Harnessing Electrostatic Forces: A Review of Bees as Bioindicators for Particulate Matter Detection
Simple Summary
Abstract
1. Introduction
2. Search Strategy and Selection Criteria
3. Electrostatic Pollen Adhesion to Bees
3.1. Pollen Chemical Composition
3.2. Morphology of the Interacting Bodies
4. Analysis of the Physicochemical Properties Involved in Electrostatic Particulate Matter Adhesion to Bees
4.1. Modalities of Electrostatic Particulate Matter Adhesion to Bees
4.2. Heavy Metals
4.3. Microplastics and Nanoplastics
4.4. Pathogens
4.5. Pesticides
4.6. Radionuclides
4.7. Volatile Organic Compounds
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orr, M.C.; Hughes, A.C.; Chesters, D.; Pickering, J.; Zhu, C.-D.; Ascher, J.S. Global Patterns and Drivers of Bee Distribution. Curr. Biol. 2021, 31, 451–458.e4, Correction: Curr. Biol. 2023, 33, 1624. https://doi.org/10.1016/j.cub.2023.03.058. [Google Scholar] [CrossRef] [PubMed]
- Henríquez-Piskulich, P.; Hugall, A.F.; Stuart-Fox, D. A Supermatrix Phylogeny of the World’s Bees (Hymenoptera: Anthophila). Mol. Phylogenet. Evol. 2024, 190, 107963. [Google Scholar] [CrossRef]
- Danforth, B.N.; Sipes, S.; Fang, J.; Brady, S.G. The History of Early Bee Diversification Based on Five Genes plus Morphology. Proc. Natl. Acad. Sci. USA 2006, 103, 15118–15123. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, T.H.; Regetz, J.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Bogdanski, A.; Gemmill-Herren, B.; Greenleaf, S.S.; Klein, A.M.; Mayfield, M.M.; et al. Landscape Effects on Crop Pollination Services: Are There General Patterns? Ecol. Lett. 2008, 11, 499–515. [Google Scholar] [CrossRef]
- Kennedy, C.M.; Lonsdorf, E.; Neel, M.C.; Williams, N.M.; Ricketts, T.H.; Winfree, R.; Bommarco, R.; Brittain, C.; Burley, A.L.; Cariveau, D.; et al. A Global Quantitative Synthesis of Local and Landscape Effects on Wild Bee Pollinators in Agroecosystems. Ecol. Lett. 2013, 16, 584–599. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Wood, T.J.; Michez, D.; Paxton, R.J.; Drossart, M.; Neumann, P.; Gérard, M.; Vanderplanck, M.; Barraud, A.; Martinet, B.; Leclercq, N.; et al. Managed Honey Bees as a Radar for Wild Bee Decline? Apidologie 2020, 51, 1100–1116. [Google Scholar] [CrossRef]
- Reyes-Novelo, E.; Ramírez, V.M.; González, H.D.; Ayala, R. Abejas Silvestres (Hymenoptera: Apoidea) Como Bioindicadores en el Neotrópico. Trop. Subtrop. Agroecosystems 2009, 10, 1–13. [Google Scholar]
- Conte, Y.L.; Navajas, M. Climate Change: Impact on Honey Bee Populations and Diseases. Rev. Sci. Tech. Off. Int. Epizoot. 2008, 27, 499–510. [Google Scholar]
- Brown, M.J.F.; Paxton, R.J. The Conservation of Bees: A Global Perspective. Apidologie 2009, 40, 410–416. [Google Scholar] [CrossRef]
- Schindler, M.; Diestelhorst, O.; Haertel, S.; Saure, C.; Scharnowski, A.; Schwenninger, H.R. Monitoring Agricultural Ecosystems by Using Wild Bees as Environmental Indicators. BioRisk 2013, 8, 53–71. [Google Scholar] [CrossRef]
- Negri, I.; Mavris, C.; Di Prisco, G.; Caprio, E.; Pellecchia, M. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter. PLoS ONE 2015, 10, e0132491. [Google Scholar] [CrossRef]
- Edo, C.; Fernández-Alba, A.R.; Vejsnæs, F.; Van Der Steen, J.J.M.; Fernández-Piñas, F.; Rosal, R. Honeybees as Active Samplers for Microplastics. Sci. Total Environ. 2021, 767, 144481. [Google Scholar] [CrossRef]
- Cunningham, M.M.; Tran, L.; McKee, C.G.; Ortega Polo, R.; Newman, T.; Lansing, L.; Griffiths, J.S.; Bilodeau, G.J.; Rott, M.; Marta Guarna, M. Honey Bees as Biomonitors of Environmental Contaminants, Pathogens, and Climate Change. Ecol. Indic. 2022, 134, 108457. [Google Scholar] [CrossRef]
- Cane, J. Global Warming, Advancing Bloom and Evidence for Pollinator Plasticity from Long-Term Bee Emergence Monitoring. Insects 2021, 12, 457. [Google Scholar] [CrossRef]
- Turley, N.E.; Biddinger, D.J.; Joshi, N.K.; López-Uribe, M.M. Six Years of Wild Bee Monitoring Shows Changes in Biodiversity within and across Years and Declines in Abundance. Ecol. Evol. 2022, 12, e9190. [Google Scholar] [CrossRef]
- Porrini, C.; Sabatini, A.G.; Girotti, S.; Fini, F.; Monaco, L.; Celli, G.; Bortolotti, L.; Ghini, S. The Death of Honey Bees and Environmental Pollution by Pesticides: The Honey Bees as Biological Indicators. Bull. Insectology 2003, 56, 147–152. [Google Scholar]
- Porrini, C.; Caprio, E.; Tesoriero, D.; Prisco, G.D. Using Honey Bee as Bioindicator of Chemicals in Campanian Agroecosystems (South Italy). Bull. Insectology 2014, 67, 137–146. [Google Scholar]
- Skorbiłowicz, M.; Skorbiłowicz, E.; Cieśluk, I. Bees as Bioindicators of Environmental Pollution with Metals in an Urban Area. J. Ecol. Eng. 2018, 19, 229–234. [Google Scholar] [CrossRef]
- Girotti, S.; Ghini, S.; Ferri, E.; Bolelli, L.; Colombo, R.; Serra, G.; Porrini, C.; Sangiorgi, S. Bioindicators and Biomonitoring: Honeybees and Hive Products as Pollution Impact Assessment Tools for the Mediterranean Area. Euro Mediterr. J. Environ. Integr. 2020, 5, 62. [Google Scholar] [CrossRef]
- Devillers, J.; Pham-Delègue, M.-H. Honey Bees: Estimating the Environmental Impact of Chemicals; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Bargańska, Ż.; Ślebioda, M.; Namieśnik, J. Honey Bees and Their Products: Bioindicators of Environmental Contamination. Crit. Rev. Environ. Sci. Technol. 2016, 46, 235–248. [Google Scholar] [CrossRef]
- Salkova, D.; Panayotova-Pencheva, M. Honey Bees and Their Products as Indicators of Environmental Pollution: A Review. Agric. Sci. Technol. 2016, 8, 175–182. [Google Scholar] [CrossRef]
- Resci, I.; Cilia, G. The Use of Honey Bee (Apis mellifera L.) as Biological Monitors for Pathogenic Bacteria and Antimicrobial Resistance: A Systematic Review. Environ. Pollut. 2023, 333, 122120. [Google Scholar] [CrossRef] [PubMed]
- Resci, I.; Zavatta, L.; Piva, S.; Mondo, E.; Albertazzi, S.; Nanetti, A.; Bortolotti, L.; Cilia, G. Predictive Statistical Models for Monitoring Antimicrobial Resistance Spread in the Environment Using Apis mellifera (L. 1758) Colonies. Environ. Res. 2024, 248, 118365. [Google Scholar] [CrossRef] [PubMed]
- Celli, G.; Maccagnani, B. Honey Bees as Bioindicators of Environmental Pollution. Bull. Insectology 2003, 56, 137–139. [Google Scholar]
- Gutiérrez, M.; Molero, R.; Gaju, M.; Van Der Steen, J.; Porrini, C.; Ruiz, J.A. Assessing Heavy Metal Pollution by Biomonitoring Honeybee Nectar in Córdoba (Spain). Environ. Sci. Pollut. Res. 2020, 27, 10436–10448. [Google Scholar] [CrossRef]
- Mair, K.S.; Irrgeher, J.; Haluza, D. Elucidating the Role of Honey Bees as Biomonitors in Environmental Health Research. Insects 2023, 14, 874. [Google Scholar] [CrossRef]
