Toxicity and Efficacy of Thirty Insecticides Against Thrips flavus in Northeast China: Laboratory, Semifield, and Field Trials
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect
2.2. Insecticides
2.3. Method of Laboratory Bioassay
2.4. Method of Pot Experiment
2.5. Field Experiment
2.6. Data Analysis
3. Results
3.1. Laboratory Bioassay
3.2. Pot Experiment
3.3. Field Efficacy Experiment
4. Discussion
4.1. Neonicotinoid Group
4.2. Pyrethroid and Diamide Group
4.3. Organophosphate and Nereistoxin Group
4.4. Acaricide Group
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.; Shi, S.S.; Xu, M.L.; Cui, J. Current research on soybean pest management in China. Oil Crop Sci. 2018, 3, 215–227. [Google Scholar] [CrossRef]
- Mound, L.A.; Wang, Z.; Lima, É.F.B.; Marullo, R. Problems with the concept of “pest” among the diversity of pestiferous thrips. Insects 2022, 13, 61. [Google Scholar] [CrossRef] [PubMed]
- Reitz, S.R.; Gao, Y.L.; Lei, Z.R. Thrips: Pests of concern to China and the United States. Agric. Sci. China 2011, 10, 867–892. [Google Scholar] [CrossRef]
- Hameed, A.; Rosa, C.; Odonnell, C.A.; Rajotte, E.G. Ecological interactions among thrips, soybean plants, and soybean vein necrosis virus in Pennsylvania, USA. Viruses 2023, 15, 1766. [Google Scholar] [CrossRef]
- dos Santos, J.L.; Sarmento, R.A.; Silvestre, P.P.; Noleto, L.R.; Reis, K.H.B.; Pires, W.S.; Peluzio, J.M.; Medeiros, J.G.; Santos, A.A.; Picanco, M.C. Assessing the temporal dynamics of Frankliniella schultzei (Thysanoptera: Thripidae) in commercial soybean crops in North Brazil. Agric. For. Entomol. 2022, 24, 97–103. [Google Scholar] [CrossRef]
- Warpechowski, L.F.; Steinhaus, E.A.; Moreira, R.P.; Godoy, D.N.; Preto, V.E.; Braga, L.E.; Wendt, A.d.F.; Reis, A.C.; Lima, E.F.B.; Farias, J.R.; et al. Why does identification matter? Thrips species (Thysanoptera: Thripidae) found in soybean in southern Brazil show great geographical and interspecific variation in susceptibility to insecticides. Crop Prot. 2024, 178, 106592. [Google Scholar] [CrossRef]
- Lagos-Kutz, D.M.; Pawlowski, M.L.; Han, J.; Clough, S.J.; Hartman, G.L. Reduction in productivity of soybean plants infested with Neohyadatothrips variabilis (Thysanoptera: Thripidae) with and without soybean vein necrosis virus. Phytoparasitica 2023, 51, 437–445. [Google Scholar] [CrossRef]
- Keough, S.; Han, J.; Shuman, T.; Wise, K.; Nachappa, P. Effects of soybean vein necrosis virus on life history and host preference of its vector, Neohydatothrips variabilis, and evaluation of vector status of Frankliniella tritici and Frankliniella fusca. J. Econ. Entomol. 2016, 109, 1979–1987. [Google Scholar] [CrossRef]
- Hameed, A.; Ulmer, J.M.; Miko, I.; Rosa, C.; Rajotte, E.G. Morphology of the female reproductive system of the soybean thrips, Neohydatothrips variabilis (Beach, 1896) (Thysanoptera: Thripidae). Insects 2022, 13, 566. [Google Scholar] [CrossRef]
- dos Santos, R.C.; Lopes, M.C.; de Almeida Sarmento, R.; Pereira, P.S.; Picanço, M.M.; dos Santos Pires, W.; Noleto, L.R.; de Araújo, T.A.; Picanço, M.C. Conventional sampling plan for thrips in tropical soybean fields. Crop Prot. 2021, 148, 105740. [Google Scholar] [CrossRef]
