Towards a Rational Basis for the Selection of Probiotics to Improve Silkworm Health and Performance
Simple Summary
Abstract
1. Introduction: The Importance of Sericulture and Silkworm Rearing
2. Obstacles to Silk Production
3. The Microbiota of Silkworms
4. The Interaction of Silkworm Pathogens with Microbiota
4.1. Bacterial Microbiota in Silkworms—A Transient Population Dependent on the Environment
4.2. Viruses
4.3. Fungi
4.4. Microsporidia
5. Using Microorganisms to Promote Silk Production
6. Conclusions: Management of Microorganisms and Their Application
Author Contributions
Funding
Conflicts of Interest
References
- Giora, D.; Marchetti, G.; Cappellozza, S.; Assirelli, A.; Saviane, A.; Sartori, L.; Marinello, F. Bibliometric analysis of trends in mulberry and silkworm research on the production of silk and its by-products. Insects 2022, 13, 568. [Google Scholar] [CrossRef] [PubMed]
- Cappellozza, S.; Casartelli, M.; Sandrelli, F.; Saviane, A.; Tettamanti, G. Silkworm and silk: Traditional and innovative applications. Insects 2022, 13, 1016. [Google Scholar] [CrossRef] [PubMed]
- Nasirillaev, B.; Rajabov, N.; Abdukadirov, M.; Fozilova, K. History and development prospects of silk farming in Uzbekistan. E3S Web Conf. 2023, 376, 02005. [Google Scholar] [CrossRef]
- Sumranpath, K.; Aungsuratana, A.; Auttathom, T.; Poramacom, N. Existing condition of commercial sericulture production in Northeastern Thailand. Kasetsart J. Soc. Sci. 2015, 36, 155–164. [Google Scholar]
- Tong, X.; Han, M.J.; Lu, K.; Tai, S.; Liang, S.; Liu, Y.; Hu, H.; Shen, J.; Long, A.; Zhan, C.; et al. High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation. Nat. Commun. 2022, 13, 5619. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Kang, P.D.; Lee, K.G.; Oh, H.K.; Kim, M.J.; Kim, K.-H.; Park, S.W.; Lee, S.J.; Jin, B.R.; Kim, I. Microsatellite analysis of the silkworm strains (Bombyx mori): High variability and potential markers for strain identification. Genes Genom. 2010, 32, 532–543. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, M.J.; Kim, S.-W.; Kim, K.-Y.; Kim, S.-R.; Kim, I. Molecular identification of the strains of the domestic silkworm, Bombyx mori (Lepidoptera: Bombycidae), which are endemic to Korea, based on single nucleotide polymorphisms in mitochondrial genome sequences. J. Asia Pac. Entomol. 2022, 25, 101922. [Google Scholar] [CrossRef]
- Luan, Y.; Zuo, W.; Li, C.; Gao, R.; Zhang, H.; Tong, X.; Han, M.; Hu, H.; Lu, C.; Dai, F. Identification of genes that control silk yield by RNA sequencing analysis of silkworm (Bombyx mori) strains of variable silk yield. Int. J. Mol. Sci. 2018, 19, 3718. [Google Scholar] [CrossRef]
- Suraporn, S. Growth of Cordyceps militaris on Plant Substrates Supplemented with Pupal Powder of Thai Variety of the Silkworm, Bombyx mori. Int. J. Wild Silkmoth Silk 2015, 19, 13–17. [Google Scholar]
- Suraporn, S.; Raman, C. Mycelium production of Cordyceps militaris Thai strain on Thai rice varieties mixed with yolk and pupal powder of Thai silkworm, Bombyx mori. Sericologia 2016, 56, 266–270. [Google Scholar]
- Suraporn, S.; Siriwattanametanon, W. Growth of Cordyceps spp. on the pupae of Thai silkworm, Bombyx mori Nanglaix108. J. Kamphaengsean Acad. Kasetsart Univ. Thail. 2019, 7, 1–9. (In Thai) [Google Scholar]
- Li, Y.-T.; Yao, H.-T.; Huang, Z.-L.; Gong, L.-C.; Herman, R.A.; Wu, F.-A.; Wang, J. Silkworm pupae globulin promotes Cordyceps militaris fermentation: Regulation of metabolic pathways enhances cordycepin synthesis and extends the synthesis phase. Food Biosci. 2024, 59, 103971. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, S.; Duan, H.; Wang, J.; Yan, W. Silkworm pupae: A functional food with health benefits for humans. Foods 2022, 11, 1594. [Google Scholar] [CrossRef]
- Panthee, S.; Paudel, A.; Hamamoto, H.; Sekimizu, K. Advantages of the silkworm as an animal model for developing novel antimicrobial agents. Front. Microbiol. 2017, 8, 373. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, H.; Horie, R.; Sekimizu, K. Pharmacokinetics of anti-infectious reagents in silkworms. Sci. Rep. 2019, 9, 9451. [Google Scholar] [CrossRef] [PubMed]
- Heryati, Y.; Sarwono, K.A.; Riendriasari, S.D.; Andadari, L.; Agustarini, R. Silkworm for Cosmetic Application. In Biomass-Based Cosmetics; Arung, E.T., Fatriasari, W., Kusuma, I.W., Kuspradini, H., Shimizu, K., Kim, Y.-u., Azelee, N.I.W., Edis, Z., Eds.; Springer: Singapore, 2024; pp. 133–150. [Google Scholar]
- Watanabe, H. Genetic resistance of the silkworm, Bombyx mori to viral diseases. Curr. Sci. 2002, 83, 439–446. [Google Scholar]
- Nuraeni, S. Gaps in the thread: Disease, production, and opportunity in the failing silk industry of South Sulawesi. Forest Soc. 2017, 1, 110–120. [Google Scholar] [CrossRef]