- Ward, L.T.; Hladik, M.L.; Guzman, A.; Winsemius, S.; Bautista, A.; Kremen, C.; Mills, N.J. Pesticide Exposure of Wild Bees and Honey Bees Foraging from Field Border Flowers in Intensively Managed Agriculture Areas. Sci. Total Environ. 2022, 831, 154697. [Google Scholar] [CrossRef]
- Zioga, E.; White, B.; Stout, J.C. Honey Bees and Bumble Bees May Be Exposed to Pesticides Differently When Foraging on Agricultural Areas. Sci. Total Environ. 2023, 896, 166214. [Google Scholar] [CrossRef]
- Raine, N.E.; Rundlöf, M. Pesticide Exposure and Effects on Non- Apis Bees. Annu. Rev. Entomol. 2024, 69, 551–576. [Google Scholar] [CrossRef]
- Antoine, C.M.; Forrest, J.R.K. Nesting Habitat of Ground-Nesting Bees: A Review. Ecol. Entomol. 2021, 46, 143–159. [Google Scholar] [CrossRef]
- Moritz, R.F.A.; Härtel, S.; Neumann, P. Global Invasions of the Western Honeybee (Apis mellifera) and the Consequences for Biodiversity. Écoscience 2005, 12, 289–301. [Google Scholar] [CrossRef]
- Breidenbach, L.R.; Benner, L.; Roß-Nickoll, M.; Linnemann, V.; Schäffer, A. Monitoring Metal Patterns from Urban and Agrarian Sites Using the Bumblebee Bombus terrestris as a Bioindicator. Environ. Sci. Pollut. Res. 2023, 30, 119947–119960. [Google Scholar] [CrossRef]
- Peterson, E.M.; Thompson, K.N.; Shaw, K.R.; Tomlinson, C.; Longing, S.D.; Smith, P.N. Use of Nest Bundles to Monitor Agrochemical Exposure and Effects among Cavity Nesting Pollinators. Environ. Pollut. 2021, 286, 117142. [Google Scholar] [CrossRef]
- Bonmatin, J.-M.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; Long, E.; Marzaro, M.; Mitchell, E.A.D.; et al. Environmental Fate and Exposure; Neonicotinoids and Fipronil. Environ. Sci. Pollut. Res. 2015, 22, 35–67. [Google Scholar] [CrossRef] [PubMed]
- Martinello, M.; Manzinello, C.; Dainese, N.; Giuliato, I.; Gallina, A.; Mutinelli, F. The Honey Bee: An Active Biosampler of Environmental Pollution and a Possible Warning Biomarker for Human Health. Appl. Sci. 2021, 11, 6481. [Google Scholar] [CrossRef]
- Corbet, S.A.; Beament, J.; Eisikowitch, D. Are Electrostatic Forces Involved in Pollen Transfer? Plant Cell Environ. 1982, 5, 125–129. [Google Scholar] [CrossRef]
- Vaknin, Y.; Gan-Mor, S.; Bechar, A.; Ronen, B.; Eisikowitch, D. The Role of Electrostatic Forces in Pollination. Plant Syst. Evol. 2000, 222, 133–142. [Google Scholar] [CrossRef]
- Clarke, D.; Whitney, H.; Sutton, G.; Robert, D. Detection and Learning of Floral Electric Fields by Bumblebees. Science 2013, 340, 66–69. [Google Scholar] [CrossRef]
- Clarke, D.; Morley, E.; Robert, D. The Bee, the Flower, and the Electric Field: Electric Ecology and Aerial Electroreception. J. Comp. Physiol. A 2017, 203, 737–748. [Google Scholar] [CrossRef]
- Montgomery, C.; Koh, K.; Robert, D. Measurement of Electric Charges on Foraging Bumblebees (Bombus terrestris). J. Phys. Conf. Ser. 2019, 1322, 012002. [Google Scholar] [CrossRef]
- Khatawkar, D.S.; James, S.P.; Dhalin, D. Role of Electrostatics in Artificial Pollination and Future Agriculture. Curr. Sci. 2021, 120, 484–491. [Google Scholar]
- Li, W.; Lu, L.; Liu, G.; Zhang, C.; Loos, K.; Pei, Y. Honeybee-Inspired Electrostatic Microparticle Manipulation System Based on Triboelectric Nanogenerator. Nano Energy 2022, 104, 107901. [Google Scholar] [CrossRef]
- England, S.J.; Robert, D. The Ecology of Electricity and Electroreception. Biol. Rev. 2022, 97, 383–413. [Google Scholar] [CrossRef] [PubMed]
- Greggers, U.; Koch, G.; Schmidt, V.; Dürr, A.; Floriou-Servou, A.; Piepenbrock, D.; Göpfert, M.C.; Menzel, R. Reception and Learning of Electric Fields in Bees. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130528. [Google Scholar] [CrossRef]
- Diaz, A.F.; Felix-Navarro, R.M. A Semi-Quantitative Tribo-Electric Series for Polymeric Materials: The Influence of Chemical Structure and Properties. J. Electrost. 2004, 62, 277–290. [Google Scholar] [CrossRef]
- Palmer, R.A.; O’Reilly, L.J.; Carpenter, J.; Chenchiah, I.V.; Robert, D. An Analysis of Time-Varying Dynamics in Electrically Sensitive Arthropod Hairs to Understand Real-World Electrical Sensing. J. R. Soc. Interface 2023, 20, 20230177. [Google Scholar] [CrossRef]
- Bowker, G.E.; Crenshaw, H.C. Electrostatic Forces in Wind-Pollination—Part 1: Measurement of the Electrostatic Charge on Pollen. Atmos. Environ. 2007, 41, 1587–1595. [Google Scholar] [CrossRef]
- Murray, J.S.; Politzer, P. The Electrostatic Potential: An Overview. WIREs Comput. Mol. Sci. 2011, 1, 153–163. [Google Scholar] [CrossRef]
- Gadre, S.R.; Bhadane, P.K. Electrostatics in Chemistry: 1. Basic Principles. Resonance 1999, 4, 8–19. [Google Scholar] [CrossRef]
- Inchaussandague, M.; Skigin, D.; Dolinko, A.; Tellería, M.C.; Barreda, V.; Palazzesi, L. Spines, Microspines and Electric Fields: A New Look at the Possible Significance of Sculpture in Pollen of Basal and Derived Asteraceae. Biol. J. Linn. Soc. 2018, 125, 794–801. [Google Scholar] [CrossRef]
- Lee, P.F.; Cheong, K.K.; Hong, Y.S.; Chong, Y.Z. Surface Charge Study on Pollen with a Simple Microelectrophoresis Instrumentation Setup. In Proceedings of the 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 30 November–2 December 2010; pp. 364–368. [Google Scholar]
- Vaknin, Y.; Gan-mor, S.; Bechar, A.; Ronen, B.; Eisikowitch, D. Are Flowers Morphologically Adapted to Take Advantage of Electrostatic Forces in Pollination? New Phytol. 2001, 152, 301–306. [Google Scholar] [CrossRef]
- Ariizumi, T.; Toriyama, K. Genetic Regulation of Sporopollenin Synthesis and Pollen Exine Development. Annu. Rev. Plant Biol. 2011, 62, 437–460. [Google Scholar] [CrossRef] [PubMed]
- Gezici, O.; Küçükosmanoğlu, M.; Ayar, A. The Adsorption Behavior of Crystal Violet in Functionalized Sporopollenin-Mediated Column Arrangements. J. Colloid Interface Sci. 2006, 304, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.-F.; Xiang, S.; Li, L.; Xie, X.-W.; Chai, A.-L.; Shi, Y.-X.; Liu, N.; Abdukerim, R.; Ma, J.-Y.; Shi, J.; et al. Fabrication of Ultrafine Sporopollenin Particles and Its Application as Pesticide Carrier. Appl. Mater. Today 2022, 27, 101454. [Google Scholar] [CrossRef]
- Uddin, M.J.; Liyanage, S.; Warzywoda, J.; Abidi, N.; Gill, H.S. Role of Sporopollenin Shell Interfacial Properties in Protein Adsorption. Langmuir 2022, 38, 2763–2776. [Google Scholar] [CrossRef]
- Matehkolaee, M.J.; Asrami, A.N. The Review on The Charge Distribution on The Conductor Surface. Eur. J. Phys. Educ. 2013, 4, 1–6. [Google Scholar]
- Chaloner, W.G. Elecrostatic Forces in Insect Pollination and Their Significance in Exine Ornament. In Linnean Society Symposium Series; Academic Press: London, UK, 1986; Volume 12, pp. 103–108. [Google Scholar]
- Bowling, R.A. A Theoretical Review of Particle Adhesion. In Particles on Surfaces 1; Mittal, K.L., Ed.; Springer: Boston, MA, USA, 1988; pp. 129–142. ISBN 978-1-4615-9533-5. [Google Scholar]