- Yue, W.B.; Zhi, J.R.; Liu, L.; Hou, X.L.; Ye, M. The responses of detoxification enzyme and gene expression in western flower thrips, Frankliniella occidentalis, to new challenging hosts. Arthropod-Plant Interact. 2022, 16, 63–76. [Google Scholar] [CrossRef]
- Yang, X.M.; Lou, H.; Sun, J.T.; Zhu, Y.M.; Xue, X.X.; Hong, X.Y. Temporal genetic dynamics of an invasive species, Frankliniella occidentalis (Pergande), in an early phase of establishment. Sci. Rep. 2015, 5, 11877. [Google Scholar] [CrossRef] [PubMed]
- Pei, T.H.; Cui, X.; Shi, S.S.; Gao, Y. An introductory review on the common brown leafhopper (Orosius orientalis): A new soybean pest. Oil Crop Sci. 2024, 9, 198–203. [Google Scholar] [CrossRef]
- Tan, J.L.; Trandem, N.; Hamborg, Z.; Franova, J.; Blystad, D.-R.; Zemek, R. Thrips species occurring in red raspberry, Rubus idaeus L., in South Norway. Span. J. Agric. Res. 2024, 22, e10SC01. [Google Scholar] [CrossRef]
- Gao, Y.; Ding, N.; Wang, D.; Zhao, Y.J.; Cui, J.; Li, W.B.; Pei, T.H.; Shi, S.S. Effect of temperature on the development and reproduction of Thrips flavus (Thysanoptera: Thripidae). Agric. For. Entomol. 2022, 24, 279–288. [Google Scholar] [CrossRef]
- Toda, S.; Komazaki, S. Identification of thrips species (Thysanoptera: Thripidae) on Japanese fruit trees by polymerase chain reaction and restriction fragment length polymorphism of the ribosomal ITS2 region. Bull. Entomol. Res. 2002, 92, 359–363. [Google Scholar] [CrossRef]
- Tillekaratne, K.; Edirisinghe, J.P.; Gunatilleke, C.V.S.; Karunaratne, W.A.I.P. Survey of thrips in Sri Lanka: A checklist of thrips species their distribution and host plants. Ceylon J. Sci. 2011, 40, 89–108. [Google Scholar] [CrossRef]
- Nickle, D.A. Commonly intercepted thrips at US ports-of-entry from Africa, Europe, and the Mediterranean.: III.: The genus Thrips Linnaeus, 1758 (Thysanoptera: Thripidae). Proc. Entomol. Soc. Wash. 2008, 110, 165–185. [Google Scholar] [CrossRef]
- Masarovic, R.; Zvaríková, M.; Zvarík, M.; Majzlan, O.; Prokop, P.; Fedor, P. Changes in diversity and structure of thrips (Thysanoptera) assemblages in the spruce forest stands of High Tatra Mts. after a windthrow calamity. Insects 2022, 13, 670. [Google Scholar] [CrossRef]
- Zvaríková, M.; Masarovic, R.; Prokop, P.; Fedor, P. An updated checklist of thrips from Slovakia with emphasis on economic species. Plant Prot. Sci. 2020, 56, 292–304. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Y.J.; Wang, D.; Yang, J.; Ding, N.; Shi, S.S. Effect of different plants on the growth and reproduction of Thrips flavus (Thysanoptera: Thripidae). Insects 2021, 12, 502. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Zhang, T.; Long, S.; Li, S.; Wang, C.; Chen, Q.; Chen, J.; Feng, Z.; Cao, Y. Responses of Thrips hawaiiensis and Thrips flavus populations to elevated CO2 concentrations. J. Econ. Entomol. 2023, 116, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Pei, T.H.; Zhao, Y.J.; Wang, S.Y.; Li, X.F.; Sun, C.Q.; Shi, S.S.; Xu, M.L.; Gao, Y. Preliminary study on insecticidal potential and chemical composition of five Rutaceae essential oils against Thrips flavus (Thysanoptera: Thripidae). Molecules 2023, 28, 2998. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Pei, T.; Zhao, Y.; Zhou, C.; Liu, B.; Shi, S.; