Patterns and Mechanisms of Niche Partitioning Between Related Parasitoids (Hymenoptera) Sharing the Same Host Species
Simple Summary
Abstract
1. Introduction
One of the puzzles of parasitoid biology is how so many different parasitoid species can persist on a single host without one outcompeting the restD.L.J. Quicke (2015)
2. Hypotheses and Definitions
2.1. Taxonomic Issues
2.2. Life-History Strategies of Parasitoids
2.3. Generalist and Specialist Parasitoids
3. Patterns of Niche Segregation Between Related Species of Parasitoid Hymenoptera
3.1. Spatial Segregation: Macroscale
3.2. Spatial Segregation: Microscale
3.3. Temporal Segregation
3.4. Complex Cases: Disentangling Interactions Between the Components of Life-History Strategies
3.5. Other Examples of Coexistence of Closely Related Parasitoids on the Same Host
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forbes, A.A.; Bagley, R.C.; Beer, M.A.; Hippee, A.C.; Widmayer, H.A. Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 2018, 18, 21. [Google Scholar]
- Force, D.C. Ecology of insect host-parasitoid communities. Science 1974, 184, 624–632. [Google Scholar] [PubMed]
- Force, D.C. Competition among parasitoids of endophytic hosts. Am. Nat. 1985, 126, 440–444. [Google Scholar]
- Dean, J.M.; Ricklefs, R.E. Do parasites of Lepidoptera larvae compete for hosts? No! Am. Nat. 1979, 113, 302–306. [Google Scholar]
- Godfray, H.C.J. Parasitoids: Behavioral and Evolutionary Ecology; Princeton University Press: Princeton, NJ, USA, 1994; 473p. [Google Scholar]
- Hawkins, B.A. Pattern and Process in Host-Parasitoid Interactions; Cambridge University Press: Cambridge, UK, 1994; 190p. [Google Scholar]
- Hawkins, B.A. Species coexistence in parasitoid communities: Does competition matter? In Parasitoid Population Biology; Hochberg, M.E., Ives, A.R., Eds.; Princeton University Press: Princeton, NJ, USA, 2000; pp. 198–213. [Google Scholar]
- Quicke, D.L.J. Parasitic Wasps; Chapman and Hall: London, UK, 1997; 470p. [Google Scholar]
- Raymond, L.; Plantegenest, M.; Gagic, V.; Navasse, Y.; Lavandero, B. Aphid parasitoid generalism: Development, assessment, and implications for biocontrol. J. Pest Sci. 2016, 89, 7–20. [Google Scholar]
- Hood, G.R.; Blankinship, D.; Doellman, M.M.; Feder, J.L. Temporal resource partitioning mitigates interspecific competition and promotes coexistence among insect parasites. Biol. Rev. 2021, 96, 1969–1988. [Google Scholar] [CrossRef]
- Jervis, M.A.; Kidd, N.A.C.; Mills, N.J.; van Nouhuys, S.; Singh, A.; Yazdani, M. Population dynamics. In Jervis’s Insects as Natural Enemies: Practical Perspectives; Hardy, I.C.W., Wajnberg, E., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2023; pp. 591–667. [Google Scholar]
- Mills, N.J. Interspecific competition among natural enemies and single versus multiple introductions in biological control. In Trophic and Guild Interactions in Biological Control; Brodeur, J., Boivin, G., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 191–220. [Google Scholar]
- Harvey, J.A.; Poelman, E.H.; Tanaka, T. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 2013, 58, 333–351. [Google Scholar]
- Ode, P.J.; Vyas, D.K.; Harvey, J.A. Extrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 2022, 67, 305–328. [Google Scholar]
- Price, P.W. Parasitoids utilizing the same host: Adaptive nature of differences in size and form. Ecology 1972, 53, 190–195. [Google Scholar]
- Müller, C.B.; Adriaanse, I.C.T.; Belshaw, R.; Godfray, H.C.J. The structure of an aphid-parasitoid community. J. Anim. Ecol. 1999, 68, 346–370. [Google Scholar]
- Rott, A.S.; Godfray, H.C.J. The structure of a leafminer-parasitoid community. J. Anim. Ecol. 2000, 69, 274–289. [Google Scholar]
- Bográn, C.E.; Heinz, K.M.; Ciomperlik, M.A. Interspecific competition among insect parasitoids: Field experiments with whiteflies as hosts in cotton. Ecology 2002, 83, 653–668. [Google Scholar]
- Boivin, G.; Brodeur, J. Intra- and interspecific interactions among parasitoids: Mechanisms, outcomes and biological control. In Trophic and Guild Interactions in Biological Control; Brodeur, J., Boivin, G., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 123–144. [Google Scholar]
- Quicke, D.L.J. The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology; Wiley Blackwell: Oxford, UK, 2015; 681p. [Google Scholar]
- Amarasekare, P. Coexistence of competing parasitoids on a patchily distributed host: Local vs. spatial mechanisms. Ecology 2000, 81, 1286–1296. [Google Scholar]
- Cusumano, A.; Peri, E.; Colazza, S. Interspecific competition/facilitation among insect parasitoids. Curr. Opin. Insect Sci. 2016, 14, 12–16. [Google Scholar] [PubMed]
- Price, P.W. Niche breadth and dominance of parasitic insects sharing the same host species. Ecology 1971, 52, 587–596. [Google Scholar] [CrossRef]
- Reitz, S.R.; Trumble, J.T. Competitive displacement among insects and arachnids. Annu. Rev. Entomol. 2002, 47, 435–465. [Google Scholar]
- Poelman, E.H.; Gols, R.; Gumovsky, A.; Cortesero, A.-M.; Dicke, M.; Harvey, J.A. Food plant and herbivore host species affect the outcome of intrinsic competition among parasitoid larvae. Ecol. Entomol. 2014, 39, 693–702. [Google Scholar]
- McLean, A.H.C.; Godfray, H.C.J. The outcome of competition between two parasitoid species is influenced by a facultative symbiont of their aphid host. Funct. Ecol. 2017, 31, 927–933. [Google Scholar] [CrossRef]
- Pekas, A.; Tena, A.; Peri, E.; Colazza, S.; Cusumano, A. Competitive interactions in insect parasitoids: Effects of microbial symbionts across tritrophic levels. Curr. Opin. Insect Sci. 2023, 55, 101001. [Google Scholar] [CrossRef]
- May, R.M.; Hassell, M.P. The dynamics of multiparasitoid-host interactions. Am. Nat. 1981, 117, 234–261. [Google Scholar]
- Price, P.W.; Denno, R.F.; Eubanks, M.D.; Finke, D.L.; Kaplan, I. Insect Ecology: Behavior, Populations and Communities; Cambridge University Press: Cambridge, UK, 2011; 774p. [Google Scholar]
- Comins, H.N.; Hassell, M.P. Persistence of multispecies host-parasitoid interactions in spatially distributed models with local dispersal. J. Theor. Biol. 1996, 183, 19–28. [Google Scholar] [PubMed]
- Hutchinson, G.E. Copepodology for the ornithologist. Ecology 1951, 32, 571–577. [Google Scholar] [CrossRef]
- Miller, J.C. Niche relationships among parasitic insects occurring in a temporary habitat. Ecology 1980, 61, 270–275. [Google Scholar]
- Berryman, A.A.; Hawkins, B.A. The refuge as an integrating concept in ecology and evolution. Oikos 2006, 115, 192–196. [Google Scholar]
- Shaw, M.R. Habitat considerations for parasitic wasps (Hymenoptera). J. Insect Conserv. 2006, 10, 117–127. [Google Scholar] [CrossRef]
- Jeffries, M.J.; Lawton, J.H. Enemy free space and the structure of ecological communities. Biol. J. Linn. Soc. 1984, 23, 269–286. [Google Scholar]
- Holt, R.D.; Lawton, J.H. Apparent competition and enemy-free space in insect host-parasitoid communities. Am. Nat. 1993, 142, 623–645. [Google Scholar]