- Guo-Ping, K.; Xi-Jie, G. Overview of silkworm pathology in China. Afr. J. Biotechnol. 2011, 10, 18046–18056. [Google Scholar] [CrossRef]
- Gani, M.; Chouhan, S.; Babulal; Gupta, R.K.; Khan, G.; Bharath Kumar, N.; Saini, P.; Ghosh, M.K. Bombyx mori nucleopolyhedrovirus (BmNPV): Its impact on silkworm rearing and management strategies. J. Biol. Control 2018, 31, 189. [Google Scholar] [CrossRef]
- Manimegalai, S. Bacterial pathogens of mulberry silkworm, Bombyx mori L. and their management strategies. Sericologia 2009, 41, 401–420. [Google Scholar]
- Bhat, S.; Bashir, I.; Kamili, A. Microsporidiosis of silkworm, Bombyx mori L. (Lepidoptera-Bombycidae): A review. Afric. J. Agric. Res. 2009, 4, 1519–1523. [Google Scholar]
- Nirupama, R. Fungal disease of white muscardine in silkworm, Bombyx mori L. Munis Entomol. Zool. 2014, 9, 870–874. [Google Scholar]
- Chandana, M.; Bhaskar, R.N.; Prasanna Kumar, M.K. Isolation, characterization and molecular identification of bacterial isolates associated with Bombyx mori Cytoplasmic Polyhedrosis Virus (BmCPV) infected silkworm midgut. Int. J. Curr. Microbiol. App. Sci. 2020, Special Issue-10, 552–564. [Google Scholar]
- Sharma, A.; Sharma, P.; Thakur, J.; Murali, S.; Bali, K. Viral diseases of mulberry silkworm, Bombyx mori L.—A review. J. Pharmacogn. Phytochem. 2020, 9, 415–423. [Google Scholar]
- Bao, Y.Y.; Tang, X.D.; Lv, Z.Y.; Wang, X.Y.; Tian, C.H.; Xu, Y.P.; Zhang, C.X. Gene expression profiling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels. Genomics 2009, 94, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Cao, Y.; Ge, S.; Xu, A.; Qian, H.; Li, G. Identification of key genes involved in resistance to early stage of BmNPV infection in silkworms. Viruses 2022, 14, 2405. [Google Scholar] [CrossRef]
- Jiang, L.; Goldsmith, M.R.; Xia, Q. Advances in the arms race between silkworm and baculovirus. Front. Immunol. 2021, 12, 628151. [Google Scholar] [CrossRef]
- Jiang, L.; Xia, Q. The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 2014, 48, 1–7. [Google Scholar] [CrossRef]
- Hu, Z.; Zhu, F.; Chen, K. The mechanisms of silkworm resistance to the baculovirus and antiviral breeding. Annu. Rev. Entomol. 2023, 68, 381–399. [Google Scholar] [CrossRef]
- Suraporn, S.; Terenius, O. Sensitivity of polyvoltine Thai strains of Bombyx mori to a BmNPV isolate From Mahasarakham. J. Insect Sci. 2020, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Wennmann, J.T.; Senger, S.; Ruoff, B.; Jehle, J.A.; Suraporn, S. Distribution and genetic diversity of Bombyx mori nucleopolyhedrovirus in mass-reared silkworms in Thailand. J. Invertebr. Pathol. 2024, 207, 108221. [Google Scholar] [CrossRef] [PubMed]
- Mondal, R.; Dam, P.; Chakraborty, J.; Shaw, S.; Pradhan, S.; Das, S.; Nesa, J.; Meena, K.; Ghati, A.; Chaudhuri, S.D.; et al. Genomic dataset of a multiple-drug resistant Pseudomonas sp. strain RAC1 isolated from a flacherie infected Nistari race of Bombyx mori L. Data Brief 2024, 54, 110293. [Google Scholar] [CrossRef] [PubMed]
- Murthy, G.N.; Ponnuvel, K.M.; Awasthi, A.K.; Rao, C.G.; Chandrasekhar Sagar, B.K. The Indian isolate of Densovirus-2—Impact of infection and mechanism of resistance in Bombyx mori L. J. Invertebr. Pathol. 2014, 115, 48–50. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Qin, G.; Liu, T.; Geng, T.; Gao, K.; Pan, Z.; Qian, H.; Guo, X. Transcriptome analysis of silkworm, Bombyx mori, during early response to Beauveria bassiana challenges. PLoS ONE 2014, 9, e91189. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Wang, L.; Zhou, Z. Molecular and biochemical responses in the midgut of the silkworm, Bombyx mori, infected with Nosema bombycis. Parasit. Vectors 2018, 11, 147. [Google Scholar] [CrossRef]
- Nuraeni, S.; Sadapotto, A. Testing of two microsporidia isolates towards breeds of silkworm resistance. IOP Conf. Ser. Earth Environ. Sci. 2019, 270, 012033. [Google Scholar] [CrossRef]
- Dong, Z.; Long, J.; Huang, L.; Hu, Z.; Chen, P.; Hu, N.; Zheng, N.; Huang, X.; Lu, C.; Pan, M. Construction and application of an HSP70 promoter-inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis. Appl. Microbiol. Biotechnol. 2019, 103, 9583–9592. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zheng, N.; Hu, C.; Huang, X.; Chen, P.; Wu, Q.; Deng, B.; Lu, C.; Pan, M. Genetic bioengineering of overexpressed guanylate binding protein family BmAtlastin-n enhances silkworm resistance to Nosema bombycis. Int. J. Biol. Macromol. 2021, 172, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Sun, Y.; Sun, D.; Wang, C.S. Microbiome assembly on Drosophila body surfaces benefits the flies to combat fungal infections. iScience 2022, 25, 104408. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Shang, J.; Sun, Y.; Tang, G.; Wang, C.S. Fungal infection of insects: Molecular insights and prospects. Trends Microbiol. 2023, 32, 302–316. [Google Scholar] [CrossRef]
