Bored Rotten: Interactions Between the Coffee Berry Borer and Coffee Fruit Rot
Simple Summary
Abstract
1. Coffee Fruit Rot and Coffee Berry Disease
2. Coffee Fruit Rot Studies in Puerto Rico
3. Volatiles
“Noteworthy is the response of H. hampei to some of the compounds combined with ethanol and methanol. Because the biology of this insect suggests a close association with its host and its lineage with microorganisms, it would certainly gain from being able to detect fermenting odors since microbial infection of the berries during feeding would lead to the release of corresponding scent. As such, it is not surprising that H. hampei is attracted to the synthetic blend of a few of these VOCs combined with ethanol and methanol. Methanol and ethanol are products associated with wood decay and are components of the bouquet used by some ambrosia beetles for host detection acting synergistically with other attractive compounds in several species… [25].”
4. Scolytid Beetles and Fusarium
5. Trophic Interactions Involving CBBs and CFR
6. Hygiene, Control, and Overwintering
7. Bacteria as Potential Pathogens and Biocontrol Agents
8. Implications for CBB Management and Future Studies
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Gaitán, A.L.; Cristancho, M.A.; Castro Caicedo, B.L.; Rivillas, C.A.; Cadena Gómez, G. Compendium of Coffee Diseases and Pests; American Phytopathology Society Press: St. Paul, MN, USA, 2015. [Google Scholar]
- Johnson, M.A.; Ruiz-Diaz, C.P.; Manoukis, N.C.; Rodrigues, J.C.V. Coffee Berry Borer (Hypothenemus hampei), a Global Pest of Coffee: Perspectives from Historical and Recent Invasions, and Future Priorities. Insects 2020, 11, 882. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J. A preliminary account of a disease of green coffee berries in Kenya Colony. Trans. Br. Mycol. Soc. 1926, 11, 45–154. [Google Scholar]
- Rayner, R.W. Coffee berry disease—A survey of investigations carried out up to 1950. East Afr. Agric. J. 1952, 17, 130–158. [Google Scholar] [CrossRef]
- Caldwell, M.Y.; Mariño, Y.A.; Medina, A.G.; Serrato-Díaz, L.M.; Bayman, P. Coffee fruit rot in Puerto Rico: Distribution, ecology and associated fungi. Eur. J. Plant Pathol. 2023, 168, 527–540. [Google Scholar]
- Serrato-Diaz, L.M.; Mariño, Y.A.; González, J.D.J.; Goenaga, R.; Bayman, P. Coffee Fruit Rot: The previously unrecognized role of Fusarium and its interactions with the coffee berry borer (Hypothenemus hampei). Phytopathology 2024, 114, 1320–1332. [Google Scholar] [CrossRef]
- Nutman, F.J.; Roberts, F.M. Investigations on a disease of Coffea arabica caused by a form of Colletotrichum coffeanum Noack: II. Some factors affecting germination and infection, and their relation to disease distribution. Trans. Br. Mycol. Soc. 1960, 43, 643–659. [Google Scholar] [CrossRef]
- Griffiths, E.; Gibbs, J.N.; Waller, J.M. Control of coffee berry disease. Ann. Appl. Biol. 1971, 67, 45–74. [Google Scholar] [CrossRef]
- Adugna, G. Coffee berry disease: A century-old anthracnose of green berries of Arabica coffee (Coffea arabica L.) in Africa. J. Plant Dis. Prot. 2024, 131, 315–328. [Google Scholar] [CrossRef]
- Batista, D.; Silva, D.N.; Vieira, A.; Cabral, A.; Pires, A.S.; Loureiro, A.; Guerra-Guimarães, L.; Pereira, A.P.; Azinheira, H.; Talhinhas, P.; et al. Legitimacy and implications of reducing Colletotrichum kahawae to subspecies in plant pathology. Front. Plant Sci. 2017, 7, 2051. [Google Scholar] [CrossRef]
- Wallis, J.A.N. Coffee Berry Disease—1964. Pest Artic. News Summ. Sect. B Plant Dis. Control 1965, 11, 318–321. [Google Scholar] [CrossRef]
- Bridge, P.D.; Waller, J.M.; Davies, D.; Buddie, A.G. Variability of Colletotrichum kahawae in relation to other Colletotrichum species from tropical perennial crops and the development of diagnostic techniques. J. Phytopathol. 2008, 156, 274–280. [Google Scholar] [CrossRef]
- Cabral, A.; Azinheira, H.G.; Talhinhas, P.; Batista, D.; Ramos, A.P.; Silva, M.D.C.; Oliveira, H.; Várzea, V. Pathological, morphological, cytogenomic, biochemical and molecular data support the distinction between Colletotrichum cigarro comb. et stat. nov. and Colletotrichum kahawae. Plants 2020, 9, 502. [Google Scholar] [CrossRef] [PubMed]
- Waller, J.M.; Bridge, P.D.; Black, R.; Hakiza, G. Characterization of the coffee berry disease pathogen, Colletotrichum kahawae sp. nov. Mycol. Res. 1993, 97, 989–994. [Google Scholar] [CrossRef]
- Weir, B.S.; Johnston, P.R.; Damm, U. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 2012, 73, 115–180. [Google Scholar] [CrossRef]
- Silva, D.N.; Talhinhas, P.; Cai, L.; Manuel, L.; Gichuru, E.K.; Loureiro, A.; Várzea, V.; Paulo, O.S.; Batista, D. Host-jump drives rapid and recent ecological speciation of the emergent fungal pathogen Colletotrichum kahawae. Mol. Ecol. 2012, 21, 2655–2670. [Google Scholar] [CrossRef]
- The Australia Group. List of Plant Pathogens for Export Control. 2022. Available online: https://www.dfat.gov.au/publications/minisite/theaustraliagroupnet/site/en/plants.html (accessed on 19 March 2025).
