Transcriptomic Profiling Provides Insight into the Molecular Basis of Heterosis in Philippine-Reared Bombyx mori Hybrids
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preservation
2.2. RNA Extraction, Library Preparation, and Sequencing
2.3. Bioinformatics Analysis
2.4. Quantitative Real-Time PCR Validation of Gene Expression
3. Results and Discussion
3.1. RNA Sequencing and Pre-Processing of Raw Reads
3.2. Bioinformatics Analysis
3.2.1. Read Mapping to the Reference Genome
3.2.2. Transcriptome Assembly and Evaluation
3.2.3. Expression Quantification, Normalization, and Differential Expression Analysis
3.2.4. Annotation and Gene Ontology (GO) Enrichment Analysis of Differentially Expressed Genes (DEGs)
3.3. Quantitative Real-Time PCR Validation of Gene Expression
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagaraju, J.; Goldsmith, M.R. Silkworm genomics—Progress and prospects. Curr. Sci. 2002, 83, 415–425. [Google Scholar]
- Goldsmith, M.R.; Shimada, T.; Abe, H. The genetics and genomics of the silkworm Bombyx mori. Ann. Rev. Ent. 2005, 50, 71–100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.-P.; Feng, X.-Q.; Shi, H.-J. Variability in mechanical properties of Bombyx mori silk. Mater. Sci. Eng. 2007, 27, 675–683. [Google Scholar] [CrossRef]
- Chanotra, S.; Bali, K.; Bali, R.K. Sericulture: An opportunity for the upliftment of rural livelihood. J. Entomol. Zool. Stud. 2019, 7, 1100–1103. [Google Scholar]
- Lagsa, B. DOST Vows Support for Silk Industry Growth Amid Unmet Demand. Available online: https://newsinfo.inquirer.net/1912707/dost-vows-support-for-silk-industry-growth-amid-unmet-demand (accessed on 14 August 2024).
- Rahmathulla, V.K. Management of climatic factors for successful silkworm (Bombyx mori L.) crop and higher silk production: A review. Psyche A J. Entomol. 2012, 2012, e121234. [Google Scholar] [CrossRef]
- Ge, Q.; Xiao, R.; Yuan, Y.; He, S.; Chen, L.; Ma, S.; Taha, R.H.; Yao, Q.; Chen, K. Transcriptome and proteomics-based analysis to investigate the regulatory mechanism of silk gland differences between reciprocal cross silkworm, Bombyx mori. J. Asia-Pac. Entomol. 2020, 23, 1101–1113. [Google Scholar] [CrossRef]
- Jingade, A.H.; Vijayan, K.; Somasundaram, P.; Srivasababu, G.K.; Kamble, C.K. A review of the implications of heterozygosity and inbreeding on germplasm biodiversity and its conservation in the silkworm, Bombyx mori. J. Insect Sci. 2011, 11, 8. [Google Scholar] [CrossRef]
- Sharma, K.; Bali, K. Analysis of heterosis in some bivoltine silkworm hybrids of Bombyx mori L. J. Entomol. Zool. Stud. 2019, 7, 1–8. [Google Scholar]
- Alcudia-Catalma, M.N.; Conde, M.Y.E.D.; Dee Tan, I.Y.; Bautista, M.A.M. First report on the characterization of genetic diversity of Philippine-reared Bombyx mori based on COI and ITS2. Philipp. J. Sci. 2020, 150, 503–517. [Google Scholar] [CrossRef]
- Philippine Textile Research Institute. Background Information and Varietal Description of Silkworm Hybrids in Preparation for Registration to the National Seed Industry Council (PTRI SW2 and PTRI SW1). unpublished work.