- Zhao, P.; Hong, S.; Li, Y.; Chen, H.; Gao, H.; Wang, C. From phyllosphere to insect cuticles: Silkworms gather antifungal bacteria from mulberry leaves to battle fungal parasite attacks. Microbiome 2024, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, M.; Karthikeyan, C.V.; Ramanathan, B. Meta-omics in detection of silkworm gut microbiome diversity. In Microbial Genomics in Sustainable Agroecosystems; Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., Kamle, M., Eds.; Springer: Singapore, 2019; pp. 359–370. [Google Scholar]
- Li, R.; Tun, H.M.; Jahan, M.; Zhang, Z.; Kumar, A.; Dilantha Fernando, W.G.; Farenhorst, A.; Khafipour, E. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci. Rep. 2017, 18, 5752. [Google Scholar] [CrossRef]
- Chen, B.; Du, K.; Sun, C.; Vimalanathan, A.; Liang, X.; Li, Y.; Wang, B.; Lu, X.; Li, L.; Shao, Y. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 2018, 12, 2252–2262. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Sun, Z.; Cao, G.; Xue, R.; Hu, X.; Gong, C. Study of gut bacterial diversity of Bombyx mandarina and Bombyx mori through 16S rRNA gene sequencing. J. Asia Pac. Entomol. 2019, 22, 522–530. [Google Scholar] [CrossRef]
- Qin, L.; Qi, J.; Shen, G.; Qin, D.; Wu, J.; Song, Y.; Cao, Y.; Zhao, P.; Xia, Q. Effects of microbial transfer during food-gut-feces circulation on the health of Bombyx mori. Microbiol. Spectr. 2022, 10, e0235722. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ding, X.; Yang, J.; Ma, L.; Sun, X.; Zhu, R.; Lu, R.; Xiao, Z.; Xing, Z.; Liu, J.; et al. Effects of habitual dietary change on the gut microbiota and health of silkworms. Int. J. Mol. Sci. 2024, 25, 1722. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Chen, Y.; Rong, W.; Qin, Y.; Li, X.; Guan, D. Gut microbiota analysis in silkworms (Bombyx mori) provides insights into identifying key bacterials for inclusion in artificial diet formulations. Animals 2024, 14, 1261. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, N.; Xie, S.; Zhang, X.; He, J.; Muhammad, A.; Sun, C.; Lu, X.; Shao, Y. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ. Int. 2020, 143, 105886. [Google Scholar] [CrossRef]
- Chen, Y.-Z.; Rong, W.-T.; Qin, Y.-C.; Lu, L.-Y.; Liu, J.; Li, M.-J.; Xin, L.; Li, X.-D.; Guan, D.-L. Integrative analysis of microbiota and metabolomics in chromium-exposed silkworm (Bombyx mori) midguts based on 16S rDNA sequencing and LC/MS metabolomics. Front. Microbiol. 2023, 14, 1278271. [Google Scholar] [CrossRef]
- Yuan, S.; Sun, Y.; Chang, W.; Zhang, J.; Sang, J.; Zhao, J.; Song, M.; Qiao, Y.; Zhang, C.; Zhu, M.; et al. The silkworm (Bombyx mori) gut microbiota is involved in metabolic detoxification by glucosylation of plant toxins. Commun. Biol. 2023, 6, 790. [Google Scholar] [CrossRef] [PubMed]
- Bäumler, A.J.; Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016, 535, 85–93. [Google Scholar] [CrossRef] [PubMed]
- McKenney, E.S.; Kendall, M.M. Microbiota and pathogen ’pas de deux’: Setting up and breaking down barriers to intestinal infection. Pathog. Dis. 2016, 74, ftw051. [Google Scholar] [CrossRef]
- Wang, L.; Smagghe, G.; Swevers, L.; Lu, Y. Metabolomics-based approaches in unraveling virus infections in insects: Revealing unknown hidden interactions. Entomol. General. 2024, 44, 511–524. [Google Scholar] [CrossRef]
- Hammer, T.J.; Janzen, D.H.; Hallwachs, W.; Jaffe, S.P.; Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. USA 2017, 114, 9641–9646. [Google Scholar] [CrossRef] [PubMed]
- Paniagua Voirol, L.R.; Frago, E.; Kaltenpoth, M.; Hilker, M.; Fatouros, N.E. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 2018, 9, 556. [Google Scholar] [CrossRef]
- Anand, A.A.P.; Vennison, S.J.; Sankar, S.G.; Prabhu, D.I.; Vasan, P.T.; Raghuraman, T.; Geoffrey, C.J.; Vendan, S.E. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J. Insect Sci. 2010, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Haloi, K.; Kalita, M.K.; Nath, R.; Devi, D. Characterization and pathogenicity assessment of gut-associated microbes of muga silkworm Antheraea assamensis Helfer (Lepidoptera: Saturniidae). J. Invertebr. Pathol. 2016, 138, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, Z. Cross-talking between baculoviruses and host insects towards a successful infection. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180324. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, Y.; Zhu, T.; Li, N.; Sun, S.; Zhu, M.; Pan, J.; Shen, Z.; Hu, X.; Zhang, X.; et al. Response to Bombyx mori nucleopolyhedrovirus infection in silkworm: Gut metabolites and microbiota. Dev. Comp. Immunol. 2021, 125, 104227. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, P.; Yu, H.; Ling, M.; Ma, M.; Wang, Q.; Tang, X.; Shen, Z.; Zhang, Y. Comparative analysis of the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties. Microb. Pathog. 2024, 191, 106649. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Zhang, Y.; Guo, Z.X.; Ayaz, S.; Wang, Y.X.; Huang, Z.H.; Cao, H.H.; Xu, J.P. Effects of baculovirus infection on intestinal microflora of BmNPV resistant and susceptible strain silkworm. J. Econ. Entomol. 2024, 117, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Xing, L.; Wang, M.; Hu, Z.; Zou, Z. Microbiota modulates gut immunity and promotes baculovirus infection in Helicoverpa armigera. Insect Sci. 2021, 28, 1766–1779. [Google Scholar] [CrossRef]
- Jakubowska, A.K.; Vogel, H.; Herrero, S. Increase in gut microbiota after immune suppression in baculovirus-infected larvae. PLoS Pathog. 2013, 9, e1003379. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.T.; Hu, N.; Tan, L.R.; Xiao, Q.; Dong, Z.Q.; Chen, P.; Xu, A.Y.; Pan, M.H.; Lu, C. Resistant silkworm strain block viral infection independent of melanization. Pestic Biochem. Physiol. 2019, 154, 88–96. [Google Scholar] [CrossRef]
- Liu, Y.X.; Yang, J.Y.; Sun, J.L.; Wang, A.C.; Wang, X.Y.; Zhu, L.B.; Cao, H.H.; Huang, Z.H.; Liu, S.H.; Xu, J.P. Reactive oxygen species-mediated phosphorylation of JNK is involved in the regulation of BmFerHCH on Bombyx mori nucleopolyhedrovirus proliferation. Int. J. Biol. Macromol. 2023, 235, 123834. [Google Scholar] [CrossRef]
- Suraporn, S.; Suthikhum, V.; Terenius, O. The mortality of Bombyx mori larvae challenged by BmNPV is reduced when supplemented with Lactobacillus acidophilus bacteria. BMC Res. Notes 2024, 17, 359. [Google Scholar] [CrossRef] [PubMed]
- Kolliopoulou, A.; Van Nieuwerburgh, F.; Stravopodis, D.J.; Deforce, D.; Swevers, L.; Smagghe, G. Transcriptome analysis of Bombyx larval midgut during persistent and pathogenic cytoplasmic polyhedrosis virus infection. PLoS ONE 2015, 10, e0121447. [Google Scholar] [CrossRef]
- Swevers, L.; Feng, M.; Ren, F.; Sun, J. Antiviral defense against Cypovirus 1 (Reoviridae) infection in the silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. 2020, 103, e21616. [Google Scholar] [CrossRef]
- Sun, Z.; Lu, Y.; Zhang, H.; Kumar, D.; Liu, B.; Gong, Y.; Zhu, M.; Zhu, L.; Liang, Z.; Kuang, S.; et al. Effects of BmCPV infection on silkworm Bombyx mori intestinal bacteria. PLoS ONE 2016, 11, e0146313. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Sun, Z.; Cao, G.; Xue, R.; Hu, X.; Gong, C. Bombyx mori bidensovirus infection alters the intestinal microflora of fifth instar silkworm (Bombyx mori) larvae. J. Invertebr. Pathol. 2019, 163, 48–63. [Google Scholar] [CrossRef]
- Gao, X.; Huynh, B.-T.; Guillemot, D.; Glaser, P.; Opatowski, L. Inference of significant microbial interactions from longitudinal metagenomics data. Front. Microbiol. 2018, 9, 2319. [Google Scholar] [CrossRef]
- Li, C.; Xu, S.; Xiang, C.; Xu, S.; Zhou, Q.; Zhang, J. The gut microbiota of silkworm are altered by antibiotic exposure. FEBS Open Bio 2022, 12, 2203–2212. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.L.; Chen, B.; Li, X.L.; Yin, Y.; Wang, C.S. Orchestrated biosynthesis of the secondary metabolite cocktails enables the producing fungus to combat diverse bacteria. mBio 2022, 13, e0180022. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Sun, Y.L.; Chen, H.M.; Wang, C.S. Suppression of the insect cuticular microbiomes by a fungal defensin to facilitate parasite infection. ISME J. 2023, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, F.; Neubauer, P.; Gimpel, M. Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. J. Nat. Prod. 2019, 82, 2038–2053. [Google Scholar] [CrossRef]
- Franzen, C. Microsporidia: A review of 150 years of research. TOPARAJ 2008, 2, 1–34. [Google Scholar] [CrossRef]
- Tersigni, J.; Tamim El Jarkass, H.; James, E.B.; Reinke, A.W. Interactions between microsporidia and other members of the microbiome. J. Eukaryot. Microbiol. 2024, 71, e13025. [Google Scholar] [CrossRef] [PubMed]
- Tamim El Jarkass, H.; Reinke, A.W. The ins and outs of host-microsporidia interactions during invasion, proliferation and exit. Cell. Microbiol. 2020, 22, e13247. [Google Scholar] [CrossRef]
- Hukuhara, T. The epizootiology of pebrine, one of the great scourges of sericulture. J. Biochem. Biotech. 2018, 1, 1–3. [Google Scholar] [CrossRef]