- Timerman, D.; Barrett, S.C.H. The Biomechanics of Pollen Release: New Perspectives on the Evolution of Wind Pollination in Angiosperms. Biol. Rev. 2021, 96, 2146–2163. [Google Scholar] [CrossRef]
- Hermann, J.; DiStasio, R.A.; Tkatchenko, A. First-Principles Models for van Der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chem. Rev. 2017, 117, 4714–4758. [Google Scholar] [CrossRef]
- Lin, H.; Gomez, I.; Meredith, J.C. Pollenkitt Wetting Mechanism Enables Species-Specific Tunable Pollen Adhesion. Langmuir 2013, 29, 3012–3023. [Google Scholar] [CrossRef]
- Boi, M. Pollen Attachment in Common Materials. Aerobiologia 2015, 31, 261–270. [Google Scholar] [CrossRef]
- Thio, B.J.R.; Lee, J.-H.; Meredith, J.C. Characterization of Ragweed Pollen Adhesion to Polyamides and Polystyrene Using Atomic Force Microscopy. Environ. Sci. Technol. 2009, 43, 4308–4313. [Google Scholar] [CrossRef]
- Ito, S.; Gorb, S.N. Attachment-Based Mechanisms Underlying Capture and Release of Pollen Grains. J. R. Soc. Interface 2019, 16, 20190269. [Google Scholar] [CrossRef]
- Shi, Y.; Li, C.; Fang, M.; Cen, J.; Wang, Q.; Yan, K. Numerical Investigation of Particle Re-Entrainment Mechanism and Its Suppression Strategy in the High-Temperature Electrostatic Precipitator. Powder Technol. 2024, 437, 119538. [Google Scholar] [CrossRef]
- Feng, J.Q.; Hays, D.A. Relative Importance of Electrostatic Forces on Powder Particles. Powder Technol. 2003, 135, 65–75. [Google Scholar] [CrossRef]
- Hao, K.; Tian, Z.-X.; Wang, Z.-C.; Huang, S.-Q. Pollen Grain Size Associated with Pollinator Feeding Strategy. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201191. [Google Scholar] [CrossRef] [PubMed]
- Zeghloul, T.; Mekhalef Benhafssa, A.; Richard, G.; Medles, K.; Dascalescu, L. Effect of Particle Size on the Tribo-Aero-Electrostatic Separation of Plastics. J. Electrost. 2017, 88, 24–28. [Google Scholar] [CrossRef]
- Buchmann, S.L.; Hurley, J.P. A Biophysical Model for Buzz Pollination in Angiosperms. J. Theor. Biol. 1978, 72, 639–657. [Google Scholar] [CrossRef]
- Buchmann, S.L. Buzz Pollination in Angiosperms. In Handbook of Experimental Pollination Biology: 73; Jones, C.E., Little, R.J., Eds.; Scientific and Academic Editions: New York, NY, USA, 1983; pp. 73–113. [Google Scholar]
- Portman, Z.M.; Orr, M.C.; Griswold, T. A Review and Updated Classification of Pollen Gathering Behavior in Bees (Hymenoptera, Apoidea). J. Hymenopt. Res. 2019, 71, 171–208. [Google Scholar] [CrossRef]
- Southwick, E.E. Bee Hair Structure and the Effect of Hair on Metabolism at Low Temperature. J. Apic. Res. 1985, 24, 144–149. [Google Scholar] [CrossRef]
- Amador, G.J.; Matherne, M.; Waller, D.; Mathews, M.; Gorb, S.N.; Hu, D.L. Honey Bee Hairs and Pollenkitt Are Essential for Pollen Capture and Removal. Bioinspir. Biomim. 2017, 12, 026015. [Google Scholar] [CrossRef]
- Koh, K.; Robert, D. Bumblebee Hairs as Electric and Air Motion Sensors: Theoretical Analysis of an Isolated Hair. J. R. Soc. Interface 2020, 17, 20200146. [Google Scholar] [CrossRef]
- Roquer-Beni, L.; Rodrigo, A.; Arnan, X.; Klein, A.; Fornoff, F.; Boreux, V.; Bosch, J. A Novel Method to Measure Hairiness in Bees and Other Insect Pollinators. Ecol. Evol. 2020, 10, 2979–2990. [Google Scholar] [CrossRef]
- Devarrewaere, W.; Foqué, D.; Nicolai, B.; Nuyttens, D.; Verboven, P. Eulerian-Lagrangian CFD Modelling of Pesticide Dust Emissions from Maize Planters. Atmos. Environ. 2018, 184, 304–314. [Google Scholar] [CrossRef]
- Leite, M.O.G.; Alves, D.A.; Lecocq, A.; Malaquias, J.B.; Delalibera, I.; Jensen, A.B. Laboratory Risk Assessment of Three Entomopathogenic Fungi Used for Pest Control toward Social Bee Pollinators. Microorganisms 2022, 10, 1800. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. Insects Are Electrified in an Electric Field by Deprivation of Their Negative Charge. Ann. Appl. Biol. 2012, 160, 250–259. [Google Scholar] [CrossRef]
- Perugini, M.; Manera, M.; Grotta, L.; Abete, M.C.; Tarasco, R.; Amorena, M. Heavy Metal (Hg, Cr, Cd, and Pb) Contamination in Urban Areas and Wildlife Reserves: Honeybees as Bioindicators. Biol. Trace Elem. Res. 2011, 140, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.; Guimarães, F.; Duque, L.; Noronha, F.; Abreu, I. Characterisation of Particulate Matter on Airborne Pollen Grains. Environ. Pollut. 2015, 206, 7–16. [Google Scholar] [CrossRef]
- Okuyama, Y.; Matsumoto, K.; Okochi, H.; Igawa, M. Adsorption of Air Pollutants on the Grain Surface of Japanese Cedar Pollen. Atmos. Environ. 2007, 41, 253–260. [Google Scholar] [CrossRef]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and Environmental Effects of Heavy Metals. J. King Saud Univ. Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as Vector for Heavy Metal Contamination from the Marine Environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Kiran; Bharti, R.; Sharma, R. Effect of Heavy Metals: An Overview. Mater. Today Proc. 2022, 51, 880–885. [Google Scholar] [CrossRef]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy Metal Pollution and Human Biotoxic Effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy Metals and Living Systems: An Overview. Indian J. Pharmacol. 2011, 43, 246. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Molero, R.; Gaju, M.; Van Der Steen, J.; Porrini, C.; Ruiz, J.A. Assessment of Heavy Metal Pollution in Córdoba (Spain) by Biomonitoring Foraging Honeybee. Environ. Monit. Assess. 2015, 187, 651. [Google Scholar] [CrossRef]
- Veleminsky, M.; Láznička, P.; Starý, P. Honeybees (Apis mellifera) as Environmental Monitors of Heavy Metals. Acta Entomol. Bohemoslov 1990, 87, 37–44. [Google Scholar]
- Leita, L.; Muhlbachova, G.; Cesco, S.; Barbattini, R.; Mondini, C. Investigation of the Use of Honey Bees and Honey Bee Products to Assess Heavy Metals Contamination. Environ. Monit. Assess. 1996, 43, 1–9. [Google Scholar] [CrossRef]
- Conti, M.E.; Botrè, F. Honeybees and Their Products as Potential Bioindicators of Heavy Metals Contamination. Environ. Monit. Assess. 2001, 69, 267–282. [Google Scholar] [CrossRef]
- Roman, A. Levels of Copper, Selenium, Lead, and Cadmium in Forager Bees. Pol. J. Environ. Stud. 2010, 19, 663–669. [Google Scholar]
- Van Der Steen, J.J.M.; De Kraker, J.; Grotenhuis, T. Spatial and Temporal Variation of Metal Concentrations in Adult Honeybees (Apis mellifera L.). Environ. Monit. Assess. 2012, 184, 4119–4126. [Google Scholar] [CrossRef] [PubMed]
- Al Naggar, Y.A.; Naiem, E.-S.A.; Seif, A.I.; Mona, M.H. Honey Bees and Their Products as a Bio-in-Dicator of Environmental Pollution with Heavy Metals. Mellifera 2013, 13, 1–20. [Google Scholar]
- Ruschioni, S.; Riolo, P.; Minuz, R.L.; Stefano, M.; Cannella, M.; Porrini, C.; Isidoro, N. Biomonitoring with Honeybees of Heavy Metals and Pesticides in Nature Reserves of the Marche Region (Italy). Biol. Trace Elem. Res. 2013, 154, 226–233. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M. The Use of Honeybees and Honey as Environmental Bioindicators for Metals and Radionuclides: A Review. Environ. Rev. 2017, 25, 463–480. [Google Scholar] [CrossRef]
- Zarić, N.M.; Ilijević, K.; Stanisavljević, L.; Gržetić, I. Use of Honeybees (Apis mellifera L.) as Bioindicators for Assessment and Source Appointment of Metal Pollution. Environ. Sci. Pollut. Res. 2017, 24, 25828–25838. [Google Scholar] [CrossRef]
- Costa, A.; Veca, M.; Barberis, M.; Tosti, A.; Notaro, G.; Nava, S.; Lazzari, M.; Agazzi, A.; Tangorra, F.M. Heavy Metals on Honeybees Indicate Their Concentration in the Atmosphere. A Proof of Concept. Ital. J. Anim. Sci. 2019, 18, 309–315. [Google Scholar] [CrossRef]
- Di Fiore, C.; Nuzzo, A.; Torino, V.; De Cristofaro, A.; Notardonato, I.; Passarella, S.; Di Giorgi, S.; Avino, P. Honeybees as Bioindicators of Heavy Metal Pollution in Urban and Rural Areas in the South of Italy. Atmosphere 2022, 13, 624. [Google Scholar] [CrossRef]
- Zarić, N.M.; Brodschneider, R.; Goessler, W. Honey Bees as Biomonitors—Variability in the Elemental Composition of Individual Bees. Environ. Res. 2022, 204, 112237. [Google Scholar] [CrossRef]
- Di Fiore, C.; De Cristofaro, A.; Nuzzo, A.; Notardonato, I.; Ganassi, S.; Iafigliola, L.; Sardella, G.; Ciccone, M.; Nugnes, D.; Passarella, S.; et al. Biomonitoring of Polycyclic Aromatic Hydrocarbons, Heavy Metals, and Plasticizers Residues: Role of Bees and Honey as Bioindicators of Environmental Contamination. Environ. Sci. Pollut. Res. 2023, 30, 44234–44250. [Google Scholar] [CrossRef]
- Meza-Figueroa, D.; Berrellez-Reyes, F.; Schiavo, B.; Morton-Bermea, O.; Gonzalez-Grijalva, B.; Inguaggiato, C.; Silva-Campa, E. Tracking Fine Particles in Urban and Rural Environments Using Honey Bees as Biosamplers in Mexico. Chemosphere 2024, 363, 142881. [Google Scholar] [PubMed]
- Wang, J.; Chen, C. Biosorbents for Heavy Metals Removal and Their Future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Zeng, G.; He, Y.; Liang, D.; Wang, F.; Luo, Y.; Yang, H.; Wang, Q.; Wang, J.; Gao, P.; Wen, X.; et al. Adsorption of Heavy Metal Ions Copper, Cadmium and Nickel by Microcystis Aeruginosa. Int. J. Environ. Res. Public. Health 2022, 19, 13867. [Google Scholar] [CrossRef]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A Global Perspective on Microplastics. J. Geophys. Res. Ocean. 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Lai, H.; Liu, X.; Qu, M. Nanoplastics and Human Health: Hazard Identification and Biointerface. Nanomaterials 2022, 12, 1298. [Google Scholar] [CrossRef]
- Luo, H.; Zhao, Y.; Li, Y.; Xiang, Y.; He, D.; Pan, X. Aging of Microplastics Affects Their Surface Properties, Thermal Decomposition, Additives Leaching and Interactions in Simulated Fluids. Sci. Total Environ. 2020, 714, 136862. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liu, F.; Cryder, Z.; Huang, D.; Lu, Z.; He, Y.; Wang, H.; Lu, Z.; Brookes, P.C.; Tang, C.; et al. Microplastics in the Soil Environment: Occurrence, Risks, Interactions and Fate—A Review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2175–2222. [Google Scholar] [CrossRef]
- Lin, Z.; Jin, T.; Zou, T.; Xu, L.; Xi, B.; Xu, D.; He, J.; Xiong, L.; Tang, C.; Peng, J.; et al. Current Progress on Plastic/Microplastic Degradation: Fact Influences and Mechanism. Environ. Pollut. 2022, 304, 119159. [Google Scholar] [CrossRef]
- Zhang, K.; Hamidian, A.H.; Tubić, A.; Zhang, Y.; Fang, J.K.H.; Wu, C.; Lam, P.K.S. Understanding Plastic Degradation and Microplastic Formation in the Environment: A Review. Environ. Pollut. 2021, 274, 116554. [Google Scholar] [CrossRef]
- Prata, J.C.; Da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental Exposure to Microplastics: An Overview on Possible Human Health Effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Prata, J.C.; Da Costa, J.P.; Lopes, I.; Andrady, A.L.; Duarte, A.C.; Rocha-Santos, T. A One Health Perspective of the Impacts of Microplastics on Animal, Human and Environmental Health. Sci. Total Environ. 2021, 777, 146094. [Google Scholar] [CrossRef]
- Dong, X.; Liu, X.; Hou, Q.; Wang, Z. From Natural Environment to Animal Tissues: A Review of Microplastics (Nanoplastics) Translocation and Hazards Studies. Sci. Total Environ. 2023, 855, 158686. [Google Scholar] [CrossRef] [PubMed]
- Jemec Kokalj, A.; Kuehnel, D.; Puntar, B.; Žgajnar Gotvajn, A.; Kalčikova, G. An Exploratory Ecotoxicity Study of Primary Microplastics versus Aged in Natural Waters and Wastewaters. Environ. Pollut. 2019, 254, 112980. [Google Scholar] [CrossRef] [PubMed]
- Akhbarizadeh, R.; Moore, F.; Keshavarzi, B. Investigating Microplastics Bioaccumulation and Biomagnification in Seafood from the Persian Gulf: A Threat to Human Health? Food Addit. Contam. Part A 2019, 36, 1696–1708. [Google Scholar] [CrossRef] [PubMed]
- Krause, S.; Baranov, V.; Nel, H.A.; Drummond, J.D.; Kukkola, A.; Hoellein, T.; Sambrook Smith, G.H.; Lewandowski, J.; Bonet, B.; Packman, A.I.; et al. Gathering at the Top? Environmental Controls of Microplastic Uptake and Biomagnification in Freshwater Food Webs. Environ. Pollut. 2021, 268, 115750. [Google Scholar] [CrossRef]
- Harrison, J.P.; Hoellein, T.J.; Sapp, M.; Tagg, A.S.; Ju-Nam, Y.; Ojeda, J.J. Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments. Freshw. Microplastics Emerg. Environ. Contam. 2018, 58, 181–201. [Google Scholar]
- McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J. Microplastic Is an Abundant and Distinct Microbial Habitat in an Urban River. Environ. Sci. Technol. 2014, 48, 11863–11871. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as Contaminants in the Soil Environment: A Mini-Review. Sci. Total Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural Plastic Mulching as a Source of Microplastics in the Terrestrial Environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Ya, H.; Jiang, B.; Xing, Y.; Zhang, T.; Lv, M.; Wang, X. Recent Advances on Ecological Effects of Microplastics on Soil Environment. Sci. Total Environ. 2021, 798, 149338. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Corrales, L.; Flores, J.J.; Rosa, A.; Van Der Steen, J.J.M.; Vejsnæs, F.; Roessink, I.; Martínez-Bueno, M.J.; Fernández-Alba, A.R. Evaluation of Microplastic Pollution Using Bee Colonies: An Exploration of Various Sampling Methodologies. Environ. Pollut. 2024, 350, 124046. [Google Scholar] [CrossRef] [PubMed]
- Schiano, M.E.; D’Auria, L.J.; D’Auria, R.; Seccia, S.; Rofrano, G.; Signorelli, D.; Sansone, D.; Caprio, E.; Albrizio, S.; Cocca, M. Microplastic Contamination in the Agri-Food Chain: The Case of Honeybees and Beehive Products. Sci. Total Environ. 2024, 948, 174698. [Google Scholar] [CrossRef]
