Y.; Yang, C.L.; Li, J.J.; Li, X.L. Effect of temperature on the feeding of Paridea angulicollis Motschulsky. Acta Agric. Bor-Occid. Sin. 2011, 20, 201–203. [Google Scholar]
- Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science 1998, 281, 1309–1312. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.D.; Du, Y.Z.; Lu, M.X.; Qiang, C.K. Antioxidant responses of Chilo suppressalis (Lepidoptera: Pyralidae) larvae exposed to thermal stress. J. Therm. Biol. 2011, 36, 292–297. [Google Scholar] [CrossRef]
- Felton, G.W.; Summers, C.B. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 1995, 29, 187–197. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.J.; Zhu, Z.H.; Ma, W.H.; Lei, C.L. The molecular characterization of antioxidant enzyme genes in Helicoverpa armigera adults and their involvement in response to ultraviolet-A stress. J. Insect Physiol. 2012, 58, 1250–1258. [Google Scholar] [CrossRef]
- Jia, H.H.; Sun, R.J.; Shi, W.N.; Yan, Y.; Li, H.; Guo, X.Q. Characterization of a mitochondrial manganese superoxide dismutase gene from Apis cerana cerana and its role in oxidative stress. J. Insect Physiol. 2014, 60, 68–79. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Q.; Duan, X.; Song, C.; Chen, M. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2017, 205, 48–57. [Google Scholar] [CrossRef]
- Mathew, A.; Morimoto, R.I. Role of the heat shock response in the life and death of proteins. Ann. N. Y. Acad. Sci. 1998, 851, 99–111. [Google Scholar] [CrossRef]
- Lopez-Martinez, G.; Elnitsky, M.A.; Benoit, J.B.; Lee, R.E.; Denlinger, D.L. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem. Mol. Biol. 2008, 38, 796–804. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Fu, W.Y.; Li, N.; Zhang, F.; Liu, T.X. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress. J. Insect Physiol. 2015, 73, 47–52. [Google Scholar] [CrossRef]
- Yu, P.Y.; Wang, S.Y.; Yang, X.K. Economic Insect Fauna of China. Coleoptera: Chrysomeloidea (II); Science Press: Beijing, China, 1996. [Google Scholar]
- Wang, X.M.; Wang, Z.Y. Atlas of Corn Diseases, Pests, and Weeds in China; China Agriculture Press: Beijing, China, 2018; pp. 279–281. [Google Scholar]
- Kaufmann, T. Biological studies on some Bavarian acridoidea (Orthoptera), with special reference to their feeding habits. Ann. Entomol. Soc. Am. 1965, 58, 791–801. [Google Scholar] [CrossRef]
- Dahlhoff, E.P.; Fearnley, S.L.; Bruce, D.A.; Gibbs, A.G.; Stoneking, R.; McMillan, D.M.; Deiner, K.; Smiley, J.T.; Rank, N.E. Effects of temperature on physiology and reproductive success of a montane leaf beetle: Implications for persistence of native populations enduring climate change. Physiol. Biochem. Zool. 2008, 81, 718–732. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.Z.; Li, J.B.; Wang, Z.H.; Liu, G.J. Preliminary studies on two-spotted leaf beetle, Monolepta hieroglyphica on cotton. Plant Protect. 2007, 33, 97–99. [Google Scholar]
- Liang, R.X.; Wang, Z.Y.; He, K.L.; Cong, B.; Li, J. Genetic diversity of geographic populations of Monolepta hieroglyphica (Motschulsky) (Coleoptera: Chrysomelidae) from North China estimated by mitochondrial COII gene sequences. Acta Entomol. Sin. 2011, 54, 828–837. [Google Scholar]
- Li, W.; Shen, S.; Chen, H.Y. Mitochondrial genome of Monolepta hieroglyphica (Coleoptera: Chrysomeloidea: Chrysomelidae) and phylogenetic analysis. Mitochondrial DNA Part B 2021, 6, 1541–1543. [Google Scholar] [CrossRef]
- Wang, X.P.; Zhou, X.M.; Lei, C.L. Development, survival and reproduction of the Brassica leaf beetle, Phaedon brassicae Baly (Coleoptera: Chrysomelidae) under different thermal conditions. Pan-Pac. Entomol. 2007, 83, 143–151. [Google Scholar] [CrossRef]
- Stewart, C.A.; Chapman, R.B.; Barrington, A.M.; Frampton, C.M.A. Influence of temperature on adult longevity, oviposition and fertility of Agasicles hygrophila Selman & Vogt (Coleoptera: Chrysomelidae). N. Z. J. Zool. 2021, 26, 191–197. [Google Scholar]