- Wang, H.; Fang, Y.; Wang, L.; Zhu, W.; Ji, H.; Wang, H.; Xu, S.; Sima, Y. Transcriptome analysis of the Bombyx mori fat body after constant high temperature treatment shows differences between the sexes. Mol. Biol. Rep. 2014, 41, 6039–6049. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Tian, J.; Liu, H.; Yang, H.; Yi, Y.; Wang, J.; Shi, X.; Jiang, F.; Yao, B.; et al. Transcriptome analysis of the silkworm (Bombyx mori) by High-Throughput RNA Sequencing. PLoS ONE 2012, 7, e43713. [Google Scholar] [CrossRef] [PubMed]
- Anamika, K.; Verma, S.; Jere, A.; Desai, A. Transcriptomic Profiling Using Next Generation Sequencing—Advances, Advantages, and Challenges. In Next Generation Sequencing Advances, Applications and Challenges; Kulski, J., Ed.; InTech: London, UK, 2016; pp. 111–151. [Google Scholar]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 13 June 2024).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Zdobnov, E.M. BUSCO: Assessing Genomic Data Quality and Beyond. Curr. Protoc. 2021, 1, e323. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. Available online: http://www.rstudio.com/ (accessed on 20 September 2024).
- Kolberg, L.; Raudvere, U.; Kuzmin, I.; Adler, P.; Vilo, J.; Peterson, H. g:Profiler—Interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 2023, 51, W207–W212. [Google Scholar] [CrossRef]
- Pfaffl, M. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Dobin, A. STAR Manual 2.7.11b. Available online: https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf (accessed on 20 September 2024).
- da Paz, M.A.; Warger, S.; Taher, L. Disregarding multimappers leads to biases in the functional assessment of NGS data. BMC Genom. 2023, 25, 455. [Google Scholar]
- Raghavan, V.; Kraft, L.; Mesny, F.; Rigerte, L. A simple guide to de novo transcriptome assembly and annotation. Brief. Bioinform. 2022, 23, bbab563. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D. Answer to “How Can Longest Isoforms (per Gene) Be Extracted from a FASTA File?” Bioinformatics Stack Exchange. Available online: https://bioinformatics.stackexchange.com/questions/595/how-can-longest-isoforms-per-gene-be-extracted-from-a-fasta-file (accessed on 21 September 2024).
- Haas, B. Trinityrnaseq: Genome Guided Trinity Transcriptome Assembly. Available online: https://github.com/trinityrnaseq/trinityrnaseq/wiki/Genome-Guided-Trinity-Transcriptome-Assembly (accessed on 25 September 2024).
- Deschamps-Francoeur, G.; Simoneau, J.; Scott, M.S. Handling multi-mapped reads in RNA-seq. Comput. Struct. Biotechnol. J. 2020, 18, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Mistry, M.; Khetani, R.; Piper, M.; Liu, J. Count Normalization with DESeq2. Available online: https://github.com/hbctraining/DGE_workshop_salmon_online/blob/master/lessons/02_DGE_count_normalization.md (accessed on 10 September 2024).
- Dündar, F.; Skrabanek, L.; Zumbo, P. Introduction to Differential Gene Expression Analysis Using RNA-seq. Available online: https://api.semanticscholar.org/CorpusID:39091034 (accessed on 13 June 2024).
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Zhao, B.; Erwin, A.; Xue, B. How many differentially expressed genes: A perspective from the comparison of genotypic and phenotypic distances. Genomics 2018, 110, 67–73. [Google Scholar] [CrossRef]
- de la Peña, P.N.O.; Lao, A.D.G.; Bautista, M.A.M. Global profiling of genes expressed in the silk glands of Philippine-reared mulberry silkworms (Bombyx mori). Insects 2022, 13, 669. [Google Scholar] [CrossRef]