- Chen, G.; Fu, Z.; Yang, H.; Wang, J. An Overview of Analytical Methods for Detecting Microplastics in the Atmosphere. TrAC Trends Anal. Chem. 2020, 130, 115981. [Google Scholar] [CrossRef]
- Liebezeit, G.; Liebezeit, E. Origin of Synthetic Particles in Honeys. Pol. J. Food Nutr. Sci. 2015, 65, 143–147. [Google Scholar] [CrossRef]
- Al Naggar, Y.; Brinkmann, M.; Sayes, C.M.; AL-Kahtani, S.N.; Dar, S.A.; El-Seedi, H.R.; Grünewald, B.; Giesy, J.P. Are Honey Bees at Risk from Microplastics? Toxics 2021, 9, 109. [Google Scholar] [CrossRef]
- Buteler, M.; Villalobos, E.; Alma, A.M.; Silva, L.; Tomba, J.P. Management Practice for Small Hive Beetle as a Source of Microplastic Contamination in Honey and Honeybee Colonies. Environ. Pollut. 2023, 334, 122151. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Lin, S.; Turner, J.P.; Ke, P.C. Physical Adsorption of Charged Plastic Nanoparticles Affects Algal Photosynthesis. J. Phys. Chem. C 2010, 114, 16556–16561. [Google Scholar] [CrossRef]
- Kalčíková, G. Aquatic Vascular Plants—A Forgotten Piece of Nature in Microplastic Research. Environ. Pollut. 2020, 262, 114354. [Google Scholar] [CrossRef]
- Mizukami-Murata, S.; Suzuki, Y.; Sakurai, K.; Yamashita, H. Freshwater Alga Raphidocelis subcapitata Undergoes Metabolomic Changes in Response to Electrostatic Adhesion by Micrometer-Sized Nylon 6 Particles. Environ. Sci. Pollut. Res. 2021, 28, 66901–66913. [Google Scholar] [CrossRef]
- Kalčíková, G. Beyond Ingestion: Adhesion of Microplastics to Aquatic Organisms. Aquat. Toxicol. 2023, 258, 106480. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Xiang, L.; Bian, Y.; Wang, Z.; Srivastava, P.; Jiang, X.; Xing, B. Attachment of Positively and Negatively Charged Submicron Polystyrene Plastics on Nine Typical Soils. J. Hazard. Mater. 2022, 431, 128566. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Park, J.K.; Jeon, H.S.; Chun, B.C. Triboelectric Series and Charging Properties of Plastics Using the Designed Vertical-Reciprocation Charger. J. Electrost. 2008, 66, 578–583. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A.C.; Xu, C.; et al. Quantifying the Triboelectric Series. Nat. Commun. 2019, 10, 1427. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dou, M.; Ren, P.; Sun, B.; Jia, R.; Zhou, Y. Settling Velocity of Irregularly Shaped Microplastics under Steady and Dynamic Flow Conditions. Environ. Sci. Pollut. Res. 2021, 28, 62116–62132. [Google Scholar] [CrossRef]
- Yurtsever, M. Glitters as a Source of Primary Microplastics: An Approach to Environmental Responsibility and Ethics. J. Agric. Environ. Ethics 2019, 32, 459–478. [Google Scholar] [CrossRef]
- Balloux, F.; Van Dorp, L. Q&A: What Are Pathogens, and What Have They Done to and for Us? BMC Biol. 2017, 15, 91. [Google Scholar] [CrossRef]
- Scholthof, K.-B.G. The Disease Triangle: Pathogens, the Environment and Society. Nat. Rev. Microbiol. 2007, 5, 152–156. [Google Scholar] [CrossRef]
- Tomley, F.M.; Shirley, M.W. Livestock Infectious Diseases and Zoonoses. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2637–2642. [Google Scholar] [CrossRef]
- Karesh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of Zoonoses: Natural and Unnatural Histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and Control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef]
- Colla, S.R.; Otterstatter, M.C.; Gegear, R.J.; Thomson, J.D. Plight of the Bumble Bee: Pathogen Spillover from Commercial to Wild Populations. Biol. Conserv. 2006, 129, 461–467. [Google Scholar] [CrossRef]
- Genersch, E. Honey Bee Pathology: Current Threats to Honey Bees and Beekeeping. Appl. Microbiol. Biotechnol. 2010, 87, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.M.; Loh, E.H.; Rostal, M.K.; Zambrana-Torrelio, C.M.; Mendiola, L.; Daszak, P. Pathogens, Pests, and Economics: Drivers of Honey Bee Colony Declines and Losses. EcoHealth 2013, 10, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Fünfhaus, A.; Ebeling, J.; Genersch, E. Bacterial Pathogens of Bees. Curr. Opin. Insect Sci. 2018, 26, 89–96. [Google Scholar] [CrossRef]
- Straub, L.; Strobl, V.; Yañez, O.; Albrecht, M.; Brown, M.J.F.; Neumann, P. Do Pesticide and Pathogen Interactions Drive Wild Bee Declines? Int. J. Parasitol. Parasites Wildl. 2022, 18, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Fronczek, C.F.; Yoon, J.-Y. Biosensors for Monitoring Airborne Pathogens. SLAS Technol. 2015, 20, 390–410. [Google Scholar] [CrossRef]
- Ghini, S.; Girotti, S.; Calzolari, A.; Sabatini, A.G.; Alessandrini, A.; Zeri, L.; Porrini, C. Use of Honeybees (Apis mellifera L.) as Indicators of the Presence of the Phytopathogenic Bacteria Erwinia amylovora. In Freshwater Microplastics: Emerging Environmental Contaminants? Wagner, M., Lambert, S., Eds.; Springer: Cham, Switzerland, 2002; pp. 69–77. [Google Scholar]
- Sabatini, A.G.; Alexandrova, M.; Carpana, E.; Medrzycki, P.; Bortolotti, L.; Ghini, S.; Girotti, S.; Porrini, C.; Bazzi, C.; Baroni, F.; et al. Relationships between Apis mellifera and Erwinia amylovora: Bioindication, Bacterium Dispersal and Quarantine Procedures. Acta Hortic. 2006, 704, 155–162. [Google Scholar] [CrossRef]
- Cilia, G.; Resci, I.; Scarpellini, R.; Zavatta, L.; Albertazzi, S.; Bortolotti, L.; Nanetti, A.; Piva, S. Antimicrobial-Resistant Environmental Bacteria Isolated Using a Network of Honey Bee Colonies (Apis mellifera L. 1758). Transbound. Emerg. Dis. 2023, 2023, 1–10. [Google Scholar] [CrossRef]
- Tremblay, É.D.; Duceppe, M.O.; Thurston, G.B.; Gagnon, M.C.; Côté, M.J.; Bilodeau, G.J. High-resolution Biomonitoring of Plant Pathogens and Plant Species Using Metabarcoding of Pollen Pellet Contents Collected from a Honey Bee Hive. Environ. DNA 2019, 1, 155–175. [Google Scholar] [CrossRef]
- Bilodeau, G.J.; Rott, M.; Guarna, M.M.; Pernal, S.F.; Griffiths, J. High-Throughput Sequencing (HTS) of Bees and Pollen for Biosurveillance of Agricultural Pathogens and Invasive Species. In Proceedings of the Plant Health 2020, Online, 10–14 August 2020. [Google Scholar]
- Roberts, J.M.K.; Ireland, K.B.; Tay, W.T.; Paini, D. Honey Bee-assisted Surveillance for Early Plant Virus Detection. Ann. Appl. Biol. 2018, 173, 285–293. [Google Scholar] [CrossRef]
- Cilia, G.; Bortolotti, L.; Albertazzi, S.; Ghini, S.; Nanetti, A. Honey Bee (Apis mellifera L.) Colonies as Bioindicators of Environmental SARS-CoV-2 Occurrence. Sci. Total Environ. 2022, 805, 150327. [Google Scholar] [CrossRef]
- Roberts, J.M.K.; Jooste, A.E.C.; Pretorius, L.-S.; Geering, A.D.W. Surveillance for Avocado Sunblotch Viroid Utilizing the European Honey Bee (Apis mellifera). Phytopathology 2023, 113, 559–566. [Google Scholar] [CrossRef]
- Brunt, A.A.; Crabtree, K.; Dallwitz, M.J.; Gibbs, A.J.; Watson, L. Viruses of Plants; CAB International: Wallingford, UK, 1996; p. 1484. [Google Scholar]