- Berdegue, M.; Trumble, J.T.; Dare, J.D.; Redak, R.A. Is it enemy-free space? The evidence for terrestrial insects and freshwater arthropods. Ecol. Entomol. 1996, 21, 203–217. [Google Scholar]
- Singh, A. Fundamental limits of parasitoid-driven host population suppression: Implications for biological control. PLoS ONE 2023, 18, e0295980. [Google Scholar]
- Porter, E.E.; Hawkins, B.A. Coexistence of specialist parasitoids with host refuges in the laboratory and the dynamics of spatial heterogeneity in attack rate. Oikos 2003, 100, 232–240. [Google Scholar]
- Kakehashi, N.; Suzuki, Y.; Iwasa, Y. Niche overlap of parasitoids in host-parasitoid systems: Its consequence to single versus multiple introduction controversy in biological control. J Appl. Ecol. 1984, 21, 115–131. [Google Scholar]
- Hassell, M.P.; May, R.M. Generalist and specialist natural enemies in insect predator-prey interactions. J. Anim. Ecol. 1986, 55, 923–940. [Google Scholar]
- Hassell, M.P.; May, R.M.; Pacala, S.W.; Chesson, P.L. The persistence of host-parasitoid associations in patchy environments. I. A general criterion. Am. Nat. 1991, 138, 568–583. [Google Scholar] [CrossRef]
- Hassell, M.P.; Comins, H.N.; May, R.M. Species coexistence and self-organizing spatial dynamics. Nature 1994, 370, 290–292. [Google Scholar]
- Briggs, C.J. Competition among parasitoid species on a stage-structured host and its effect on host suppression. Am. Nat. 1993, 141, 372–397. [Google Scholar] [CrossRef]
- Briggs, C.J.; Nisbet, R.M.; Murdoch, W.W. Coexistence of competing parasitoid species on a host with a variable life cycle. Theor. Popul. Biol. 1993, 44, 341–373. [Google Scholar]
- Mills, N.J.; Getz, W.M. Modelling the biological control of insect pests: A review of host-parasitoid models. Ecol. Model. 1996, 92, 121–143. [Google Scholar]
- Klopfer, E.D.; Ives, A.R. Aggregation and the coexistence of competing parasitoid species. Theor. Popul. Biol. 1997, 5, 167–178. [Google Scholar] [CrossRef]
- Hassell, M.P. Host-parasitoid population dynamics. J. Anim. Ecol. 2000, 69, 543–566. [Google Scholar] [CrossRef]
- Huffaker, C.B.; Kennett, C.E. Studies of two parasites of olive scale, Parlatoria oleae (Colvée): IV. Biological control of Parlatoria oleae (Colvée) through the compensatory action of two introduced parasites. Hilgardia 1966, 37, 283–335. [Google Scholar]
- Yu, D.S.; Luck, R.F.; Murdoch, W.W. Competition, resource partitioning and coexistence of an endoparasitoid Encarsia perniciosi and an ectoparasitoid Aphytis melinus of the California red scale. Ecol. Entomol. 1990, 15, 469–480. [Google Scholar]
- Hackett-Jones, E.; Cobbold, C.; White, A. Coexistence of multiple parasitoids on a single host due to differences in parasitoid phenology. Theor. Ecol. 2009, 2, 19–31. [Google Scholar]
- Costaz, T.P.M.; de Jong, P.W.; Harvey, J.A.; van Loon, J.J.A.; Dicke, M.; Gols, R. Temperature affects the outcome of competition between two sympatric endoparasitoids. Anim. Behav. 2023, 203, 11–20. [Google Scholar]
- Noyes, J.S. The reliability of published host-parasitoid records: A taxonomist’s view. Nor. J. Agric. Sci. Suppl. 1994, 16, 59–69. [Google Scholar]
- Shaw, M.R. Parasitoid host ranges. In Parasitoid Community Ecology; Hawkins, B.A., Sheehan, W., Eds.; Oxford University Press: Oxford, UK, 1994; pp. 111–144. [Google Scholar]
- Carton, Y.; Haouas, S.; Marrakchi, M.; Hochberg, M. Two competing parasitoid species coexist in sympatry. Oikos 1991, 60, 222–230. [Google Scholar]
- Samra, S.; Ghanim, M.; Protasov, A.; Mendel, Z. Spatial distribution and niche partitioning in the Ooencyrtus spp. complex parasitizing the eggs of Stenozygum coloratum. BioControl 2015, 60, 747–760. [Google Scholar]
- Shaw, M.R.; Colom, P. Notes on the three species of Cotesia Cameron, 1891 (Hymenoptera: Braconidae, Microgastrinae) parasitizing Gonepteryx [Leach, 1815] species (Lepidoptera: Pieridae) in Europe, with description of a new species from the Balearic Islands. Entomolog. Gaz. 2022, 73, 253–260. [Google Scholar] [CrossRef]
- Gokhman, V.E. Integrative taxonomy and its implications for species-level systematics of parasitoid Hymenoptera. Entomol. Rev. 2018, 98, 834–864. [Google Scholar]
- Derocles, S.A.P.; Plantegenest, M.; Rasplus, J.-Y.; Marie, A.; Evans, D.M.; Lunt, D.H.; Le Ralec, A. Are generalist Aphidiinae (Hym. Braconidae) mostly cryptic species complexes? Syst. Entomol. 2016, 41, 379–391. [Google Scholar] [CrossRef]
- Sheikh, S.I.; Ward, A.K.G.; Zhang, Y.M.; Davis, C.K.; Zhang, L.; Egan, S.P.; Forbes, A.A. Ormyrus labotus (Hymenoptera: Ormyridae): Another generalist that should not be a generalist is not a generalist. Insect Syst. Divers. 2022, 6, 8. [Google Scholar]
- DeBach, P. Uniparental, sibling and semi-species in relation to taxonomy and biological control. Isr. J. Entomol. 1969, 4, 11–28. [Google Scholar]
- Vet, L.E.M.; Janse, C.; van Achterberg, C.; van Alphen, J.J.M. Microhabitat location and niche segregation in two sibling species of drosophilid parasitoids: Asobara tabida (Nees) and A. rufescens (Foerster) (Braconidae: Alysiinae). Oecologia 1984, 61, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Polaszek, A.; Ubeku, J.A.; Bosque-Perez, N.A. Taxonomy of the Telenomus busseolae species-complex (Hymenoptera: Scelionidae) egg parasitoids of cereal stem borers (Lepidoptera: Noctuidae, Pyralidae). Bull. Entomol. Res. 1993, 83, 221–226. [Google Scholar] [CrossRef]
- Tomić, M.; Tomanović, Ž.; Kavallieratos, N.G.; Starý, P.; Athanassiou, C.G.; Tomić, V.; Lučic, L. Morphological variability of several biotypes of Ephedrus plagiator (Nees, 1811) (Hymenoptera: Braconidae: Aphidiinae) and description of a new species. Zool. Anz. 2005, 244, 153–162. [Google Scholar] [CrossRef]
- Stireman, J.O.; Nason, J.D.; Heard, S.B.; Seehawer, J.M. Cascading host-associated genetic differentiation in parasitoids of phytophagous insects. Proc. R. Soc. B 2006, 273, 523–530. [Google Scholar] [CrossRef]
- Smith, M.A.; Rodriguez, J.J.; Whitfield, J.B.; Deans, A.R.; Janzen, D.H.; Hallwachs, W.; Hebert, P.D.N. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc. Natl. Acad. Sci. USA 2008, 105, 12359–12364. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Starý, P.; Delebecque, C.J.; Gariepy, T.D.; Barta, R.J.; Hoelmer, K.A.; Heimpel, G.E. Cryptic species of parasitoids attacking the soybean aphid (Hemiptera: Aphididae) in Asia: Binodoxys communis and Binodoxys koreanus (Hymenoptera: Braconidae: Aphidiinae). Ann. Entomol. Soc. Am. 2009, 102, 925–936. [Google Scholar] [CrossRef]
- Chesters, D.; Wang, Y.; Yu, F.; Bai, M.; Zhang, T.-X.; Hu, H.-Y.; Zhu, C.-D.; Li, C.-D.; Zhang, Y.-Z. The integrative taxonomic approach reveals host specific species in an encyrtid parasitoid species complex. PLoS ONE 2012, 7, e37655. [Google Scholar] [CrossRef]
- Muirhead, K.A.; Murphy, N.P.; Sallam, N.; Donnellan, S.C.; Austin, A.D. Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers. Mol. Phylogenet. Evol. 2012, 63, 904–914. [Google Scholar] [CrossRef]