- Fang, S.-M.; Zhang, Q.; Zhang, Y.-L.; Zhang, G.-Z.; Zhang, Z.; Yu, Q.-Y. Heat Shock Protein 70 Family in Response to Multiple Abiotic Stresses in the Silkworm. Insects 2021, 12, 928. [Google Scholar] [CrossRef]
- Taniai, K.; Tomita, S. A novel lipopolysaccharide response element in the Bombyx mori cecropin B promoter. J. Biol. Chem. 2000, 127, 13179–13182. [Google Scholar] [CrossRef]
- Domigan, L.J.; Andersson, M.; Alberti, K.A.; Chesler, M.; Xu, Q.; Johansson, J.; Rising, A.; Kaplan, D.L. Carbonic anhydrase generates a pH gradient in Bombyx mori silk glands. Insect Biochem. Mol. Biol. 2015, 65, 100–106. [Google Scholar] [CrossRef]
- Zhao, G.-D.; Zhao, S.-S.; Gao, R.-N.; Wang, R.-X.; Zhang, T.; Ding, H.; Li, B.; Lu, C.-D.; Shen, W.-D.; Wei, Z.-G. Transcription profiling of eight cytochrome P450s potentially involved in xenobiotic metabolism in the silkworm, Bombyx mori. Pestic. Biochem. Physiol. 2011, 100, 251–255. [Google Scholar] [CrossRef]
- Govindaraj, L.; Gupta, T.; Esvaran, V.G.; Awasthi, A.K.; Ponnuvel, K.M. Genome-wide identification, characterization of sugar transporter genes in the silkworm Bombyx mori and role in Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Gene 2016, 579, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Cao, Y.; Ge, S.; Xu, A.; Qian, H.; Li, G. Identification of key genes involved in resistance to early stage of BmNPV infection in silkworms. Viruses 2022, 14, 2405. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Wilson, D.K. Identification, characterization, and crystal structure of an aldo–keto reductase (AKR2E4) from the silkworm Bombyx mori. Arch. Biochem. Biophys. 2013, 538, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; You, Z.; Feng, M.; Che, J.; Zhang, Y.; Qian, Q.; Komatsu, S.; Zhong, B. Analyses of the molecular mechanisms associated with silk production in silkworm by iTRAQ-based proteomics and RNA-sequencing-based transcriptomics. J. Proteome Res. 2016, 15, 15–28. [Google Scholar] [CrossRef]
- Ni, W.; Bao, J.; Mo, B.; Liu, L.; Li, T.; Pan, G.; Chen, J.; Zhou, Z. Hemocytin facilitates host immune responses against Nosema Bombycis. Dev. Comp. Immunol. 2020, 103, 103495. [Google Scholar] [CrossRef]
- Zhang, Z.; Teng, X.; Chen, M.; Li, F. Orthologs of human disease associated genes and RNAi analysis of silencing insulin receptor gene in Bombyx mori. Int. J. Mol. Sci. 2014, 15, 18102–18116. [Google Scholar] [CrossRef]
- Nesa, J.; Sadat, A.; Buccini, D.F.; Kati, A.; Mandal, A.K.; Franco, O.L. Antimicrobial peptides from Bombyx mori: A splendid immune defense response in silkworms. RSC Adv. 2020, 10, 512–523. [Google Scholar] [CrossRef]
- Guo, H.; Huang, C.; Jiang, L.; Cheng, T.; Feng, T.; Xia, Q. Transcriptome analysis of the response of silkworm to drastic changes in ambient temperature. Appl. Microbiol. Biotechnol. 2018, 102, 10161–10170. [Google Scholar] [CrossRef]
- Huang, L.; Cheng, T.; Xu, P.; Fang, T.; Xia, Q. Bombyx mori transcription factors: Genome-wide identification, expression profiles and response to pathogens by microarray analysis. J. Insect Sci. 2012, 12, 40. [Google Scholar] [CrossRef]
- Xia, Q.; Li, S.; Feng, Q. Advances in Silkworm Studies Accelerated by the Genome Sequencing of Bombyx mori. Annu. Rev. Entomol. 2014, 59, 513–536. [Google Scholar] [CrossRef]
- Jo, Y.-Y.; Kweon, H.; Oh, J.H. Sericin for Tissue Engineering. Appl. Sci. 2020, 10, 8457. [Google Scholar] [CrossRef]