- Card, S.D.; Pearson, M.N.; Clover, G.R.G. Plant Pathogens Transmitted by Pollen. Australas. Plant Pathol. 2007, 36, 455. [Google Scholar] [CrossRef]
- Pattemore, D.E.; Goodwin, R.M.; McBrydie, H.M.; Hoyte, S.M.; Vanneste, J.L. Evidence of the Role of Honey Bees (Apis mellifera) as Vectors of the Bacterial Plant Pathogen Pseudomonas syringae. Australas. Plant Pathol. 2014, 43, 571–575. [Google Scholar] [CrossRef]
- Van Loosdrecht, M.C.M.; Lyklema, J.; Norde, W.; Zehnder, A.J.B. Bacterial Adhesion: A Physicochemical Approach. Microb. Ecol. 1989, 17, 1–15. [Google Scholar] [CrossRef]
- Poortinga, A.T.; Smit, J.; Van Der Mei, H.C.; Busscher, H.J. Electric Field Induced Desorption of Bacteria from a Conditioning Film Covered Substratum. Biotechnol. Bioeng. 2001, 76, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.; Yiacoumi, S.; Lee, I.; Tsouris, C. The Role of the Electrostatic Force in Spore Adhesion. Environ. Sci. Technol. 2010, 44, 6209–6214. [Google Scholar] [CrossRef]
- Kalasin, S.; Dabkowski, J.; Nüsslein, K.; Santore, M.M. The Role of Nano-Scale Heterogeneous Electrostatic Interactions in Initial Bacterial Adhesion from Flow: A Case Study with Staphylococcus aureus. Colloids Surf. B Biointerfaces 2010, 76, 489–495. [Google Scholar] [CrossRef]
- Hori, K.; Matsumoto, S. Bacterial Adhesion: From Mechanism to Control. Biochem. Eng. J. 2010, 48, 424–434. [Google Scholar] [CrossRef]
- Zhao, W.; Walker, S.L.; Huang, Q.; Cai, P. Adhesion of Bacterial Pathogens to Soil Colloidal Particles: Influences of Cell Type, Natural Organic Matter, and Solution Chemistry. Water Res. 2014, 53, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; O’Shea, P. The Electrostatic Nature of the Cell Surface of Candida albicans: A Role in Adhesion. Exp. Mycol. 1994, 18, 111–120. [Google Scholar] [CrossRef]
- Dunlap, C.A.; Biresaw, G.; Jackson, M.A. Hydrophobic and Electrostatic Cell Surface Properties of Blastospores of the Entomopathogenic Fungus Paecilomyces fumosoroseus. Colloids Surf. B Biointerfaces 2005, 46, 261–266. [Google Scholar] [CrossRef]
- Wargenau, A.; Fleißner, A.; Bolten, C.J.; Rohde, M.; Kampen, I.; Kwade, A. On the Origin of the Electrostatic Surface Potential of Aspergillus niger Spores in Acidic Environments. Res. Microbiol. 2011, 162, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Vasselli, J.G.; Shaw, B.D. Fungal Spore Attachment to Substrata. Fungal Biol. Rev. 2022, 41, 2–9. [Google Scholar] [CrossRef]
- Dika, C.; Ly-Chatain, M.H.; Francius, G.; Duval, J.F.L.; Gantzer, C. Non-DLVO Adhesion of F-Specific RNA Bacteriophages to Abiotic Surfaces: Importance of Surface Roughness, Hydrophobic and Electrostatic Interactions. Colloids Surf. Physicochem. Eng. Asp. 2013, 435, 178–187. [Google Scholar] [CrossRef]
- Xie, L.; Liu, F.; Liu, J.; Zeng, H. A Nanomechanical Study on Deciphering the Stickiness of SARS-CoV-2 on Inanimate Surfaces. ACS Appl. Mater. Interfaces 2020, 12, 58360–58368. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Batys, P.; Barbasz, J. SARS-CoV-2 Virion Physicochemical Characteristics Pertinent to Abiotic Substrate Attachment. Curr. Opin. Colloid Interface Sci. 2021, 55, 101466. [Google Scholar] [CrossRef]
- Gan, H.H.; Zinno, J.; Piano, F.; Gunsalus, K.C. Omicron Spike Protein Has a Positive Electrostatic Surface That Promotes ACE2 Recognition and Antibody Escape. Front. Virol. 2022, 2, 894531. [Google Scholar] [CrossRef]
- Lauster, D.; Osterrieder, K.; Haag, R.; Ballauff, M.; Herrmann, A. Respiratory Viruses Interacting with Cells: The Importance of Electrostatics. Front. Microbiol. 2023, 14, 1169547. [Google Scholar] [CrossRef]
- Tontou, R.; Giovanardi, D.; Stefani, E. Pollen as a Possible Pathway for the Dissemination of Pseudomonas syringae Pv. Actinidiae and Bacterial Canker of Kiwifruit. Phytopathol. Mediterr. 2014, 53, 333–339. [Google Scholar]
- Bhat, A.I.; Rao, G.P. Characterization of Plant Viruses: Methods and Protocols; Springer Protocols Handbooks; Springer: New York, NY, USA, 2020; ISBN 978-1-07-160333-8. [Google Scholar]
- Mateu, M.G. Assembly, Stability and Dynamics of Virus Capsids. Arch. Biochem. Biophys. 2013, 531, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Halbwachs, H. Gone with the Wind—A Review on Basidiospores of Lamellate Agarics. Mycosphere 2015, 6, 78–112. [Google Scholar] [CrossRef]
- Calhim, S.; Halme, P.; Petersen, J.H.; Læssøe, T.; Bässler, C.; Heilmann-Clausen, J. Fungal Spore Diversity Reflects Substrate-Specific Deposition Challenges. Sci. Rep. 2018, 8, 5356. [Google Scholar] [CrossRef]
- Sternberg, A.; Naujokat, C. Structural Features of Coronavirus SARS-CoV-2 Spike Protein: Targets for Vaccination. Life Sci. 2020, 257, 118056. [Google Scholar] [CrossRef]
- Vogt, V.M. Retroviral Virions and Genomes. Retroviruses 1997, 1, 27–69. [Google Scholar]
- Hashimi, M.H.; Hashimi, R.; Ryan, Q. Toxic Effects of Pesticides on Humans, Plants, Animals, Pollinators and Beneficial Organisms. Asian Plant Res. J. 2020, 5, 37–47. [Google Scholar] [CrossRef]
- Hassan, A.S. Inorganic-Based Pesticides: A Review Article. Egypt Sci. J. Pestic. 2019, 5, 39–52. [Google Scholar]
- Abati, R.; Sampaio, A.R.; Maciel, R.M.A.; Colombo, F.C.; Libardoni, G.; Battisti, L.; Lozano, E.R.; Ghisi, N.D.C.; Costa-Maia, F.M.; Potrich, M. Bees and Pesticides: The Research Impact and Scientometrics Relations. Environ. Sci. Pollut. Res. 2021, 28, 32282–32298. [Google Scholar] [CrossRef]
- Niell, S.; Jesús, F.; Pérez, N.; Pérez, C.; Pareja, L.; Abbate, S.; Carrasco-Letelier, L.; Díaz, S.; Mendoza, Y.; Cesio, V.; et al. Neonicotinoids Transference from the Field to the Hive by Honey Bees: Towards a Pesticide Residues Biomonitor. Sci. Total Environ. 2017, 581, 25–31. [Google Scholar] [CrossRef]
- Niell, S.; Jesús, F.; Díaz, R.; Mendoza, Y.; Notte, G.; Santos, E.; Gérez, N.; Cesio, V.; Cancela, H.; Heinzen, H. Beehives Biomonitor Pesticides in Agroecosystems: Simple Chemical and Biological Indicators Evaluation Using Support Vector Machines (SVM). Ecol. Indic. 2018, 91, 149–154. [Google Scholar] [CrossRef]
- Šlachta, M.; Erban, T.; Votavová, A.; Bešta, T.; Skalský, M.; Václavíková, M.; Halešová, T.; Edwards-Jonášová, M.; Včeláková, R.; Cudlín, P. Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticides—An Urban-Rural Case Study Using a Red Mason Bee Species for Biomonitoring. Sustainability 2020, 12, 9427. [Google Scholar] [CrossRef]
- Jurak, G.; Bosnir, J.; Racz, A.; Brkic, D.; Prskalo, I.; Kis, D.; Ozimec, S.; Kalambura, S. Bioindicator Detection of Pesticide Residues in the Environment Using Honey Bees. Environ. Prot. Ecol. 2021, 22, 458–466. [Google Scholar]
- Hooven, L.A.; Chakrabarti, P.; Harper, B.J.; Sagili, R.R.; Harper, S.L. Potential Risk to Pollinators from Nanotechnology-Based Pesticides. Molecules 2019, 24, 4458. [Google Scholar] [CrossRef]