- Deng, J.; Yu, F.; Li, H.-B.; Gebiola, M.; Desdevises, Y.; Wu, S.-A.; Zhang, Y.-Z. Cophylogenetic relationships between Anicetus parasitoids (Hymenoptera: Encyrtidae) and their scale insect hosts (Hemiptera: Coccidae). BMC Evol. Biol. 2013, 13, 275. [Google Scholar] [CrossRef]
- Condon, M.A.; Scheffer, S.J.; Lewis, M.L.; Wharton, R.; Adams, D.C.; Forbes, A.A. Lethal interactions between parasites and prey increase niche diversity in a tropical community. Science 2014, 343, 1240–1244. [Google Scholar] [CrossRef]
- Forbes, A.A.; Devine, S.N.; Hippee, A.C.; Tvedte, E.S.; Ward, A.K.G.; Widmayer, H.A.; Wilson, C.J. Revisiting the particular role of host shifts in initiating insect speciation. Evolution 2017, 71, 1126–1137. [Google Scholar] [CrossRef]
- Navasse, Y.; Derocles, S.A.P.; Plantegenest, M.; Le Ralec, A. Ecological specialization in Diaeretiella rapae (Hymenoptera: Braconidae: Aphidiinae) on aphid species from wild and cultivated plants. Bull. Entomol. Res. 2018, 108, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Seehausen, M.L.; Ris, N.; Driss, L.; Racca, A.; Girod, A.; Warot, S.; Borowiec, N.; Toševski, I.; Kenis, M. Evidence for a cryptic parasitoid species reveals its suitability as a biological control agent. Sci. Rep. 2020, 10, 19096. [Google Scholar] [CrossRef]
- Pollmann, M.; Kuhn, D.; König, C.; Homolka, I.; Paschke, S.; Reinisch, R.; Schmidt, A.; Schwabe, N.; Weber, J.; Gottlieb, Y.; et al. New species based on the biological species concept within the complex of Lariophagus distinguendus (Hymenoptera, Chalcidoidea, Pteromalidae), a parasitoid of household pests. Ecol. Evol. 2023, 13, e10524. [Google Scholar] [CrossRef] [PubMed]
- Derocles, S.A.P.; Navasse, Y.; Buchard, C.; Plantegenest, M.; Le Ralec, A. “Generalist” aphid parasitoids behave as specialists at the agroecosystem scale. Insects 2020, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-G.; Zhou, Q.-S.; Yu, F.; Wang, X.-B.; Wei, J.-F.; Zhu, C.-D.; Zhang, Y.-Z.; Vogler, A.P. Host specificity of parasitoids (Encyrtidae) toward armored scale insects (Diaspididae): Untangling the effect of cryptic species on quantitative food webs. Ecol. Evol. 2018, 8, 7879–7893. [Google Scholar] [CrossRef]
- Cole, L.C. The population consequences of life history phenomena. Q. Rev. Biol. 1954, 29, 103–137. [Google Scholar] [CrossRef]
- Pianka, E.R. Natural selection of optimal reproductive tactics. Am. Zool. 1976, 16, 775–784. [Google Scholar] [CrossRef]
- Straub, C.S.; Ives, A.R.; Gratton, C. Evidence for a trade-off between host-range breadth and host-use efficiency in aphid parasitoids. Am. Nat. 2011, 177, 389–395. [Google Scholar] [CrossRef]
- Gagic, V.; Petrović-Obradović, O.; Fründ, J.; Kavallieratos, N.G.; Athanassiou, C.G.; Starý, P.; Tomanović, Ž. The effects of aphid traits on parasitoid host use and specialist advantage. PLoS ONE 2016, 11, e0157674. [Google Scholar]
- Egas, M.; Dieckmann, U.; Sabelis, M.W. Evolution restricts the coexistence of specialists and generalists: The role of trade-off structure. Am. Nat. 2004, 163, 518–531. [Google Scholar] [PubMed]
- Pianka, E.R. On r- and K-selecton. Am. Nat. 1970, 104, 592–597. [Google Scholar]
- Force, D.C. Succession of r and K strategies in parasitoids. In Evolutionary Strategies of Parasitic Insects and Mites; Price, P.W., Ed.; Plenum Press: New York, NY, USA, 1975; pp. 112–129. [Google Scholar]
- Blackburn, T.M. A comparative examination of life-span and fecundity in parasitoid Hymenoptera. J. Anim. Ecol. 1991, 60, 151–164. [Google Scholar]
- Blackburn, T.M. Evidence for a ‘fast-slow’ continuum of life-history traits among parasitoid Hymenoptera. Funct. Ecol. 1991, 5, 65–74. [Google Scholar]
- Eijs, I.E.M.; van Alphen, J.J.M. Life-history correlations: Why are hymenopteran parasitoids an exception? Ecol. Lett. 1999, 2, 27–35. [Google Scholar]
- Stott, I.; Salguero-Gómez, R.; Jones, O.R.; Ezard, T.H.G.; Gamelon, M.; Lachish, S.; Lebreton, J.D.; Simmonds, E.G.; Gaillard, J.-M.; Hodgson, D.J. Life histories are not just fast or slow. Trends Ecol. Evol. 2024, 39, 830–840. [Google Scholar]
- Atkinson, W.D. A comparison of the reproductive strategies of domestic species of Drosophila. J. Anim. Ecol. 1979, 48, 53–64. [Google Scholar]
- Winemiller, K.O.; Rose, K.A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 1992, 49, 2196–2218. [Google Scholar]
- Fritz, R.S.; Stamp, N.E.; Halverson, T.G. Iteroparity and semelparity in insects. Am. Nat. 1982, 120, 264–268. [Google Scholar]
- Jervis, M.A.; Copland, M.J.W.; Shameer, K.S.; Harvey, J.A. The life-cycle. In Jervis’s Insects as Natural Enemies: Practical Perspectives; Hardy, I.C.W., Wajnberg, E., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 105–232. [Google Scholar]
- Shaw, M.R. Anatomy, reach and classification of the parasitoid complex of a common British moth, Anthophila fabriciana (L.) (Choreutidae). J. Nat. Hist. 2017, 51, 1119–1149. [Google Scholar]
- Doutt, R.L. The biology of parasitic Hymenoptera. Annu. Rev. Entomol. 1959, 4, 161–182. [Google Scholar]
- Price, P.W. Communities of specialists: Vacant niches in ecological and evolutionary time. In Ecological Communities. Conceptual Issues and the Evidence; Strong, D.R., Simberloff, D., Abele, D.G., Thistle, A.B., Eds.; Princeton University Press: Princeton, NJ, USA, 1984; pp. 510–523. [Google Scholar]
- Dennis, R.L.H.; Rapporto, L.; Fattorini, S.; Cook, L.M. The generalism–specialism debate: The role of generalists in the life and death of species. Biol. J. Linn. Soc. 2011, 104, 725–737. [Google Scholar]
- Loxdale, H.D.; Lushai, G.; Harvey, J.A. The evolutionary improbability of ‘generalism’ in nature, with special reference to insects. Biol. J. Linn. Soc. 2011, 103, 1–18. [Google Scholar]
- Loxdale, H.D.; Balog, A.; Harvey, J.A. Generalism in nature… The great misnomer: Aphids and wasp parasitoids as examples. Insects 2019, 10, 314. [Google Scholar] [CrossRef]
- Forister, M.L.; Dyer, L.A.; Singer, M.S.; Stireman, J.O.; Lill, J.T. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 2012, 93, 981–991. [Google Scholar] [PubMed]
- Kawecki, T.J. Red Queen meets Santa Rosalia: Arms races and the evolution of host specialization in organisms with parasitic lifestyles. Am. Nat. 1998, 152, 635–651. [Google Scholar] [PubMed]
- Bird, C.E.; Fernandez-Silva, I.; Skillings, D.J.; Toonen, R.J. Sympatric speciation in the post ‘‘Modern Synthesis’’ era of evolutionary biology. Evol. Biol. 2012, 39, 158–180. [Google Scholar]
- Hernández-Hernández, T.; Miller, E.C.; Román-Palacios, C.; Wiens, J.J. Speciation across the Tree of Life. Biol. Rev. 2021, 96, 1205–1242. [Google Scholar]
- Malec, P.; Weber, J.; Böhmer, R.; Fiebig, M.; Meinert, D.; Rein, C.; Reinisch, R.; Henrich, M.; Polyvas, V.; Pollmann, M.; et al. The emergence of ecotypes in a parasitoid wasp: A case of incipient sympatric speciation in Hymenoptera? Ecol. Evol. 2021, 21, 204. [Google Scholar]
- Buellesbach, J.; Lammers, M.; van de Belt, J.; Pannebakker, B.A. Chemical and population genetic analysis show no evidence of ecotype formation in a European population of the parasitoid wasp Nasonia vitripennis. Front. Ecol. Evol. 2023, 11, 1232639. [Google Scholar] [CrossRef]