- Havko, N.E.; Das, M.R.; McClain, A.M.; Kapali, G.; Sharkey, T.D.; Howe, G.A. Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato. Proc. Natl. Acad. Sci. USA 2020, 117, 2211–2217. [Google Scholar] [CrossRef]
- Kamal, M.M.; Uddin, M.M.; Shajahan, M.; Rahman, M.M. Role of Host and Temperature on the feeding and oviposition behaviour of red pumpkin beetle Aulacophora foveicollis (Lucas). Progress. Agric. 2014, 24, 53–60. [Google Scholar] [CrossRef]
- Lemoine, N.P.; Drews, W.A.; Burkepile, D.E.; Parker, J.D. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 2013, 122, 1669–1678. [Google Scholar] [CrossRef]
- Zhou, R.; Zeng, L.; Lu, Y.Y.; Liang, G.W.; Cui, Z.X. Effect of temperature on the feeding of palm leaf beetle Brontispa longissima (Gestro). Acta Scientiarum Naturalium Universitatis Sunyatseni 2004, 43, 41–43. [Google Scholar]
- Tatli, I.; Bandani, A.R.; Moslemi, A. The elm leaf beetle α-amylase and its activity relationship with insect feeding. Arch. Phytopathol. Plant Prot. 2013, 46, 917–926. [Google Scholar] [CrossRef]
- Nagata, S.; Seike, H. Fundamental knowledge of endocrine control of feeding behavior in insects. Hikaku Seiri Seikagaku 2021, 38, 31–37. [Google Scholar] [CrossRef]
- Kuczyk, J.; Müller, C.; Fischer, K. Plant-mediated indirect effects of climate change on an insect herbivore. Basic Appl. Ecol. 2021, 53, 100–113. [Google Scholar] [CrossRef]
- Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide dismutase multigenefamily: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 2002, 33, 337–349. [Google Scholar] [CrossRef]
- Yang, L.H.; Huang, H.; Wang, J.J. Antioxidant responses of citrusred mite, Panonychus citri (McGregor) (Acari: Tetranychidae), exposed to thermal stress. J. Insect Physiol. 2010, 56, 1871–1876. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Lakshmanan, G.M.A.; Gomathinayagam, M.; Panneerselvam, R. Triadimefon induced salt stress tolerance in Withania somnifera andits relation-ship to antioxidant defense system. S. Afr. J. Bot. 2008, 74, 126–132. [Google Scholar] [CrossRef]
- Feng, Y.C.; Liao, C.Y.; Xia, W.K.; Jiang, X.Z.; Shang, F.; Yuan, G.R. Regulation of three isoforms of SOD gene by environmental stresses in citrusred mite, Panonychus citri. Exp. Appl. Acarol. 2015, 67, 49–63. [Google Scholar] [CrossRef]
- Lu, Y.H.; Bai, Q.; Zheng, X.S.; Lu, Z.X. Expression and enzyme activity of catalase in Chilo suppressalis (Lepidoptera: Crambidae) is responsive to environmental stresses. J. Econ. Entomol. 2017, 110, 1803–1812. [Google Scholar] [CrossRef]
- Jia, F.X.; Dou, W.; Hu, F.; Wang, J.J. Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Fla. Entomol. 2011, 94, 956–963. [Google Scholar] [CrossRef]
- Chen, H.S.; Solangi, G.S.; Guo, J.Y.; Wan, F.H.; Zhou, Z.S. Antioxidant responses of ragweed leaf beetle Ophraella communa (Coleoptera: Chrysomelidae) exposed to thermal stress. Front. Physiol. 2018, 9, 808. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, R.; Hao, J.; Zhang, Y.; Wang, Q.; Liu, C.; Yang, Q. Impact of Different Temperatures on Activity of the Pest Monolepta hieroglyphica Motschulsky (Coleoptera: Chrysomelidae). Insects 2025, 16, 222. https://doi.org/10.3390/insects16020222
Shi R, Hao J, Zhang Y, Wang Q, Liu C, Yang Q. Impact of Different Temperatures on Activity of the Pest Monolepta hieroglyphica Motschulsky (Coleoptera: Chrysomelidae). Insects. 2025; 16(2):222. https://doi.org/10.3390/insects16020222
Chicago/Turabian StyleShi, Rongrong, Jianyu Hao, Yue Zhang, Qinglei Wang, Chunqin Liu, and Qing Yang. 2025. "Impact of Different Temperatures on Activity of the Pest Monolepta hieroglyphica Motschulsky (Coleoptera: Chrysomelidae)" Insects 16, no. 2: 222. https://doi.org/10.3390/insects16020222
APA StyleShi, R., Hao, J., Zhang, Y., Wang, Q., Liu, C., & Yang, Q. (2025). Impact of Different Temperatures on Activity of the Pest Monolepta hieroglyphica Motschulsky (Coleoptera: Chrysomelidae). Insects, 16(2), 222. https://doi.org/10.3390/insects16020222