- Whitmore, L.F.; Hughes, J.F.; Harrison, N.; Abela, M.; O’Rourke, P. Enhanced Efficiency of Electrostatically Charged Insecticide Aerosols. Pest Manag. Sci. 2001, 57, 432–436. [Google Scholar] [CrossRef]
- Zhao, S.; Castle, G.S.P.; Adamiak, K. Factors Affecting Deposition in Electrostatic Pesticide Spraying. J. Electrost. 2008, 66, 594–601. [Google Scholar] [CrossRef]
- Latheef, M.A.; Carlton, J.B.; Kirk, I.W.; Hoffmann, W.C. Aerial Electrostatic-charged Sprays for Deposition and Efficacy against Sweet Potato Whitefly (Bemisia tabaci) on Cotton. Pest Manag. Sci. 2009, 65, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Appah, S.; Wang, P.; Ou, M.; Gong, C.; Jia, W. Review of Electrostatic System Parameters, Charged Droplets Characteristics and Substrate Impact Behavior from Pesticides Spraying. Int. J. Agric. Biol. Eng. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Socorro, J.; Durand, A.; Temime-Roussel, B.; Gligorovski, S.; Wortham, H.; Quivet, E. The Persistence of Pesticides in Atmospheric Particulate Phase: An Emerging Air Quality Issue. Sci. Rep. 2016, 6, 33456. [Google Scholar] [CrossRef]
- Smith, B.T. Introduction to Radioactivity and Radioactive Decay. In Nuclear Pharmacy: Concepts and Applications in Nuclear Pharmacy; Pharmaceutical Press: London, UK, 2010. [Google Scholar]
- Atwood, D.A. Radionuclides in the Environment; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kovler, K. Radioactive Materials. In Toxicity of Building Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 196–240. [Google Scholar]
- Hu, Q.-H.; Weng, J.-Q.; Wang, J.-S. Sources of Anthropogenic Radionuclides in the Environment: A Review. J. Environ. Radioact. 2010, 101, 426–437. [Google Scholar] [CrossRef]
- Chandra, K.; Proshad, R.; Dey, H.C.; Idris, A.M. A Review on Radionuclide Pollution in Global Soils with Environmental and Health Hazards Evaluation. Environ. Geochem. Health 2023, 45, 9245–9266. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Yu, K.N. Ionizing Radiation, DNA Double Strand Break and Mutation. Adv. Genet. Res. 2010, 4, 197–210. [Google Scholar]
- Møller, A.P.; Mousseau, T.A. Strong Effects of Ionizing Radiation from Chernobyl on Mutation Rates. Sci. Rep. 2015, 5, 8363. [Google Scholar] [CrossRef]
- De Santis, M.; Di Gianantonio, E.; Straface, G.; Cavaliere, A.F.; Caruso, A.; Schiavon, F.; Berletti, R.; Clementi, M. Ionizing Radiations in Pregnancy and Teratogenesis. Reprod. Toxicol. 2005, 20, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Ozasa, K.; Akiba, S.; Niwa, O.; Kodama, K.; Takamura, N.; Zaharieva, E.K.; Kimura, Y.; Wakeford, R. Long-Term Effects of Radiation Exposure on Health. Lancet 2015, 386, 469–478. [Google Scholar] [CrossRef]
- Stewart, G.M.; Fowler, S.W.; Fisher, N.S. The Bioaccumulation of U-and Th-Series Radionuclides in Marine Organisms. Radioact. Environ. 2008, 13, 269–305. [Google Scholar]
- Carvalho, F.P. Radionuclide Concentration Processes in Marine Organisms: A Comprehensive Review. J. Environ. Radioact. 2018, 186, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Fresquez, P.R.; Armstrong, D.R.; Pratt, L.H. Radionuclides in Bees and Honey within and around Los Alamos National Laboratory. J. Environ. Sci. Health Part Environ. Sci. Eng. Toxicol. 1997, 32, 1309–1323. [Google Scholar] [CrossRef]
- Haarmann, T.K. Honey Bees as Indicators of Radionuclide Contamination: Exploring Colony Variability and Temporal Contaminant Accumulation. J. Apic. Res. 1997, 36, 77–87. [Google Scholar] [CrossRef]
- Haarmann, T.K. Honey Bees as Indicators of Radionuclide Contamination: Comparative Studies of Contaminant Levels in Forager and Nurse Bees and in the Flowers of Three Plant Species. Arch. Environ. Contam. Toxicol. 1998, 35, 287–294. [Google Scholar] [CrossRef]
- Haarmann, T.K. Honey Bees (Hymenoptera: Apidae) as Indicators of Radionuclide Contamination: Investigating Contaminant Redistribution Using Concentrations in Water, Flowers, and Honey Bees. J. Econ. Entomol. 1998, 91, 1072–1077. [Google Scholar] [CrossRef]
- Haarmann, T.K.; Fresquez, P.R. Radionuclide Concentrations in Honey Bees from Area G at TA-54 During 1999; Los Alamos National Lab: Los Alamos, NM, USA, 2000.
- Haarmann, T.K. Honey Bees as Indicators of Radionuclide Contamination: A Truly Useful Biomonitor? In Honey Bees; CRC Press: Boca Raton, FL, USA, 2002; pp. 132–150. [Google Scholar]
- Porrini, C.; Sabatini, A.G.; Girotti, S.; Ghini, S.; Medrzycki, P.; Grillenzoni, F.; Bortolotti, L.; Gattavecchia, E.; Celli, G. Honey Bees and Bee Products as Monitors of the Environmental Contamination. Apiacta 2003, 38, 63–70. [Google Scholar]
- Agnello, L.; Comodo, N. Radioactive Nuclide Monitoring Using Bees as Biological Indicators. Probl. Health Ecol. 2011, 27, 130. [Google Scholar]
- Steinhauser, G. Anthropogenic Radioactive Particles in the Environment. J. Radioanal. Nucl. Chem. 2018, 318, 1629–1639. [Google Scholar] [CrossRef]
- Yeh, H.C.; Newton, G.J.; Raabe, O.G.; Boor, D.R. Self-Charging of 198 Au-Labeled Monodisperse Gold Aerosols Studied with a Miniature Electrical Mobility Spectrometer. J. Aerosol Sci. 1976, 7, 245–253. [Google Scholar] [CrossRef]
- Clement, C.F.; Harrison, R.G. The Charging of Radioactive Aerosols. J. Aerosol Sci. 1992, 23, 481–504. [Google Scholar] [CrossRef]
- Gensdarmes, F.; Boulaud, D.; Renoux, A. Electrical Charging of Radioactive Aerosols—Comparison of the Clement–Harrison Models with New Experiments. J. Aerosol Sci. 2001, 32, 1437–1458. [Google Scholar] [CrossRef]
- Walker, M.E.; McFarlane, J.; Glasgow, D.C.; Chung, E.; Taboada-Serrano, P.; Yiacoumi, S.; Tsouris, C. Influence of Radioactivity on Surface Interaction Forces. J. Colloid Interface Sci. 2010, 350, 595–598. [Google Scholar] [CrossRef]
- Kweon, H.; Yiacoumi, S.; Lee, I.; McFarlane, J.; Tsouris, C. Influence of Surface Potential on the Adhesive Force of Radioactive Gold Surfaces. Langmuir 2013, 29, 11876–11883. [Google Scholar] [CrossRef]
- Kim, Y.; Yiacoumi, S.; Lee, I.; McFarlane, J.; Tsouris, C. Influence of Radioactivity on Surface Charging and Aggregation Kinetics of Particles in the Atmosphere. Environ. Sci. Technol. 2014, 48, 182–189. [Google Scholar] [CrossRef]
- Kim, Y.; Yiacoumi, S.; Tsouris, C. Surface Charge Accumulation of Particles Containing Radionuclides in Open Air. J. Environ. Radioact. 2015, 143, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.G.; Wiechert, A.I.; Kim, Y.-H.; Ladshaw, A.P.; Spano, T.; McFarlane, J.; Myhre, K.; Song, J.J.; Yiacoumi, S.; Tsouris, C. Charging of Radioactive and Environmental Airborne Particles. J. Environ. Radioact. 2022, 248, 106887. [Google Scholar] [CrossRef] [PubMed]
- Tschiersch, J.; Frank, G.; Roth, P.; Wagenpfeil, F.; Watterson, J. Enhanced Airborne Radioactivity during a Pine Pollen Release Episode. Radiat. Environ. Biophys. 1999, 38, 139–145. [Google Scholar] [CrossRef]