- Shaw, M.R.; Horstmann, K. An analysis of host range in the Diadegma nanus group of parasitoids in Western Europe, with a key to species (Hymenoptera: Ichneumonidae: Campopleginae). J. Hymenopt. Res. 1997, 6, 273–296. [Google Scholar]
- Stireman, J.O. The evolution of generalization? Parasitoid flies and the perils of inferring host range evolution from phylogenies. J. Evol. Biol. 2005, 18, 325–336. [Google Scholar]
- Ives, A.R.; Godfray, H.C.J. Phylogenetic analysis of trophic associations. Am. Nat. 2006, 168, E1–E14. [Google Scholar] [PubMed]
- Henry, L.M.; Roitberg, B.D.; Gillespie, D.R. Host-range evolution in Aphidius parasitoids: Fidelity, virulence and fitness trade-offs on an ancestral host. Evolution 2008, 62, 689–699. [Google Scholar] [PubMed]
- Gil-Tapetado, D.; Durán-Montes, P.; García-París, M.; López-Estrada, E.K.; Sánchez-Vialas, A.; Jiménez-Ruiz, Y.; Gomez, J.F.; Nieves-Aldrey, J.P. Host specialization is ancestral in Torymus (Hymenoptera, Chalcidoidea) cynipid gall parasitoids. Zool. Scr. 2022, 51, 91–118. [Google Scholar]
- Hambäck, P.A.; Janz, N.; Braga, M.P. Parasitoid speciation and diversification. Curr. Opin. Insect Sci. 2024, 66, 101281. [Google Scholar]
- Bailey, R.; Schönrogge, K.; Cook, J.M.; Melika, G.; Csóka, G.; Thuróczy, C.; Stone, G.N. Host niches and defensive extended phenotypes structure parasitoid wasp communities. PLoS Biol. 2009, 7, e1000179. [Google Scholar]
- Hambäck, P.A.; Weingartner, E.; Ericson, L.; Fors, L.; Cassel-Lundhagen, A.; Stenberg, J.A.; Bergsten, J. Bayesian species delimitation reveals generalist and specialist parasitic wasps on Galerucella beetles (Chrysomelidae): Sorting by herbivore or plant host. BMC Evol. Biol. 2013, 13, 92. [Google Scholar]
- Al Khatib, F.; Cruaud, A.; Fusu, L.; Genson, G.; Rasplus, J.-Y.; Ris, N.; Delvare, G. Multilocus phylogeny and ecological differentiation of the “Eupelmus urozonus species group” (Hymenoptera, Eupelmidae) in the West-Palaearctic. BMC Evol. Biol. 2016, 16, 13. [Google Scholar]
- Gokhman, V.E.; Nikelshparg, M.I. Eupelmus messene Walker, 1839 and E. microzonus Förster, 1860 as parasitoids of Aulacidea hieracii (Bouché, 1834) (Hymenoptera, Eupelmidae, Cynipidae). J. Hymenopt. Res. 2021, 84, 87–102. [Google Scholar] [CrossRef]
- Heimpel, G.E.; Abram, P.K.; Brodeur, J. A phylogenetic perspective on parasitoid host ranges with implications for biological control. Curr. Opin. Insect Sci. 2021, 44, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Rossinelli, S.; Bacher, S. Higher establishment success in specialized parasitoids: Support for the existence of trade-offs in the evolution of specialization. Funct. Ecol. 2014, 29, 277–284. [Google Scholar] [CrossRef]
- van Nouhuys, S.; Tay, W.T. Causes and consequences of small population size for a specialist parasitoid wasp. Oecologia 2001, 128, 126–133. [Google Scholar] [CrossRef]
- Gao, Y.; Reitz, S.R. Emerging themes in our understanding of species displacements. Annu. Rev. Entomol. 2017, 62, 165–183. [Google Scholar] [CrossRef]
- Radcliffe, E.B.; Flanders, K.L. Biological control of alfalfa weevil in North America. Integr. Pest Manag. Rev. 1998, 3, 225–242. [Google Scholar] [CrossRef]
- Garcia, F.R.M.; Ovruski, S.M.; Suárez, L.; Cancino, J.; Liburd, O.E. Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. Insects 2020, 11, 662. [Google Scholar] [CrossRef]
- Karlsson, M.F.; de Souza, E.O.; Ayelo, P.M.; Zannou, J.A.; Mègnigbèto, G.S.B.; Bokonon-Ganta, A.H. Interspecific competition between egg parasitoids: Native Fopius caudatus and exotic Fopius arisanus, in Ceratitis cosyra. Biol. Control 2018, 117, 172–181. [Google Scholar] [CrossRef]
- Vyas, D.K.; Harvey, J.A.; Paul, R.L.; Heimpel, G.E.; Ode, P.J. Ecological dissociation and re-association with a superior competitor alters host selection behavior in a parasitoid wasp. Oecologia 2019, 191, 261–270. [Google Scholar] [CrossRef]
- Geervliet, G.B.F.; Verdel, M.S.F.; Snellen, H.; Schaub, J.; Dicke, M.; Vet, L.E.M. Coexistence and niche segregation by field populations of the parasitoids Cotesia glomerata and C. rubecula in the Netherlands: Predicting field performance from laboratory data. Oecologia 2000, 124, 55–63. [Google Scholar] [CrossRef]
- Laing, J.E.; Corrigan, J.E. Intrinsic competition between the gregarious parasite, Cotesia glomeratus and the solitary parasite, Cotesia rubecula [Hymenoptera: Braconidae] for their host, Artogeia rapae [Lepidoptera: Pieridae]. Entomophaga 1987, 32, 493–501. [Google Scholar]
- Paul, R.L.; Vyas, D.K.; Ode, P.J. Oviposition fluids from adult wasps mediate interspecific competition between parasitoid larvae. Ecol. Entomol. 2024, 49, 31–40. [Google Scholar]
- Herlihy, M.V.; Van Driesche, R.G.; Abney, M.R.; Brodeur, J.; Bryant, A.B.; Casagrande, R.A.; Delaney, D.A.; Elkner, T.E.; Fleischer, S.J.; Groves, R.L.; et al. Distribution of Cotesia rubecula (Hymenoptera: Braconidae) and its displacement of Cotesia glomerata in eastern North America. Fla Entomol. 2012, 95, 461–467. [Google Scholar]
- DeBach, P.; Sundby, R.A. Competitive displacement between ecological homologues. Hilgardia 1963, 34, 105–166. [Google Scholar] [CrossRef]
- Sorribas, J.; Rodríguez, R.; Garcia-Mari, F. Parasitoid competitive displacement and coexistence in citrus agroecosystems: Linking species distribution with climate. Ecol. Appl. 2010, 20, 1101–1113. [Google Scholar]
- Pekas, A.; Tena, A.; Harvey, J.A.; Garcia-Marí, F.; Frago, E. Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology 2016, 97, 1345–1356. [Google Scholar]
- Borer, E.T.; Murdoch, W.W.; Swarbrick, S.L. Parasitoid coexistence: Linking spatial field patterns with mechanism. Ecology 2004, 85, 667–678. [Google Scholar] [CrossRef]
- Ives, A.R.; Hochberg, M.E. Conclusions: Debating parasitoid population biology over the next twenty years. In Parasitoid Population Biology; Hochberg, M.E., Ives, A.R., Eds.; Princeton University Press: Princeton, NJ, USA, 2000; pp. 278–303. [Google Scholar]
- Cusumano, A.; Peri, E.; Alınç, T.; Colazza, S. Contrasting reproductive traits of competing parasitoids facilitate coexistence on a shared host pest in a biological control perspective. Pest Manag. Sci. 2022, 78, 3376–3383. [Google Scholar]
- Zwölfer, H. Die Orientierung entomophager Parasiten als Problem der angewandten Entomologie. Z. Angew. Entomol. 1962, 50, 93–98. [Google Scholar]
- Shin, Y.-H.; Yasumatsu, K. On the bionomics of Itoplectis narangae (Ashmead) (Ichneumonidae, Hymenoptera). J. Fac. Agric. Kyushu Univ. 1970, 16, 1–75. [Google Scholar] [CrossRef]
- Shaw, M.R. Host ranges of Aleiodes species (Hymenoptera: Braconidae), and an evolutionary hypothesis. In Parasitic Wasps: Evolution, Systematics, Biodiversity and Biological Control; Melika, G., Thuróczy, C., Eds.; Agroinform: Budapest, 2002; pp. 321–327. [Google Scholar]
- Wieber, A.M.; Cook, S.P.; Webb, R.E.; Tatman, K.M.; Reardon, R.C. Niche partitioning by four Gelis spp. (Hymenoptera: Ichneumonidae) hyperparasitoids of the primary gypsy moth parasitoid Cotesia melanoscela (Hymenoptera: Braconidae). Ann. Entomol. Soc. Am. 1995, 88, 427–433. [Google Scholar] [CrossRef]