- Pan, G.; Xu, J.; Li, T.; Xia, Q.; Liu, S.L.; Zhang, G.; Li, S.; Li, C.; Liu, H.; Yang, L.; et al. Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation. BMC Genom. 2013, 14, 186. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, X.; Kumar, V.S.; Zhu, H.; Chen, H.; Chen, Z.; Hong, J. Effects of a novel anti-exospore monoclonal antibody on microsporidial Nosema bombycis germination and reproduction in vitro. Parasitology 2007, 134, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, J.; Sun, B.; Zheng, R.; Li, B.; Li, Z.; Tan, Y.; Wei, J.; Pan, G.; Li, C.; et al. Engineered resistance to Nosema bombycis by in vitro expression of a single-chain antibody in Sf9-III cells. PLoS ONE 2018, 13, e0193065. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Vossbrinck, C.R.; Yang, Q.; Meng, X.Z.; Luo, J.; Pan, G.Q.; Zhou, Z.Y.; Li, T. Evolutionary and functional studies on microsporidian ATPbinding cassettes: Insights into the adaptation of microsporidia to obligated intracellular parasitism. Infect. Genet. Evol. 2019, 68, 136–144. [Google Scholar] [CrossRef]
- Ma, Z.; Li, C.; Pan, G.; Li, Z.; Han, B.; Xu, J.; Lan, X.; Chen, J.; Yang, D.; Chen, Q.; et al. Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis. PLoS ONE 2013, 8, e84137. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Liu, L.; An, Y.; Ran, M.; Ni, W.; Chen, J.; Wei, J.; Li, T.; Pan, G.; Zhou, Z. Nosema bombycis suppresses host hemolymph melanization through secreted serpin 6 inhibiting the prophenoloxidase activation cascade. J. Invertebr. Pathol. 2019, 168, 107260. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Bao, J.; Mo, B.; Liu, L.; Li, T.; Pan, G.; Chen, J.; Zhou, Z. Hemocytin facilitates host immune responses against Nosema bombycis. Dev. Comp. Immunol. 2020, 103, 103495. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Xu, W.; Ma, S.; Xia, Q. STING-dependent autophagy suppresses Nosema bombycis infection in silkworms, Bombyx mori. Dev. Comp. Immunol. 2021, 115, 103862. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Shen, Z.; Tang, X.; Xu, L.; Li, Q.; Yue, Y.; Xiao, S.; Fu, X. Detection of Nosema bombycis by FTA cards and loop-mediated isothermal amplification (LAMP). Curr. Microbiol. 2014, 69, 532–540. [Google Scholar] [CrossRef]
- Kampliw, S.; Monthatong, M. Loop mediated isothermal amplification (LAMP) for Nosema bombycis diagnosis by small subunit ribosomal RNA (SSU rRNA) gene. Indian J. Agric. Res. 2019, 53, 447–452. [Google Scholar]
- Esvaran, V.; Jagadish, A.; Terenius, O.; Suraporn, S.; Mishra, R.K.; Ponnuvel, K.M. Targeting essential genes of Nosema for the diagnosis of pebrine disease in silkworms. Ann. Parasitol. 2020, 66, 303–310. [Google Scholar] [PubMed]
- Wu, Y.-X.; Sadiq, S.; Jiao, X.-H.; Zhou, X.-M.; Wang, L.-L.; Xie, X.-R.; Khan, I.; Wu, P. CRISPR/Cas13a-mediated visual detection: A rapid and robust method for early detection of Nosema bombycis in silkworms. Insect Biochem. Mol. Biol. 2024, 175, 104203. [Google Scholar] [CrossRef] [PubMed]
- Esvaran, V.G.; Gupta, T.; Nayaka, A.R.N.; Sivaprasad, V.; Ponnuvel, K.M. Molecular characterization of Nosema bombycis methionine aminopeptidase 2 (MetAP2) gene and evaluation of anti-microsporidian activity of Fumagilin-B in silkworm Bombyx mori. 3 Biotech 2018, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- Senderskiy, I.V.; Dolgikh, V.V.; Ismatullaeva, D.A.; Mirzakhodjaev, B.A.; Nikitina, A.P.; Pankratov, D.L. Treatment of microsporidium Nosema bombycis spores with the new antiseptic M250 helps to avoid bacterial and fungal contamination of infected cultures without affecting parasite polar tube extrusion. Microorganisms 2024, 12, 154. [Google Scholar] [CrossRef]
- Liu, H.; Chen, B.; Hu, S.; Liang, X.; Lu, X.; Shao, Y. Quantitative proteomic analysis of germination of Nosema bombycis spores under extremely alkaline conditions. Front. Microbiol. 2016, 7, 1459. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Z.; Luo, B.; Tang, X.Y.; He, Q.; Xiong, T.R.; Fang, Z.Y.; Pan, G.; Li, T.; Zhou, Z.Y. Pathological analysis of silkworm infected by two microsporidia Nosema bombycis CQ1 and Vairimorpha necatrix BM. J. Invertebr. Pathol. 2018, 153, 75–84. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, H.; He, J.; Liang, X.; Zhang, N.; Shao, Y.; Zhang, F.; Lu, X. The gut commensal bacterium Enterococcus faecalis LX10 contributes to defending against Nosema bombycis infection in Bombyx mori. Pest Manag. Sci. 2022, 78, 2215–2227. [Google Scholar] [CrossRef]
- Bauer, L.S.; Miller, D.L.; Maddox, J.V.; McManus, M.L. Interactions between a Nosema sp. (Microspora: Nosematidae) and nuclear polyhedrosis virus infecting the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). J. Invertebr. Pathol. 1998, 72, 147–153. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Anee, I.J.; Alam, S.; Begum, R.A.; Shahjahan, R.M.; Khandaker, A.M. The role of probiotics on animal health and nutrition. JoBAZ 2021, 82, 52. [Google Scholar] [CrossRef]