- Ye, X.; Zhao, S.; Wu, M.; Ruan, J.; Tang, X.; Wang, X.; Zhong, B. Role of sericin 1 in the immune system of silkworms revealed by transcriptomic and proteomic analyses after gene knockout. FEBS Open Bio 2021, 11, 2304–2318. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.M.; Wayne, M. Quantitative trait locus (QTL) analysis. Nat. Educ. 2008, 1, 208. [Google Scholar]
- Pozo, F.; Martinez-Gomez, L.; Walsh, T.A.; Rodriguez, J.M.; Domenico, T.D.; Abascal, F.; Vazquez, J.; Tress, M.L. Assessing the functional relevance of splice isoforms. NAR Genom. Bioinform. 2021, 3, lqab044. [Google Scholar] [CrossRef]
- Gilbert, W.V.; Nachtergaele, S. mRNA Regulation by RNA Modifications. Annu. Rev. Biochem. 2023, 92, 175–198. [Google Scholar] [CrossRef]
- Broeders, S.; Huber, I.; Grohmann, L.; Berben, G.; Taverniers, I.; Mazzara, M.; Roosens, N.; Morriset, D. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci. Technol. 2014, 37, 115–216. [Google Scholar] [CrossRef]
- Tong, L.; Wu, P.-Y.; Phan, J.H.; Hassazadeh, H.R.; SEQC Consortium; Tong, W.; Wang, M.D. Impact of RNA-seq data analysis algorithms on gene expression estimation and downstream prediction. Sci. Rep. 2020, 10, 17925. [Google Scholar] [CrossRef]
Assembly | BUSCO (Lepidoptera) | Total Number of Transcripts | N50 | E90N50 |
---|---|---|---|---|
Reference-based (StringTie) | C: 92.7% [S: 89.4%, D: 3.3%], F: 1.9%, M: 5.4% | 70,217 | 4669 | 3184 |
de novo (Trinity) | C: 88.3% [S: 87.4%, D: 0.9%], F: 3.5%, M: 8.2% | 406,566 | 1220 | 1701 |
Target | Putative Function | Primer Name | Sequence (5′->3′) Forward Reverse | Size (bp) | Primer Efficiency |
---|---|---|---|---|---|
Heat shock protein 70 (HSP70) | Involved in adaptation to extreme temperatures [37] | HSP70 | TAAGGACATCGGCACAGTAATC | 137 | 94.6% |
GAGTGAAGGCCACGTATGAA | |||||
Cecropin B-like (LOC101739536) | Antimicrobial peptide for humoral response [38] | CecB | CACATCAAGTGATCAGTACAGC | 211 | 87.5% |
GCTTTGACGATGCCATCAC | |||||
Carbonic anhydrase 2 (LOC101745610) | Regulates the pH gradient in the silk glands for silk protein assembly [39] | CA2 | TCTTCGATGTTCTGGATTCGAT | 161 | 111.1% |
ACAATGCTCGGGCTTAAGATT | |||||
Cytochrome P450 (Cyp9a19) | Metabolism of hormones, plant secondary metabolites, and insecticides [40] | Cyp9a19 | CACCGAGGAGAACAACAGATT | 183 | 85.9% |
TCCTTCATGGTGCCCATTATC | |||||
Facilitated trehalose transporter Tret1-2 homolog isoform X2, X3, X1 (LOC101744355) | Potential function as receptors for virus entry [41]. Involved in host defense [42] | Tret | GTGCAGTGGGTCGTGGTAA | 214 | 123.0% |
ACTCTCAATTTTCGGACACCA | |||||
Aldo-keto reductase AKR2E4-like (LOC101735876) | Ecdysone metabolism and in xenobiotic degradation [43] | AKR2E4 | GCTCCATCGCCCAGAAATA | 152 | 99.9% |
CTCGTCTGGTGTAAGAGTGAAG | |||||
EF-hand domain-containing protein 1 (LOC101743940) | Involved in resistance to Bombyx mori nuclear polyhedrosis virus (BmNPV) infection [44] | EFHD1 | CAACCTTAACGCCAACAAGTATC | 142 | 111.7% |
GGAATTTCGACGCGGTATCT | |||||
Hemocytin (LOC692743) | Has a protective role of during Nosema bombycis infection [45] | Hem | CTTGAGCTTAGGATCGACTGAC | 194 | 88.9% |
CATTAAGCCGTAACGAGTAGGA | |||||
Insulin Receptor (InR) | Involved in normal growth and development [46] | InR | CTTCGTTCGTGGCAACTGGT | 208 | 115.3% |
GACGGACATACTGAGCTCGAC | |||||
Housekeeping gene: Ribosomal Protein 49 | - | rp49 | CAGGCGGTTCAAGGGTCAATAC | 213 | 91.6% |
TGCTGGGCTCTTTCCACGA |
GO Term ID | Source | GO Description | padj |
---|---|---|---|
Upregulated genes in the hybrids (reference: Parental strains Lat21 and B221) | |||
GO:0042742 | Biological Process | defense response to bacterium | 8.43 × 10−12 |