- Montero-Montoya, R.; López-Vargas, R.; Arellano-Aguilar, O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann. Glob. Health 2018, 84, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Yadav, R. A Review on Volatile Organic Compounds (VOCs) as Environmental Pollutants: Fate and Distribution. Int. J. Plant Environ. 2018, 4, 14–26. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source Profiles of Volatile Organic Compounds (VOCs) Measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, X.; Wang, C.; Zhou, H. Environmental and Human Health Impacts of Volatile Organic Compounds: A Perspective Review. Chemosphere 2023, 313, 137489. [Google Scholar] [CrossRef]
- Hafner, S.D.; Howard, C.; Muck, R.E.; Franco, R.B.; Montes, F.; Green, P.G.; Mitloehner, F.; Trabue, S.L.; Rotz, C.A. Emission of Volatile Organic Compounds from Silage: Compounds, Sources, and Implications. Atmos. Environ. 2013, 77, 827–839. [Google Scholar] [CrossRef]
- Meng, T.T. Volatile Organic Compounds of Polyethylene Vinyl Acetate Plastic Are Toxic to Living Organisms. J. Toxicol. Sci. 2014, 39, 795–802. [Google Scholar] [CrossRef]
- Mangotra, A.; Singh, S.K. Volatile Organic Compounds: A Threat to the Environment and Health Hazards to Living Organisms—A Review. J. Biotechnol. 2024, 382, 51–69. [Google Scholar] [CrossRef]
- Lee, I.; Park, H.; Kim, M.J.; Kim, S.; Choi, S.; Park, J.; Cho, Y.H.; Hong, S.; Yoo, J.; Cheon, G.J.; et al. Exposure to Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds Is Associated with a Risk of Obesity and Diabetes Mellitus among Korean Adults: Korean National Environmental Health Survey (KoNEHS) 2015–2017. Int. J. Hyg. Environ. Health 2022, 240, 113886. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.H.; Spengler, J.D.; Neas, L.M.; Samet, J.M.; Wagner, G.R.; Coultas, D.; Ozkaynak, H.; Schwab, M. Respiratory and Irritant Health Effects of Ambient Volatile Organic Compounds. Am. J. Epidemiol. 1993, 137, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- Pappas, G.P.; Herbert, R.J.; Henderson, W.; Koenig, J.; Stover, B.; Barnhart, S. The Respiratory Effects of Volatile Organic Compounds. Int. J. Occup. Environ. Health 2000, 6, 1–8. [Google Scholar] [CrossRef]
- Janfaza, S.; Khorsand, B.; Nikkhah, M.; Zahiri, J. Digging Deeper into Volatile Organic Compounds Associated with Cancer. Biol. Methods Protoc. 2019, 4, bpz014. [Google Scholar] [CrossRef]
- Hussain, M.S.; Gupta, G.; Mishra, R.; Patel, N.; Gupta, S.; Alzarea, S.I.; Kazmi, I.; Kumbhar, P.; Disouza, J.; Dureja, H.; et al. Unlocking the Secrets: Volatile Organic Compounds (VOCs) and Their Devastating Effects on Lung Cancer. Pathol. Res. Pract. 2024, 255, 155157. [Google Scholar] [CrossRef]
- Mellouki, A.; Wallington, T.J.; Chen, J. Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: Impacts on Air Quality and Climate. Chem. Rev. 2015, 115, 3984–4014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, L.; Huang, L.; Wang, Y.; Huo, J.; Duan, Y.; Wang, Y.; Fu, Q. The Impact of Volatile Organic Compounds on Ozone Formation in the Suburban Area of Shanghai. Atmos. Environ. 2020, 232, 117511. [Google Scholar] [CrossRef]
- Murcia-Morales, M.; Tzanetou, E.N.; García-Gallego, G.; Kasiotis, K.M.; Vejsnaes, F.; Brodschneider, R.; Hatjina, F.; Machera, K.; Van Der Steen, J.J.M. Environmental Assessment of PAHs through Honey Bee Colonies—A Matrix Selection Study. Heliyon 2024, 10, e23564. [Google Scholar] [CrossRef]
- Amorena, M.; Visciano, P.; Giacomelli, A.; Marinelli, E.; Sabatini, A.G.; Medrzycki, P.; Oddo, L.P.; De Pace, F.M.; Belligoli, P.; Di Serafino, G.; et al. Monitoring of Levels of Polycyclic Aromatic Hydrocarbons in Bees Caught from Beekeeping: Remark 1. Vet. Res. Commun. 2009, 33, 165–167. [Google Scholar] [CrossRef]
- Perugini, M.; Di Serafino, G.; Giacomelli, A.; Medrzycki, P.; Sabatini, A.G.; Persano Oddo, L.; Marinelli, E.; Amorena, M. Monitoring of Polycyclic Aromatic Hydrocarbons in Bees (Apis mellifera) and Honey in Urban Areas and Wildlife Reserves. J. Agric. Food Chem. 2009, 57, 7440–7444. [Google Scholar] [CrossRef]
- Kargar, N.; Matin, G.; Matin, A.A.; Buyukisik, H.B. Biomonitoring, Status and Source Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) Using Honeybees, Pine Tree Leaves, and Propolis. Chemosphere 2017, 186, 140–150. [Google Scholar] [CrossRef]
- Zięba, K.; Szostak, E.; Czekońska, K.; Miśkowiec, P.; Moos-Matysik, A.; Nyczyk-Malinowska, A.; Szentgyörgyi, H. Usefulness of Bee Bread and Capped Brood for the Assessment of Monocyclic Aromatic Hydrocarbon Levels in the Environment. Environ. Pollut. 2020, 265, 114882. [Google Scholar] [CrossRef]
- Cochard, P.; Laurie, M.; Veyrand, B.; Le Bizec, B.; Poirot, B.; Marchand, P. PAH7 Concentration Reflects Anthropization: A Study Using Environmental Biomonitoring with Honeybees. Sci. Total Environ. 2021, 751, 141831. [Google Scholar] [CrossRef] [PubMed]
- Ilić, D.; Brkić, B.; Sekulić, M.T. Biomonitoring: Developing a Beehive Air Volatiles Profile as an Indicator of Environmental Contamination Using a Sustainable In-Field Technique. Sustainability 2024, 16, 1713. [Google Scholar] [CrossRef]
- Lambert, O.; Veyrand, B.; Durand, S.; Marchand, P.; Bizec, B.L.; Piroux, M.; Puyo, S.; Thorin, C.; Delbac, F.; Pouliquen, H. Polycyclic Aromatic Hydrocarbons: Bees, Honey and Pollen as Sentinels for Environmental Chemical Contaminants. Chemosphere 2012, 86, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Odabasi, M.; Ongan, O.; Cetin, E. Quantitative Analysis of Volatile Organic Compounds (VOCs) in Atmospheric Particles. Atmos. Environ. 2005, 39, 3763–3770. [Google Scholar] [CrossRef]
- Schnellekreis, J.; Sklorz, M.; Peters, A.; Cyrys, J.; Zimmermann, R. Analysis of Particle-Associated Semi-Volatile Aromatic and Aliphatic Hydrocarbons in Urban Particulate Matter on a Daily Basis. Atmos. Environ. 2005, 39, 7702–7714. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meacci, S.; Corsi, L.; Santecchia, E.; Ruschioni, S. Harnessing Electrostatic Forces: A Review of Bees as Bioindicators for Particulate Matter Detection. Insects 2025, 16, 373. https://doi.org/10.3390/insects16040373
Meacci S, Corsi L, Santecchia E, Ruschioni S. Harnessing Electrostatic Forces: A Review of Bees as Bioindicators for Particulate Matter Detection. Insects. 2025; 16(4):373. https://doi.org/10.3390/insects16040373
Chicago/Turabian StyleMeacci, Simone, Lorenzo Corsi, Eleonora Santecchia, and Sara Ruschioni. 2025. "Harnessing Electrostatic Forces: A Review of Bees as Bioindicators for Particulate Matter Detection" Insects 16, no. 4: 373. https://doi.org/10.3390/insects16040373
APA StyleMeacci, S., Corsi, L., Santecchia, E., & Ruschioni, S. (2025). Harnessing Electrostatic Forces: A Review of Bees as Bioindicators for Particulate Matter Detection. Insects, 16(4), 373. https://doi.org/10.3390/insects16040373