- Ferrucho, R.L.; Marín-Ramírez, G.A.; Ochoa-Corona, F.; Ángel, C.A. PCR-based detection for the quarantine fungus Colletotrichum kahawae, a biosecurity threat to the coffee (Coffea arabica) industry worldwide. Plant Dis. 2024, 108, 2615–2624. [Google Scholar]
- Pardo-De la Hoz, C.J.; Calderón, C.; Rincón, A.M.; Cárdenas, M.; Danies, G.; López-Kleine, L.; Restrepo, S.; Jiménez, P. Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathol. 2016, 65, 227–237. [Google Scholar]
- Rojas, P.; Pardo-De la Hoz, C.J.; Calderón, C.; Vargas, N.; Cabrera, L.A.; Restrepo, S.; Jiménez, P. First report of Colletotrichum kahawae subsp. ciggaro causing anthracnose disease on tree tomato in Cundinamarca, Colombia. Plant Dis. 2018, 102, 2031. [Google Scholar]
- Serrato-Diaz, L.M.; Mariño, Y.A.; Bayman, P. Pathogens causing anthracnose and fruit rots of coffee associated with the coffee berry borer and the entomopathogenic fungus Beauveria bassiana in Puerto Rico. Phytopathology 2020, 110, 1541–1552. [Google Scholar] [CrossRef]
- Hähn, G.J.; Damasceno, G.; Alvarez-Davila, E.; Aubin, I.; Bauters, M.; Bergmeier, E.; Biurrun, I.; Bjorkman, A.D.; Bonari, G.; Botta-Dukát, Z.; et al. Global decoupling of functional and phylogenetic diversity in plant communities. Nat. Ecol. Evol. 2025, 9, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Mariño, Y.A.; Vega, V.J.; García, J.M.; Verle Rodrigues, J.C.; García, N.M.; Bayman, P. The coffee berry borer (Coleoptera: Curculionidae) in Puerto Rico: Distribution, infestation, and population per fruit. J. Insect Sci. 2017, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Ribeyre, F.; Avelino, J. Impact of field pests and diseases on coffee quality. In Specialty Coffee: Managing Quality; Oberthür, T., Läderach, P., Pohlan, H.A.J., Cock, J.H., Eds.; International Plant Nutrition Institute: Peachtree Corners, GA, USA, 2012; pp. 151–176. [Google Scholar]
- Jaramillo, J.; Torto, B.; Mwenda, D.; Troeger, A.; Borgemeister, C.; Poehling, H.M.; Francke, W. Coffee berry borer joins bark beetles in coffee klatch. PLoS ONE 2013, 8, e74277. [Google Scholar]
- Janzen, D.H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 1977, 111, 691–713. [Google Scholar]
- Peris, J.E.; Rodríguez, A.; Peña, L.; Fedriani, J.M. Fungal infestation boosts fruit aroma and fruit removal by mammals and birds. Sci. Rep. 2017, 7, 5646. [Google Scholar]
- de la Rosa-Cancino, W.; Malo, E.A.; Gómez, J.; Valle-Mora, J.F.; Barrera, J.F.; Rojas, J.C. Testing what we know about coffee volatiles affecting behaviour of Hypothenemus hampei. J. Appl. Entomol. 2023, 147, 167–175. [Google Scholar]
- Ruiz-Diaz, C.P.; Rodrigues, J.C.V.; Miro-Rivera, E.; Diaz-Vazquez, L.M. Impact of the coffee berry borer on the volatile and semi-volatile compounds; qualitative profile of Coffea arabica berries. Food Chem. Adv. 2023, 2, 100154. [Google Scholar]
- Franco, F.P.; Túler, A.C.; Gallan, D.Z.; Gonçalves, F.G.; Favaris, A.P.; Peñaflor, M.F.G.; Leal, W.S.; Moura, D.S.; Bento, J.M.S.; Silva-Filho, M.C. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. ISME J. 2021, 15, 3522–3533. [Google Scholar]
- Thomas, G.; Rusman, Q.; Morrison, W.R., III; Magalhães, D.M.; Dowell, J.A.; Ngumbi, E.; Osei-Owusu, J.; Kansman, J.; Gaffke, A.; Pagadala Damodaram, K.J.; et al. Deciphering plant-insect-microorganism signals for sustainable crop production. Biomolecules 2023, 13, 997. [Google Scholar] [CrossRef]