- Savio, C.; Mugo-Kamiri, L.; Upfold, J.K. Bugs in bugs: The role of probiotics and prebiotics in maintenance of health in mass-reared insects. Insects 2022, 13, 376. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, A.; Forsgren, E.; Fries, I.; Paxton, R.J.; Flaberg, E.; Szekely, L.; Olofsson, T.C. Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees. PLoS ONE 2012, 7, e33188. [Google Scholar] [CrossRef]
- Ramos, O.Y.; Basualdo, M.; Libonatti, C.; Vega, M.F. Current status and application of lactic acid bacteria in animal production systems with a focus on bacteria from honey bee colonies. J. Appl. Microbiol. 2020, 128, 1248–1260. [Google Scholar] [CrossRef] [PubMed]
- Barretto, D.A.; Gadwala, M.; Vootla, S.K. The silkworm gut microbiota: A potential source for biotechnological applications. In Methods in Microbiology; Gurtler, V., Subrahmanyam, G., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 49, pp. 1–26. [Google Scholar]
- Arasakumar, E.; Vasanth, V.; Vijay, S.; Swathiga, G. Role of microorganisms in the gut of silkworms. J. Pharm. Innov. 2023, 12, 2691–2696. [Google Scholar]
- Singh, K.K.; Chauhan, R.M.; Pande, A.B.; Gokhale, S.B.; Hegde, N.G. Effect of use of Lactobacillus plantarum as probiotics to improve cocoon production of mulberry silkworm, Bombyx mori (L.). J. Basic Appl. Sci. 2005, 1, 1–8. [Google Scholar]
- Esaivani, C.; Vasanthi, K.; Bharathi, R.; Chairman, K. Impact of probiotic Saccharomyces cerevisiae on the enzymatic profile and the economic parameters of silkworm Bombyx mori L. Adv. Biol. Biomed. 2014, 1, 1–7. [Google Scholar]
- Suraporn, S.; Sangsuk, W.; Chanhan, P.; Promma, S. Effects of probiotic bacteria on the growth parameters of the Thai silkworm, Bombyx mori. Thai J. Agric. Sci. 2015, 48, 29–33. [Google Scholar]
- Taha, R.H.; Kamel, H.M. Micro-organisms supplementation to mulberry silkworm, Bombyx mori L. Egypt. Acad. J. Biol. Sci. Entomol. 2017, 10, 57–64. [Google Scholar] [CrossRef]
- Mala, M.; Vijila, K. Beneficial effects of Bacillus licheniformis and Bacillus niabensis on growth and economic characteristics of silkworm, Bombyx mori L. Int. J. Chem. Stud. 2018, 6, 1750–1754. [Google Scholar]
- Saranya, M.; Krishnamoorthy, S.; Murugesh, K. Fortification of mulberry leaves with indigenous probiotic bacteria on larval growth and economic traits of silkworm (Bombyx mori, L.). J. Entomol. Zool. Stud. 2019, 7, 780–784. [Google Scholar]
- Sekar, P.; Kalpana, S.; Ganga, S.; John, G.; Kannadasan, N. Effect of the probionts to the enhancement of silk proteins (sericin and fribroin) in the silk gland and cocoons of silkworm (LxCSR2) Bombyx mori (L.). Int. J. Pharm. Biol. Sci. 2016, 11, 19–25. [Google Scholar]
- Gunasekhar, V.; Somayaji, A. Effect of endophytic bacteria Burkholderia cepacia on growth, cocoon characters and enzyme activity of silkworm, Bombyx mori L. South Asian J. Res. Microbiol. 2019, 5, 1–8. [Google Scholar] [CrossRef]
- Yeruva, T.; Vankadara, S.; Ramasamy, S.; Lingaiah, K. Identification of potential probiotics in the midgut of mulberry silkworm, Bombyx mori, through metagenomic approach. Probiot. Antimicrob. Proteins 2020, 12, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Unban, K.; Klongklaew, A.; Kodchasee, P.; Pamueangmun, P.; Shetty, K.; Khanongnuch, C. Enterococci as dominant xylose utilizing lactic acid bacteria in Eri silkworm midgut and the potential use of Enterococcus hirae as probiotic for Eri culture. Insects 2022, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Rajakumari, D.V.S.; Padmalatha, C.; Das, S.S.M.; Ranjitsingh, A.J.A. Efficacy of probiotic and neutraceutical feed supplements against flacherie disease in mulberry silkworm, Bombyx mori L. Indian J. Sericult. 2007, 46, 179–182. [Google Scholar]
- Subramanian, S.; Mohanrag, P.; Muthuswamy, M. New paradigm in silkworm disease management using probiotic application of Streptomyces noursei. Karnataka J. Agric. Sci. 2009, 22, 499–501. [Google Scholar]
- Nishida, S.; Ishii, M.; Nishiyama, Y.; Abe, S.; Ono, Y.; Sekimizu, K. Lactobacillus paraplantarum 11-1 isolated from rice bran pickles activated innate immunity and improved survival in a silkworm bacterial infection model. Front. Microbiol. 2017, 8, 436. [Google Scholar] [CrossRef] [PubMed]
- Alcosaba, D.M. Effect of fungus, Trichoderma harzianumas probiotic on the growth, cocoon parameters, silk characters and resistance of silkworms (Bombyx mori) challenged by muscardine disease-causing Metarhizium. Ascendens Asia J. Multidiscip. Res. Abstr. 2019, 3, 2. [Google Scholar]