- Harvey, J.A.; Gols, R.; Snaas, H.; Malcicka, M.; Visser, B. Host preference and offspring performance are linked in three congeneric hyperparasitoid species. Ecol. Entomol. 2015, 40, 114–122. [Google Scholar] [CrossRef]
- Forbes, A.A.; Hall, M.C.; Lund, J.; Hood, G.R.; Izen, R.; Egan, S.P.; Ott, J.R. Parasitoids, hyperparasitoids, and inquilines associated with the sexual and asexual generations of the gall former, Belonocnema treatae (Hymenoptera: Cynipidae). Ann. Entomol. Soc. Am. 2016, 109, 49–63. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Egan, S.P.; Driscoe, A.L.; Ott, J.R. One hundred and sixty years of taxonomic confusion resolved: Belonocnema (Hymenoptera: Cynipidae: Cynipini) gall wasps associated with live oaks in the USA. Zool. J. Linn. Soc. 2021, 193, 1234–1255. [Google Scholar] [CrossRef]
- Lund, J.N.; Ott, J.R.; Lyon, R.J. Heterogony in Belonocnema treatae Mayr (Hymenoptera: Cynipidae). Proc. Entomol. Soc. Wash. 1998, 100, 755–763. [Google Scholar]
- Askew, R.R. The biology of the British species of the genus Torymus Dalman (Hymenoptera: Torymidae) associated with galls of Cynipidae (Hymenoptera) on oak, with special reference to alternation of forms. Trans. Soc. Br. Entomol. 1965, 16, 217–232. [Google Scholar]
- Kaartinen, R.; Stone, G.N.; Hearn, J.; Lohse, K.; Roslin, T. Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecol. Entomol. 2010, 35, 623–638. [Google Scholar] [CrossRef]
- Huber, L.L. A taxonomic and ecological review of the North American chalcid-flies of the genus Callimome. Proc. U.S. Natl. Mus. 1927, 70, 1–114. [Google Scholar] [CrossRef]
- Baine, Q.; Hughes, D.W.W.; Casares, E.E.; Martinson, E.O.; Martinson, V.G. External insect gall morphology influences the functional guilds of natural enemy communities. Proc. R. Soc. B 2024, 291, 20242424. [Google Scholar] [CrossRef]
- Quacchia, A.; Ferracini, C.; Nicholls, J.A.; Piazza, E.; Saladini, M.A.; Tota, F.; Melika, G.; Alma, A. Chalcid parasitoid community associated with the invading pest Dryocosmus kuriphilus in north-western Italy. Insect Conserv. Divers. 2013, 6, 114–123. [Google Scholar] [CrossRef]
- Viciriuc, I.-M.; Mitroiu, M.-D.; Askew, R.R.; Ris, N.; Fusu, L.; Borowiec, N. Torymus sinensis and its close relatives in Europe: A multilocus phylogeny, detailed morphological analysis, and identification key. Arthropod Syst. Phylogeny 2023, 81, 705–730. [Google Scholar]
- Heatwole, H.; Davis, D.M. Ecology of three sympatric species of parasitic insects of the genus Megarhyssa (Hymenoptera: Ichneumonidae). Ecology 1965, 46, 140–150. [Google Scholar]
- Gibbons, J.R.H. A model for sympatric speciation in Megarhyssa (Hymenoptera: Ichneumonidae): Competitive speciation. Am. Nat. 1979, 114, 719–741. [Google Scholar]
- Matsumoto, R.; Konishi, K. Life histories of two ichneumonid parasitoids of Cyclosa octotuberculata (Araneae): Reclinervellus tuberculatus (Uchida) and its new sympatric congener (Hymenoptera: Ichneumonidae: Pimplinae). Entomol. Sci. 2007, 10, 267–278. [Google Scholar]
- Paine, T.D.; Paine, E.O.; Hanks, L.M.; Millar, J.G. Resource partitioning among parasitoids (Hymenoptera: Braconidae) of Phoracantha semipunctata in their native range. Biol. Control 2000, 19, 223–231. [Google Scholar] [CrossRef]
- Daane, K.M.; Barzman, M.S.; Caltagirone, L.E.; Hagen, K.S. Metaphycus anneckei and Metaphycus hageni: Two discrete species parasitic on black scale, Saissetia oleae. BioControl 2000, 45, 269–284. [Google Scholar]
- László, Z.; Prázsmári, H.; Kelemen, T.I. Exeristes roborator (Fabricius, 1793) (Hymenoptera: Ichneumonidae) in the parasitoid community of Diplolepis galls in the Carpathian Basin. Folia Entomol. Hung. 2016, 77, 79–85. [Google Scholar]
- Zwölfer, H.; Böheim, M.; Beck, E. Eurytoma serratulae and E. robusta (Hymenoptera, Eurytomidae): Complementary host exploitation strategies of coexisting parasitoids and their impact on the host Urophora cardui. J. Hymenopt. Res. 2015, 42, 47–62. [Google Scholar]
- Zerova, M.D. Chalcid Wasps of the Family Eurytomidae; Naukova Dumka: Kiev, Ukraine, 1978; 465p. (In Ukrainian) [Google Scholar]
- Zwölfer, H.; Arnold-Rinehart, H. The evolution of interactions and diversity in plant-insect systems: The Urophora-Eurytoma food web in galls on Palearctic Cardueae. In Biodiversity and Ecosystem Function; Schulze, E.D., Mooney, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 211–233. [Google Scholar]
- Abrahamson, W.G.; Sattler, J.F.; McCrea, K.D.; Weis, A.E. Variation in selection pressure on the goldenrod gall fly and the competitive interactions of its natural enemies. Oecologia 1989, 79, 15–22. [Google Scholar]
- Gahan, A.B. Description of a new species of Eurytoma (Hymenoptera: Chalcidoidea). Entomol. News 1934, 44, 116–118. [Google Scholar]
- Bugbee, R.E. Revision of chalcid wasps of genus Eurytoma in America north of Mexico. Proc. U.S. Natl Mus. 1967, 118, 433–552. [Google Scholar] [CrossRef]
- Weiblen, G.D.; Bush, G.L. Speciation in fig pollinators and parasites. Mol. Ecol. 2002, 11, 1573–1578. [Google Scholar] [PubMed]
- Sivinski, J.; Vulinec, K.; Aluja, M. Ovipositor length in a guild of parasitoids (Hymenoptera: Braconidae) attacking Anastrepha spp. fruit flies (Diptera: Tephritidae) in southern Mexico. Ann. Entomol. Soc. Am. 2001, 94, 886–895. [Google Scholar] [CrossRef]
- Sivinski, J.; Aluja, M. The evolution of ovipositor length in the parasitic Hymenoptera and the search for predictability in biological control. Fla Entomol. 2003, 86, 143–150. [Google Scholar]
- García-Medel, D.; Sivinski, J.; Díaz-Fleischer, F.; Ramirez-Romero, R.; Aluja, M. Foraging behavior by six fruit fly parasitoids (Hymenoptera: Braconidae) released as single- or multiple-species cohorts in field cages: Influence of fruit location and host density. Biol. Control 2007, 43, 12–22. [Google Scholar]
- Paranhos, B.J.; Sivinski, J.; Stuhl, C.; Holler, T.; Aluja, M. Intrinsic competition and competitor-free-space influence the coexistence of parasitoids (Hymenoptera: Braconidae: Opiinae) of Neotropical Tephritidae (Diptera). Environ. Entomol. 2013, 42, 717–723. [Google Scholar] [CrossRef]
- Cancino, J.; Ruiz, L.; Montoya, P.; Harris, E. Biological attributes of three introduced parasitoids as natural enemies of fruit flies, genus Anastrepha (Diptera: Tephritidae). J. Appl. Entomol. 2009, 133, 181–188. [Google Scholar] [CrossRef]
- Sugonyaev, E.S.; Vu, K.K. Relationships of the Host and Parasite among Insects, with an Example of the Caragana Soft Scale and its Parasite, Encyrtus infidus Rossi; Nauka: Leningrad, USSR, 1979; 86p. (In Russian) [Google Scholar]
- Zorin, P.V. Guelder rose leaf-beetle (Galerucella viburni Payk). Bull. Inst. Control. Pests Dis. 1931, 1, 55–79. (In Russian) [Google Scholar]
- Desurmont, G. Oviposition of Viburnum Leaf Beetle [Pyrrhalta viburni (Paykull)]: From Ecology to Biological Control of an Emerging Landscape Pest. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, August 2009. Available online: https://hdl.handle.net/1813/14005 (accessed on 11 February 2025).