- Peñaflor, M.F.G.; Bento, J.M.S. Red-rot infection in sugarcane attenuates the attractiveness of sugarcane borer-induced plant volatiles to parasitoid. Arthropod-Plant Interact. 2019, 13, 117–125. [Google Scholar]
- Mueller, U.G.; Gerardo, N.M.; Aanen, D.K.; Six, D.L.; Schultz, T.R. The evolution of agriculture in insects. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 563–595. [Google Scholar]
- Mayers, C.G.; Harrington, T.C.; Masuya, H.; Jordal, B.H.; McNew, D.L.; Shih, H.H.; Roets, F.; Kietzka, G.J. Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae, with five new fungal genera and seven new species. Persoonia 2020, 44, 41–66. [Google Scholar] [PubMed]
- Kasson, M.T.; O’Donnell, K.; Rooney, A.P.; Sink, S.; Ploetz, R.C.; Ploetz, J.N.; Konkol, J.L.; Carrillo, D.; Freeman, S.; Mendel, Z.; et al. An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genet. Biol. 2013, 56, 147–157. [Google Scholar] [PubMed]
- Morales-Ramos, J.A.; Rojas, M.G.; Sittertz-Bhatkar, H.; Saldaña, G. Symbiotic relationship between Hypothenemus hampei (Coleoptera: Scolytidae) and Fusarium solani (Moniliales: Tuberculariaceae). Ann. Entomol. Soc. Am. 2000, 93, 541–547. [Google Scholar]
- Pérez, J.; Infante, F.; Vega, F.E. Microorganismos asociados a la broca del café: ¿existe realmente un mutualismo? Proc. Manejo Broca-do-Café 2007, 1, 65–76. [Google Scholar]
- Bragard, C.; Baptista, P.; Chatzivassiliou, E.; Di Serio, F.; Gonthier, P.; Jaques Miret, J.A.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S. Pest categorisation of Fusarium oxysporum f. sp. cubense Tropical Race 4. EFSA J. 2022, 20, e07092. [Google Scholar]
- Bustillo, A.E.; Cárdenas, R.; Posada, F.J. Natural enemies and competitors of Hypothenemus hampei (Ferrari)(Coleoptera: Scolytidae) in Colombia. Neotrop. Entomol. 2002, 31, 635–639. [Google Scholar]
- Pérez-López, E.J.; Posada-Flórez, F.J.; González-García, M.T. 1996. Patogenicidad de un aislamiento de Fusarium sp. encontrado infectando la broca del café, Hypothenemus hampei. Rev. Colomb. Entomol. 1996, 22, 105–111. [Google Scholar]
- Li, Y.; Duan, T.; Li, Y. Research progress in the interactions of fungal pathogens and insect pests during host plant colonization. J. Plant Dis. Protect. 2021, 128, 633–647. [Google Scholar]
- Perfecto, I.; Vandermeer, J. Coffee Agroecology: A New Approach to Understanding Agricultural Biodiversity, Ecosystem Services and Sustainable Development; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Benavides, P.; Bustillo, A.E.; Cárdenas, R.; Montoya, E.C. Análisis biológico y económico del manejo integrado de la broca del café en Colombia. Cenicafé 2003, 54, 5–23. [Google Scholar]
- Giddisa, G. A review on the status of coffee berry disease (Colletotrichum kahawae) in Ethiopia. J. Biol. Agric. Healthc. 2016, 6, 140–151. [Google Scholar]
- Motisi, N.; Ribeyre, F.; Poggi, S. Coffee tree architecture and its interactions with microclimates drive the dynamics of coffee berry disease in coffee trees. Sci. Rep. 2019, 9, 2544. [Google Scholar] [CrossRef] [PubMed]
- Marcano, M.; Bose, A.; Bayman, P. A one-dimensional map to study multi-seasonal coffee infestation by the coffee berry borer. Math. Biosci. 2021, 333, 108530. [Google Scholar] [CrossRef] [PubMed]
- Vega, V.J.; Mariño, Y.A.; Deynes, D.; Greco, E.B.; Bright, D.E.; Bayman, P. A beetle in a haystack: Are there alternate hosts of the coffee berry borer (Hypothenemus hampei) in Puerto Rico? Agronomy 2020, 10, 228. [Google Scholar] [CrossRef]