- Wang, F.W.; Lu, X.M.; Huang, S.K. Kinetic studies of Enterococci inhibition on the germination of Nosema bombycis spores. Acta Serol. Sin. 2003, 29, 157–161. [Google Scholar]
- Suraporn, S.; Terenius, O. Supplementation of Lactobacillus casei reduces the mortality of Bombyx mori larvae challenged by Nosema bombycis. BMC Res. Notes 2021, 14, 398. [Google Scholar] [CrossRef] [PubMed]
- Khezrian, A.; Bagheri, M.; SouratiZanjani, R.; KheirkhahRahimabad, Y.; Nematollahian, S.; Zahmatkesh, A. The effects of feed supplements and Nosema bombycis infection on economical traits in various silkworm breeding lines. Entomol. Exp. Appl. 2022, 170, 277–283. [Google Scholar] [CrossRef]
- Georghe, A.; Hăbeanu, M.; Mihalcea, T.; Diniță, G.; Moise, A.R. Probiotics Supplementation to Mulberry Silkworm B. mori. Sci. Pap. Anim. Sci. Biotechnol. 2024, 57, 2217. [Google Scholar]
- Li, G.; Xiao, Y.; Leng, J.; Lou, Q.; Zhao, T. Beneficial efficacy and mode of action of probiotic Bacillus subtilis SWL−19 on the silkworm (Bombyx mori L.). Symbiosis 2024, 93, 17–27. [Google Scholar] [CrossRef]
- Nishida, S.; Ono, Y.; Sekimizu, K. Lactic acid bacteria activating innate immunity improve survival in bacterial infection model of silkworm. Drug Discov Ther. 2016, 10, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wu, X.; Wei, Y.; He, L.; Xu, F. Investigating the mechanism of Lactobacillus reuteri FLRE589 on the growth and cultivation of silkworms (Bombyx mori). Symbiosis 2024, 94, 95–105. [Google Scholar] [CrossRef]
- Zeng, Z.; Tong, X.; Yang, Y.; Zhang, Y.; Deng, S.; Zhang, G.; Dai, F. Pediococcus pentosaceus ZZ61 enhances growth performance and pathogenic resistance of silkworm Bombyx mori by regulating gut microbiota and metabolites. Bioresour. Technol. 2024, 402, 130821. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ye, A.; Wu, X.; Qu, Z.; Xu, S.; Sima, Y.; Wang, Y.; He, R.; Jin, F.; Zhan, P.; et al. Combined analysis of silk synthesis and hemolymph amino acid metabolism reveal key roles for glycine in increasing silkworm silk yields. Int. J. Biol. Macromol. 2022, 209, 1760–1770. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, M.; Xiao, Y.; Tong, Y.; Li, S.; Qian, H.; Zhao, T. Multi-omics reveals the ecological and biological functions of Enterococcus mundtii in the intestine of lepidopteran insects. Comp. Biochem. Physiol. Part D Genom. Proteom. 2024, 52, 101309. [Google Scholar] [CrossRef] [PubMed]
- Suraporn, S.; Cansee, S.; Hupfauf, S.; Klammsteiner, T. Lactic Acid Bacteria from Bombyx mori Frass: Probiotic Properties and Antagonistic Activities. Agriculture 2024, 14, 924. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, T.; Yang, W.; Chen, Z.; Li, Q.; Swevers, L.; Liu, J. Silencing of the immune gene BmPGRP-L4 in the midgut affects the growth of silkworm (Bombyx mori) larvae. Insect Mol. Biol. 2023, 32, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, W.; Liao, W.; Huang, Y.; Chen, W.; Bu, X.; Huang, S.; Jiang, W.; Swevers, L. Immunological function of Bombyx Toll9-2 in the silkworm (Bombyx mori) larval midgut: Activation by Escherichia coli/lipopolysaccharide and regulation of growth. Arch. Insect Biochem. Physiol. 2024, 116, e22130. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.; Situ, J.; Li, J.; Chen, J.; Lai, M.; Huang, F.; Li, B. BmToll9-1 is a positive regulator of the immune response in the silkworm Bombyx mori. Insects 2024, 15, 643. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Lin, Y.; He, Y.; Li, Q.; Chen, W.; Lin, Q.; Swevers, L.; Liu, J. BmPGPR-L4 is a negative regulator of the humoral immune response in the silkworm Bombyx mori. Arch. Insect Biochem. Physiol. 2024, 115, e22093. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Fei, S.; Xia, J.; Labropoulou, V.; Swevers, L.; Sun, J. Antimicrobial peptides as potential antiviral factors in insect antiviral immune response. Front. Immunol. 2020, 11, 2030. [Google Scholar] [CrossRef]
- Xia, J.; Fei, S.; Wu, H.; Yang, Y.; Yu, W.; Zhang, M.; Guo, Y.; Swevers, L.; Sun, J.; Feng, M. The piRNA pathway is required for nucleopolyhedrovirus replication in Lepidoptera. Insect Sci. 2023, 30, 1378–1392. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Peng, R.; Fei, S.; Awais, M.M.; Lai, W.; Huang, Y.; Wu, H.; Yu, Y.; Liang, L.; Swevers, L.; et al. Systematic analysis of innate immune-related genes in the silkworm: Application to antiviral research. Insect Sci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, Y.; Guo, R.; Yue, K.; Smagghe, G.; Lu, Y.; Wang, L. Decoding epitranscriptomic regulation of viral infection: Mapping of RNA N6-methyladenosine by advanced sequencing technologies. Cell Mol. Biol. Lett. 2024, 29, 42. [Google Scholar] [CrossRef]