- Luck, R.F.; Podoler, H. Competitive exclusion of Aphytis lingnanensis by A. melinus: Potential role of host size. Ecology 1985, 66, 904–913. [Google Scholar] [CrossRef]
- van Baaren, J.; Hterier, V.; Hance, T.; Krespi, L.; Cortesero, A.M.; Poinsot, D.; Le Ralec, A.; Outreman, Y. Playing the hare or the tortoise in parasitoids: Could different oviposition strategies have an influence in host partitioning in two Aphidius species? Ethol. Ecol. Evol. 2004, 16, 231–242. [Google Scholar] [CrossRef]
- van Baaren, J.; Le Lann, C.; Pichenot, J.; Pierre, J.S.; Krespi, L.; Outreman, Y. How could host discrimination abilities influence the structure of a parasitoid community? Bull. Entomol. Res. 2009, 99, 299–306. [Google Scholar] [CrossRef]
- Schlenke, T.A.; Morales, J.; Govind, S.; Clark, A.G. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 2007, 3, e158. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Bass, A.I.H.; Fernández, D.C.; Sharanowski, B.J. Habitat or temporal isolation: Unraveling herbivore–parasitoid speciation patterns using double digest RADseq. Ecol. Evol. 2018, 8, 9803–9816. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhang, F.; Wu, K. Interspecific competition between Peristenus spretus and Peristenus relictus (Hymenoptera: Braconidae), larval parasitoids of Apolygus lucorum (Hemiptera: Miridae). Biol. Control 2018, 117, 115–122. [Google Scholar] [CrossRef]
- Baur, H.; Kranz-Baltensperger, Y.; Cruaud, A.; Rasplus, J.-Y.; Timokhov, A.V.; Gokhman, V.E. Morphometric analysis and taxonomic revision of Anisopteromalus Ruschka (Hymenoptera: Chalcidoidea: Pteromalidae)—An integrative approach. Syst. Entomol. 2014, 39, 691–709. [Google Scholar] [CrossRef]
- Gokhman, V.E.; Fedina, T.Y.; Timokhov, A.V. Life-history strategies in parasitic wasps of the Anisopteromalus calandrae complex (Hymenoptera: Pteromalidae). Russ. Entomol. J. 1999, 8, 201–211. [Google Scholar]
- Askew, R.R.; Shaw, M.R. Parasitoid communities: Their size, structure and development. In Insect Parasitoids; Waage, J., Greathead, D., Eds.; Academic Press: London, UK, 1986; pp. 225–264. [Google Scholar]
- Borer, E.T. Intraguild predation in larval parasitoids: Implications for coexistence. J. Anim. Ecol. 2002, 71, 957–965. [Google Scholar] [CrossRef]
- Gauld, I.D. Evolutionary patterns of host utilization by ichneumonoid parasitoids (Hymenoptera: Ichneumonidae and Braconidae). Biol. J. Linn. Soc. 1988, 35, 351–377. [Google Scholar] [CrossRef]
- Memmott, J.; Godfray, H.C.J.; Gauld, I.D. The structure of a tropical host-parasitoid community. J. Anim. Ecol. 1994, 63, 521–540. [Google Scholar] [CrossRef]
- Quicke, D.L.J.; Janzen, D.H.; Hallwachs, W.; Sharkey, M.J.; Hebert, P.D.N.; Butcher, B.A. Forty-five years of caterpillar rearing in Area de Conservación Guanacaste (ACG) northwestern Costa Rica: DNA barcodes, BINs, and a first description of plant-caterpillar-ichneumonoid interactions detected. Diversity 2024, 16, 683. [Google Scholar] [CrossRef]
- Stefanescu, C.; Askew, R.R.; Corbera, J.; Shaw, M.R. Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). Eur. J. Entomol. 2012, 109, 85–94. [Google Scholar]
- Wang, X.G.; Messing, R.H. Two different life-history strategies determine the competitive outcome between Dirhinus giffardii (Chalcididae) and Pachycrepoideus vindemmiae (Pteromalidae), ectoparasitoids of cyclorrhaphous Diptera. Bull. Entomol. Res. 2004, 94, 473–480. [Google Scholar]
- Mohamad, R.; Wajnberg, E.; Monge, J.P.; Goubault, M. The effect of direct interspecific competition on patch exploitation strategies in parasitoid wasps. Oecologia 2015, 177, 305–315. [Google Scholar] [PubMed]
- Gokhman, V.E.; Timokhov, A.V.; Fedina, T.Y. First evidence for sibling species in Anisopteromalus calandrae (Hymenoptera: Pteromalidae). Russ. Entomol. J. 1998, 7, 157–162. [Google Scholar]
- Timokhov, A.V.; Gokhman, V.E. Host preferences of parasitic wasps of the Anisopteromalus calandrae species complex (Hymenoptera: Pteromalidae). Acta Societ. Zool. Bohem. 2003, 67, 35–39. [Google Scholar]
- König, C.; Paschke, S.; Pollmann, M.; Reinisch, R.; Gantert, C.; Weber, J.; Krogmann, L.; Steidle, J.L.M.; Gokhman, V.E. Molecular and cytogenetic differentiation within the Lariophagus distinguendus (Förster, 1841) species complex (Hymenoptera, Pteromalidae). Comp. Cytogenet. 2019, 13, 133–145. [Google Scholar]
- Rosset, P.M. Alternative patch-utilization strategies in sympatric parasitoids (Hymenoptera: Pteromalidae). Environ. Entomol. 1987, 16, 481–483. [Google Scholar]
- Geden, C.J.; Johnson, D.M.; Kaufman, P.E.; Boohene, C.K. Competition between the filth fly parasitoids Muscidifurax raptor and M. raptorellus (Hymenoptera: Pteromalidae). J. Vector Ecol. 2014, 39, 278–287. [Google Scholar]
- Pexton, J.J.; Mayhew, P.J. Siblicide and life-history evolution in parasitoids. Behav. Ecol. 2002, 13, 690–695. [Google Scholar]
- Le Lann, C.; Visser, B.; van Baaren, J.; van Alphen, J.J.M.; Ellers, J. Comparing resource exploitation and allocation of two closely related aphid parasitoids sharing the same host. Evol. Ecol. 2012, 26, 79–94. [Google Scholar]
- Peters, R.S. Two ways of finding a host: A specialist and a generalist parasitoid species (Hymenoptera: Chalcidoidea: Pteromalidae). Eur. J. Entomol. 2011, 108, 565–573. [Google Scholar] [CrossRef]
- Montovan, K.J.; Couchoux, C.; Jones, L.E.; Reeve, H.K.; van Nouhuys, S. The puzzle of partial resource use by a parasitoid wasp. Am. Nat. 2015, 117, 234–261. [Google Scholar] [CrossRef]
- Louâpre, P.; Le Lann, C.; Hance, T. When parasitoids deal with the spatial distribution of their hosts: Consequences for both partners. Insect Sci. 2019, 26, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Sudta, C.; Salcido, D.M.; Forister, M.L.; Walla, T.R.; Villamarín-Cortez, S.; Dyer, L.A. Jack-of-all-trades paradigm meets long-term data: Generalist herbivores are more widespread and locally less abundant. Ecol. Lett. 2022, 25, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, M.A. Morphotypical specialization of parasitic wasps (Hymenoptera, Parasitica) to their hosts. Entomol. Rev. 1970, 49, 168–171. [Google Scholar]
- Gokhman, V.E. Ecological and morphological aspects of formation and evolution of the ichneumonid flies of the subfamily Ichneumoninae (Hymenoptera, Ichneumonidae). Entomol. Obozr. 1988, 67, 821–825. (In Russian) [Google Scholar]
- Haas, M.; Baur, H.; Bittlingmaier, M.; Werner, M.; Steidle, J.L.M.; Krogmann, L. Hidden in plain sight: Disentangling the cryptic species complex of Spintherus dubius (Nees, 1834) (Hymenoptera: Chalcidoidea: Pteromalidae) with integrative taxonomy. Elucidating the Megadiversity of Chalcidoidea (Hymenoptera) with a Multi-Taxonomic Approach. Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 15 July 2022; pp. 141–167. Available online: https://hohpublica.uni-hohenheim.de/items/16158c57-cd39-4073-86ef-a7a654fb287d (accessed on 3 February 2025).