- Alemu, K.; Adugna, G.; Lemessa, F.; Muleta, D. Biocontrol potentials of native bacterial strains for the management of coffee berry disease (Colletotrichum kahawae) in Ethiopia. Biocontrol Sci. Technol. 2023, 33, 98–114. [Google Scholar] [CrossRef]
- Alemu, K.; Adugna, G.; Lemessa, F.; Muleta, D. Current status of coffee berry disease (Colletotrichum kahawae Waller & Bridge) in Ethiopia. Arch. Phytopath. Plant Prot. 2016, 49, 421–433. [Google Scholar] [CrossRef]
- Ceja-Navarro, J.A.; Vega, F.E.; Karaoz, U.; Hao, Z.; Jenkins, S.; Lim, H.C.; Kosina, P.; Infante, F.; Northen, T.R.; Brodie, E.L. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 2015, 6, 7618. [Google Scholar] [CrossRef]
- Azizah, A.; Purwatiningsih, P.; Wiyono, H.T.; Muzakhar, K. Morphological and biochemical characteristic of endosymbiont cellulolytic bacteria from gut of Hypothenemus hampei Ferr. and its enzyme activity. In Proceedings of the AIP Conference Proceedings 2020, Online, 16 November 2020; Volume 2296. [Google Scholar]
- Mejía-Alvarado, F.S.; Ghneim-Herrera, T.; Góngora, C.E.; Benavides, P.; Navarro-Escalante, L. Structure and dynamics of the gut bacterial community across the developmental stages of the coffee berry borer, Hypothenemus hampei. Front. Microbiol. 2021, 12, 639868. [Google Scholar] [CrossRef]
- Mariño, Y.A.; Verle Rodrigues, J.C.; Bayman, P. Wolbachia affects reproduction and population dynamics of the coffee berry borer (Hypothenemus hampei): Implications for biological control. Insects 2017, 8, 8. [Google Scholar] [CrossRef]
- Mariño, Y.A.; Ospina, O.E.; Verle Rodrigues, J.C.; Bayman, P. High diversity and variability in the bacterial microbiota of the coffee berry borer (Coleoptera: Curculionidae), with emphasis on Wolbachia. J. Appl. Microbiol. 2018, 125, 528–543. [Google Scholar]
- Waller, J.M.; Masaba, D.M. The microflora of coffee surfaces and relationships to coffee berry disease. Int. J. Pest Manag. 2006, 52, 89–96. [Google Scholar] [CrossRef]
- Msenya, H.N. Distribution and Diversity of Fungi and Their Biocontrol Potential in Managing Coffee Berry Disease in Kirinyaga County Kenya. Ph.D. Thesis, Kenyatta University, Nairobi, Kenya, 2024. Available online: http://ir-library.ku.ac.ke/server/api/core/bitstreams/5b95a8d6-2eb5-4303-956f-be78db1eaf02/content (accessed on 19 March 2025).
- Vieira, A.; Silva, D.N.; Várzea, V.; Paulo, O.S.; Batista, D. Genome-wide signatures of selection in Colletotrichum kahawae reveal candidate genes potentially involved in pathogenicity and aggressiveness. Front. Microbiol. 2019, 10, 137. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayman, P.; Serrato-Diaz, L.M. Bored Rotten: Interactions Between the Coffee Berry Borer and Coffee Fruit Rot. Insects 2025, 16, 342. https://doi.org/10.3390/insects16040342
Bayman P, Serrato-Diaz LM. Bored Rotten: Interactions Between the Coffee Berry Borer and Coffee Fruit Rot. Insects. 2025; 16(4):342. https://doi.org/10.3390/insects16040342
Chicago/Turabian StyleBayman, Paul, and Luz M. Serrato-Diaz. 2025. "Bored Rotten: Interactions Between the Coffee Berry Borer and Coffee Fruit Rot" Insects 16, no. 4: 342. https://doi.org/10.3390/insects16040342
APA StyleBayman, P., & Serrato-Diaz, L. M. (2025). Bored Rotten: Interactions Between the Coffee Berry Borer and Coffee Fruit Rot. Insects, 16(4), 342. https://doi.org/10.3390/insects16040342