GO:0009617 | Biological Process | response to bacterium | 1.40 × 10−11 |
GO:0044183 | Molecular Function | protein folding chaperone | 2.12 × 10−11 |
GO:0051604 | Biological Process | protein maturation | 2.41 × 10−11 |
GO:0006457 | Biological Process | protein folding | 2.93 × 10−11 |
GO:0140662 | Molecular Function | ATP-dependent protein folding chaperone | 4.01 × 10−10 |
GO:0098542 | Biological Process | defense response to other organism | 1.02 × 10−9 |
GO:0043207 | Biological Process | response to external biotic stimulus | 1.72 × 10−9 |
GO:0051707 | Biological Process | response to other organism | 1.72 × 10−9 |
GO:0044419 | Biological Process | biological process involved in interspecies interaction between organisms | 1.72 × 10−9 |
GO:0009607 | Biological Process | response to biotic stimulus | 1.72 × 10−9 |
Downregulated genes in the hybrids (reference: Parental strains Lat21 and B221) | |||
GO:1901565 | Biological Process | organonitrogen compound catabolic process | 3.20 × 10−5 |
GO:0044282 | Biological Process | small molecule catabolic process | 1.04 × 10−4 |
GO:1901606 | Biological Process | alpha-amino acid catabolic process | 1.06 × 10−4 |
GO:0016491 | Molecular Function | oxidoreductase activity | 1.26 × 10−4 |
GO:0009063 | Biological Process | amino acid catabolic process | 1.78 × 10−4 |
GO:0170040 | Biological Process | proteinogenic amino acid catabolic process | 2.23 × 10−4 |
GO:0044248 | Biological Process | cellular catabolic process | 3.92 × 10−4 |
GO:0170035 | Biological Process | L-amino acid catabolic process | 4.52 × 10−4 |
GO:0009056 | Biological Process | catabolic process | 6.34 × 10−4 |
GO:1901575 | Biological Process | organic substance catabolic process | 7.86 × 10−4 |
GO Term ID | Source | GO Description | padj |
---|---|---|---|
Upregulated Genes in NC144 (reference: CN144) | |||
GO:0000723 | Biological Process | telomere maintenance | 6.38 × 10−3 |
GO:0032200 | Biological Process | telomere organization | 7.33 × 10−3 |
GO:0003678 | Molecular Function | DNA helicase activity | 7.62 × 10−3 |
Downregulated Genes in NC144 (reference: CN144) | |||
GO:0050794 | Biological Process | regulation of cellular process | 1.61 × 10−5 |
GO:0050789 | Biological Process | regulation of biological process | 1.67 × 10−5 |
GO:0065007 | Biological Process | biological regulation | 6.11 × 10−5 |
GO:0035556 | Biological Process | intracellular signal transduction | 1.55 × 10−3 |
GO:0005509 | Molecular Function | calcium ion binding | 3.22 × 10−3 |
GO:0005515 | Molecular Function | protein binding | 3.45 × 10−3 |
GO:0023052 | Biological Process | signaling | 9.00 × 10−3 |
GO:0007154 | Biological Process | cell communication | 9.75 × 10−3 |
GO:0007165 | Biological Process | signal transduction | 3.03 × 10−2 |
GO:0051171 | Biological Process | regulation of nitrogen compound metabolic process | 4.12 × 10−2 |
GO:0080090 | Biological Process | regulation of primary metabolic process | 4.12 × 10−2 |
GO Term ID | log2FoldChange | padj | Protein | Associated GO Terms |
---|---|---|---|---|
Upregulated genes in the hybrids (reference: parental strains Lat21 and B221) | ||||
HSP70 | 3.58 | 2.01 × 10−13 | Heat shock protein 70 | Stress-inducible proteins involved in the adaptation and resistance to thermal and cold stresses of B. mori [37] |
LOC101739536 | 3.48 | 3.43 × 10−9 | Cecropin-B-like | One of the major antimicrobial peptides induced in the B. mori hemolymph as a humoral defense against microorganisms [38] |