- Ren, F.; Yan, J.; Wang, X.; Xie, Y.; Guo, N.; Swevers, L.; Sun, J. Peptidoglycan recognition protein S5 of Bombyx mori facilitates the proliferation of Bombyx mori Cypovirus 1. J. Agric. Food Chem. 2023, 71, 6338–6347. [Google Scholar] [CrossRef]
Disease | Causative Pathogens | References |
---|---|---|
Grasserie | Viruses Bombyx mori Nucleopolyhedrovirus (BmNPV) (Baculoviridae) | [17,18,19,20] |
Flacherie | Viruses Bombyx mori Infectious flacherie virus (BmIFV) (Iflaviridae) Bombyx mori Densonucleosis virus (BmDNV) (Bidnaviridae) Bombyx mori Cypovirus (BmCPV) (Reoviridae) Bacteria Streptococcus sp. Staphylococcus sp. Bacillus thuringiensis Serratia marcescens Combination of viruses and bacteria | [17,18,21,22] |
Muscardine | Fungi Beauveria bassiana (white muscardine) | [17,18,19,23] |
Pébrine | Microsporidia Nosema bombycis | [17,18,19,22] |
Probiotics | Impacts | Reference |
---|---|---|
Bacillus amyloliquefaciens Bacillus cereus | increase cocoon weight increase sericin and fibroin content | [113] |
Bacillus licheniformis Bacillus niabensis | increase larval survival increase larval weight increase pupal weight increase cocoon weight increase cocoon shell ratio | [111] |
Bacillis subtilis | increase larval weight increase antioxidant properties increase antimicrobial peptide expression increase vitamin levels | [125] |
Bifidobacterium | improve production of raw silk | [110] |
Burkholderia cepacia | increase protease activity in midgut | [114] |
Lactobacillus plantarum | increase larval weight increase cocoon shell weight increase pupation rate | [107] |
Lact-Act (commercial probiotic) | increase survival against Bacillus thuringiensis and Staphylococcus aureus | [117] |
Lactobacillus acidophilus | increase survival increase larval weight increase pupation ratio increase cocoon weight increase cocoon-shell ratio | [109] |
Lactobacillus casei Lactobacillus plantarum | increase cocoon weight increase sericin and fibroin content | [113] |
Lactococcus lactis yoghurt | protection against Pseudomonas aeruginosa protection against Staphylococcus aureus | [126] |
Lactobacillus paraplantarum | protection against Pseudomonas aeruginosa | [119] |
Lactobacillus casei | increase survival against Nosema increase larval weight (Nosema infected) increase pupation ratio (Nosema infected) | [122] |
Lactobacillus rhamnosus | increase larval survival increase larval weight increase cocoon weight increase pupation rate | [123] |
Lactobacillus acidophilus | increase survival against BmNPV increase larval weight (BmNPV infected) increase pupation ratio (BmNPV infected) increase cocoon weight (BmNPV infected) | [68] |
Lactobacillus reuteri | increase larval weight increase cocoon weight increase cocoon shell ratio increase growth factor signaling | [127] |
Pediococcus pentosaceus | increase cocoon shell weight increase cocoon shell ratio increase digestive activity gut increase antimicrobial peptides increase antioxidant enzymes | [128] |
Saccharomyces cerevisiae | increase pupal weight increase cocoon weight increase cocoon shell ratio increase silk filament length increase amylase and invertase activity in midgut | [108] |
Staphylococcus gallinarum Staphylococcus arlettae | increase larval survival increase larval weight increase pupal weight increase cocoon weight increase cocoon shell ratio increase silk filament length and weight | [112] |
Trichoderma harzianumas | increase pupal weight increase cocoon weight increase cocoon shell ratio protection against Metarhizium anisopliae | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suraporn, S.; Liu, J.; Ren, F.; Wang, L.; Feng, M.; Terenius, O.; Swevers, L. Towards a Rational Basis for the Selection of Probiotics to Improve Silkworm Health and Performance. Insects 2025, 16, 162. https://doi.org/10.3390/insects16020162
Suraporn S, Liu J, Ren F, Wang L, Feng M, Terenius O, Swevers L. Towards a Rational Basis for the Selection of Probiotics to Improve Silkworm Health and Performance. Insects. 2025; 16(2):162. https://doi.org/10.3390/insects16020162
Chicago/Turabian StyleSuraporn, Siripuk, Jisheng Liu, Feifei Ren, Luoluo Wang, Min Feng, Olle Terenius, and Luc Swevers. 2025. "Towards a Rational Basis for the Selection of Probiotics to Improve Silkworm Health and Performance" Insects 16, no. 2: 162. https://doi.org/10.3390/insects16020162
APA StyleSuraporn, S., Liu, J., Ren, F., Wang, L., Feng, M., Terenius, O., & Swevers, L. (2025). Towards a Rational Basis for the Selection of Probiotics to Improve Silkworm Health and Performance. Insects, 16(2), 162. https://doi.org/10.3390/insects16020162