- Brodeur, J. Host specificity and trophic relationships of hyperparasitoids. In Parasitoid Population Biology; Hochberg, M.E., Ives, A.R., Eds.; Princeton University Press: Princeton, NJ, USA, 2000; pp. 163–183. [Google Scholar]
- van Nouhuys, S.; Hanski, I. Apparent competition between parasitoids mediated by a shared hyperparasitoid. Ecol. Lett. 2000, 3, 82–84. [Google Scholar] [CrossRef]
- Hochberg, M.E.; Hawkins, B.A. Refuges as a predictor of parasitoid diversity. Science 1992, 255, 973–976. [Google Scholar] [CrossRef]
- Völkl, W. Who actually benefits from ant-attendance? J. Anim. Ecol. 1992, 61, 273–281. [Google Scholar] [CrossRef]
- van Nouhuys, S.; Punju, E. Coexistence of competing parasitoids: Which is the fugitive and where does it hide? Oikos 2010, 119, 61–70. [Google Scholar] [CrossRef]
- Murphy, S.M.; Lill, J.T.; Bowers, M.D.; Singer, M.S. Enemy-free space for parasitoids. Environ. Entomol. 2014, 43, 1465–1474. [Google Scholar] [PubMed]
- Amarasekare, P. Trade-offs, temporal variation, and species coexistence in communities with intraguild predation. Ecology 2007, 88, 2720–2728. [Google Scholar] [PubMed]
- Messing, R.H.; Wang, X.-G. Competitor-free space mediates non-target impact of an introduced biological control agent. Ecol. Entomol. 2008, 34, 107–113. [Google Scholar]
- Xu, J.; Shelton, A.M.; Cheng, X. Comparison of Diadegma insulare (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Hymenoptera: Braconidae) as biological control agents of Plutella xylostella (Lepidoptera: Plutellidae): Field parasitism, insecticide susceptibility, and host-searching. J. Econ. Entomol. 2001, 94, 14–20. [Google Scholar]
- Sithole, R.; Lohr, B. Intra- and interspecific competition in two congeneric parasitoids of the diamondback moth. Entomol. Exp. Appl. 2017, 163, 272–280. [Google Scholar]
- Tillman, P.G.; Powell, J.E. Interspecific discrimination and larval competition among Microplitis croceipes, Microplitis demolitor, Cotesia kazak (Hym.: Braconidae), and Hyposoter didymator (Hym.: Ichneumonidae), parasitoids of Heliothis virescens (Lep.: Noctuidae). Entomophaga 1992, 37, 439–451. [Google Scholar] [CrossRef]
- Sallam, M.N.; Overholt, W.A.; Kairu, E. Intraspecific and interspecific competition between Cotesia flavipes and Cotesia sesamiae (Hymenoptera: Braconidae), gregarious larval endoparasitoids of lepidopteran stemborers. Biocontrol Sci. Technol. 2002, 12, 493–506. [Google Scholar]
- Kaiser, L.; Le Ru, B.P.; Kaoula, F.; Paillusson, C.; Capdevielle-Dulac, C.; Obonyo, J.O.; Herniou, E.A.; Jancek, S.; Branca, A.; Calatayud, P.-A.; et al. Ongoing ecological speciation in Cotesia sesamiae, a biological control agent of cereal stem borers. Evol. Appl. 2015, 8, 807–820. [Google Scholar]
- Kaiser, L.; Fernandez-Triana, J.; Capdevielle-Dulac, C.; Chantre, C.; Bodet, M.; Kaoula, F.; Benoist, R.; Calatayud, P.-A.; Dupas, S.; Herniou, E.A.; et al. Systematics and biology of Cotesia typhae sp.n. (Hymenoptera, Braconidae, Microgastrinae), a potential biological control agent against the noctuid Mediterranean corn borer, Sesamia nonagrioides. ZooKeys 2017, 682, 105–136. [Google Scholar] [CrossRef]
- Kaiser, L.; Dupas, S.; Branca, A.; Herniou, E.A.; Clarke, C.W.; Capdevielle Dulac, C.; Obonyo, J.; Benoist, R.; Gauthier, J.; Calatayud, P.A.; et al. The Cotesia sesamiae story: Insight into host-range evolution in a Hymenoptera parasitoid and implication for its use in biological control programs. Genetica 2017, 145, 455–468. [Google Scholar]
- Magdaraog, P.M.; Harvey, J.A.; Tanaka, T.; Gols, R. Intrinsic competition among solitary and gregarious endoparasitoid wasps and the phenomenon of ‘resource sharing’. Ecol. Entomol. 2012, 37, 65–74. [Google Scholar] [CrossRef]
- Marktl, R.C.; Stauffer, C.; Schopf, A. Interspecific competition between the braconid endoparasitoids Glyptapanteles porthetriae and Glyptapanteles liparidis in Lymantria dispar larvae. Entomol. Exp. Appl. 2002, 105, 97–109. [Google Scholar]
- Ortiz-Martínez, S.; Pierre, J.-S.; van Baaren, J.; Le Lann, C.; Zepeda-Paulo, F.; Lavandero, B. Interspecific competition among aphid parasitoids: Molecular approaches reveal preferential exploitation of parasitized hosts. Sci. Rep. 2019, 9, 19641. [Google Scholar]
- McBrien, H.; Mackauer, M. Heterospecific larval competition and host discrimination in two species of aphid parasitoids: Aphidius ervi and Aphidius smithi. Entomol. Exp. Appl. 1990, 56, 145–153. [Google Scholar]
- McBrien, H.; Mackauer, M. Decision to superparasitize based on larval survival: Competition between aphid parasitoids Aphidius ervi and Aphidius smithi. Entomol. Exp. Appl. 1991, 59, 145–150. [Google Scholar]
- Chua, T.H.; Gonzalez, D.; Bellows, T. Searching efficiency and multiparasitism in Aphidius smithi and A. ervi (Hym., Aphidiidae), parasites of pea aphid, Acyrthosiphon pisum (Hom., Aphididae). J. Appl. Entomol. 1990, 110, 101–106. [Google Scholar]
- Agboka, K.; Schulthess, F.; Chabi-Olaye, A.; Labo, I.; Gounou, S.; Smith, H. Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and T. isis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). J. Insect Behav. 2002, 15, 1–12. [Google Scholar]
- Giovannini, L.; Sabbatini-Peverieri, G.; Simoni, S.; Cervo, R.; Hoelmer, K.A.; Roversi, P.F. Interspecific competition between Trissolcus japonicus and Trissolcus mitsukurii, two promising candidates for biocontrol of Halyomorpha halys. Biol. Control 2022, 176, 105068. [Google Scholar]
- Haye, T.; Zhang, J.; Risse, M.; Gariepy, T.D. A temporal trophic shift from primary parasitism to facultative hyperparasitism during interspecific competition between two coevolved scelionid egg parasitoids. Ecol. Evol. 2021, 11, 18708–18718. [Google Scholar]
- Irvin, N.A.; Hoddle, M.S. The competitive ability of three mymarid egg parasitoids (Gonatocerus spp.) for glassy-winged sharpshooter (Homalodisca coagulata) eggs. Biol. Control 2005, 34, 204–214. [Google Scholar]
- Irvin, N.A.; Hoddle, M.S. Comparative assessments of Gonatocerus ashmeadi and the ‘new association’ parasitoid Gonatocerus tuberculifemur (Hymenoptera: Mymaridae) as biological control agents of Homalodisca vitripennis (Hemiptera: Cicadellidae). Biol. Control 2010, 55, 186–196. [Google Scholar] [CrossRef]
- van Baaren, J.; Boivin, G.; Nénon, J.-P. Intra- and interspecific host discrimination in two closely related egg parasitoids. Oecologia 1994, 100, 325–330. [Google Scholar] [CrossRef]
- Boivin, G.; van Baaren, J. The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol. Lett. 2000, 3, 469–474. [Google Scholar] [CrossRef]
- Thompson, C.R.; Cornell, J.A.; Sailer, R.I. Interactions of parasites and a hyperparasite in biological control of citrus blackfly, Aleurocanthus woglumi (Homoptera: Aleyrodidae), in Florida. Environ. Entomol. 1987, 16, 140–144. [Google Scholar] [CrossRef]
- Viggiani, G. Recent cases of interspecific competition between parasitoids of the family Aphelinidae (Hymenoptera: Chalcidoidea). Nor. J. Agric. Sci. Suppl. 1994, 16, 353–359. [Google Scholar]
- Heinz, K.M.; Nelson, J.M. Interspecific interactions among natural enemies of Bemisia in an inundative biological control program. Biol. Control 1996, 6, 384–393. [Google Scholar] [CrossRef]
- Collier, T.; Kelly, S.; Hunter, M. Egg size, intrinsic competition, and lethal interference in the parasitoids Encarsia pergandiella and Encarsia formosa. Biol. Control 2002, 23, 254–261. [Google Scholar] [CrossRef]
- Pang, S.-T.; Wang, L.; Hou, Y.-H.; Shi, Z.-H. Interspecific interference competition between Encarsia formosa and Encarsia sophia (Hymenoptera: Aphelinidae) in parasitizing Bemisia tabaci (Hemiptera: Aleyrodidae) on five tomato varieties. Insect Sci. 2011, 18, 92–100. [Google Scholar] [CrossRef]
- Grille, G.; Lorenzo, M.E.; Burla, J.P.; Franco, J.; Basso, C. Parasitoid niches of Encarsia formosa and Encarsia lycopersici (Hymenoptera: Aphelinidae) exploiting Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Fla. Entomol. 2012, 95, 1024–1030. [Google Scholar] [CrossRef]
- Williams, T. Invasion and displacement of experimental populations of a conventional parasitoid by a heteronomous hyperparasitoid. Biocontrol Sci. Technol. 1996, 6, 603–618. [Google Scholar] [CrossRef]
- Ardeh, M.J.; de Jong, P.W.; van Lenteren, J.C. Intra- and interspecific host discrimination in arrhenotokous and thelytokous Eretmocerus spp. Biol. Control 2005, 33, 74–80. [Google Scholar] [CrossRef]
- Kapranas, A.; Morse, J.G.; Pacheco, P.; Forster, L.D.; Luck, R.F. Survey of brown soft scale Coccus hesperidum L. parasitoids in southern California citrus. Biol. Control 2007, 42, 288–299. [Google Scholar] [CrossRef]
- Tena, A.; Soto, A.; Garcia-Marí, F. Parasitoid complex of black scale Saissetia oleae on citrus and olives: Parasitoid species composition and seasonal trend. BioControl 2008, 53, 473–487. [Google Scholar] [CrossRef]
- Pijls, J.W.A.M.; Hofker, K.D.; van Staalduinen, M.J.; van Alphen, J.J.M. Interspecific host discrimination and competition in Apoanagyrus (Epidinocarsis) lopezi and A. (E.) diversicornis, parasitoids of the cassava mealybug Phenacoccus manihoti. Ecol. Entomol. 1995, 20, 326–332. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Neuenschwander, P.; van Alphen, J.J.M. Affecting biological control of cassava mealybug by exotic parasitoids: A ratio-dependent supply-demand driven model. J. Appl. Ecol. 1993, 30, 706–721. [Google Scholar] [CrossRef]
- Pijls, J.W.A.M.; van Alphen, J.J.M. On the coexistence of the cassava mealybug parasitoids Apoanagyrus diversicornis and A. lopezi (Hymenoptera: Encyrtidae) in their native South America. Bull Entomol. Res. 1996, 86, 51–59. [Google Scholar] [CrossRef]
- Kapranas, A.; Tena, A. Encyrtid parasitoids of soft scale insects: Biology, behavior, and their use in biological control. Annu. Rev. Entomol. 2015, 60, 195–211. [Google Scholar] [CrossRef]
- Briggs, C.J.; Latto, J. The window of vulnerability and its effect on relative parasitoid abundance. Ecol. Entomol. 1996, 21, 128–140. [Google Scholar] [CrossRef]
- Robert, F.-A.; Brodeur, J.; Boivin, G. Patch exploitation strategies of parasitoids under indirect intra- and inter-specific competition. Ecol. Entomol. 2016, 41, 590–598. [Google Scholar] [CrossRef]
- Pérez-Lachaud, G.; Hardy, I.C.W.; Lachaud, J.-P. Insect gladiators: Competitive interactions between three species of bethylid wasps attacking the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Biol. Control 2002, 25, 231–238. [Google Scholar] [CrossRef]
- Batchelor, T.P.; Hardy, I.C.W.; Barrera, J.F.; Pérez-Lachaud, G. Insect gladiators II: Competitive interactions within and between bethylid parasitoid species of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Biol. Control 2005, 33, 194–202. [Google Scholar]
- Batchelor, T.P.; Hardy, I.C.W.; Barrera, J.F. Interactions among bethylid parasitoid species attacking the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Biol. Control 2006, 36, 106–118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gokhman, V.E. Patterns and Mechanisms of Niche Partitioning Between Related Parasitoids (Hymenoptera) Sharing the Same Host Species. Insects 2025, 16, 340. https://doi.org/10.3390/insects16040340
Gokhman VE. Patterns and Mechanisms of Niche Partitioning Between Related Parasitoids (Hymenoptera) Sharing the Same Host Species. Insects. 2025; 16(4):340. https://doi.org/10.3390/insects16040340
Chicago/Turabian StyleGokhman, Vladimir E. 2025. "Patterns and Mechanisms of Niche Partitioning Between Related Parasitoids (Hymenoptera) Sharing the Same Host Species" Insects 16, no. 4: 340. https://doi.org/10.3390/insects16040340
APA StyleGokhman, V. E. (2025). Patterns and Mechanisms of Niche Partitioning Between Related Parasitoids (Hymenoptera) Sharing the Same Host Species. Insects, 16(4), 340. https://doi.org/10.3390/insects16040340