LOC101745610 | 3.03 | 3.28 × 10−5 | Carbonic anhydrase 2 | Involved in regulating and creating the pH gradient in the silk glands. This pH gradient is potentially involved in the assembly of silk proteins and their consequent formation into fibers [39] |
Downregulated genes in the hybrids (reference: parental strains Lat21 and B221) | ||||
Cyp9a19 | −1.75 | 3.18 × 10−8 | Cytochrome P450 | P450s are involved in the metabolism of hormones, plant secondary metabolites, and insecticides possibly found on mulberry leaves. Cyp9a19 is one of the P450 genes with relatively high expression in fat bodies, silk glands, and malpighian tubules. It is also one of the most responsive P450s to pesticide exposure [40] |
LOC101744355 | −1.45 | 2.44 × 10−6 | Facilitated trehalose transporter Tret1-2 homolog isoform X2, X3, X1 | Sugar transporters were constitutively expressed in susceptible B. mori and were hypothesized to function as receptors for virus entry [41]. It was observed to be upregulated after the infection of susceptible B. mori, suggesting involvement in host defense [42]. |
Gene ID | log2FoldChange | padj | Protein | Function |
---|---|---|---|---|
Upregulated genes in NC144 (reference: CN144) | ||||
HSP70 | 1.81 | 1.77 × 10−4 | Heat shock protein 70 | Stress-inducible proteins involved in adaptation and resistance to thermal and cold stresses of B. mori [37]. |
LOC101735876 | 1.33 | 1.66 × 10−3 | Aldo-keto reductase AKR2E4-like | Based on kinetic and structural studies, it has a potential role in B. mori ecdysone metabolism and in xenobiotic degradation, especially of the commonly used pesticide diazinon [43]. |
Downregulated genes in NC144 (reference: CN144) | ||||
LOC101743940 | −2.98 | 8.63 × 10−7 | EF-hand domain-containing protein 1 | It has potential involvement in resistance to B. mori nuclear polyhedrosis virus (BmNPV) infection since this was downregulated in the resistant strains after BmNPV infection [43]. |
LOC692743 | −2.18 | 4.90 × 10−4 | Hemocytin | RNAi technology showed that the inhibition of hemocytin led to a proliferation of Nosema bombycis, a fungi-related unicellular parasite, within the silkworm. This suggests a protective role of hemocytin during N. bombycis infection possibly through pro-inflammatory effects like facilitating pathogen adherence, hemocyte agglutination, and melanization [45]. |
InR | −3.50 | 5.32 × 10−4 | Insulin receptor | Using RNAi to knock down the insulin receptor gene in B. mori led to growth inhibition and malformation, such as abnormal body color in black [46]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conde, M.Y.E.D.; Planta, J.; Bautista, M.A.M. Transcriptomic Profiling Provides Insight into the Molecular Basis of Heterosis in Philippine-Reared Bombyx mori Hybrids. Insects 2025, 16, 243. https://doi.org/10.3390/insects16030243
Conde MYED, Planta J, Bautista MAM. Transcriptomic Profiling Provides Insight into the Molecular Basis of Heterosis in Philippine-Reared Bombyx mori Hybrids. Insects. 2025; 16(3):243. https://doi.org/10.3390/insects16030243
Chicago/Turabian StyleConde, Ma. Ysabella Elaine D., Jose Planta, and Ma. Anita M. Bautista. 2025. "Transcriptomic Profiling Provides Insight into the Molecular Basis of Heterosis in Philippine-Reared Bombyx mori Hybrids" Insects 16, no. 3: 243. https://doi.org/10.3390/insects16030243
APA StyleConde, M. Y. E. D., Planta, J., & Bautista, M. A. M. (2025). Transcriptomic Profiling Provides Insight into the Molecular Basis of Heterosis in Philippine-Reared Bombyx mori Hybrids. Insects, 16(3), 243. https://doi.org/10.3390/insects16030243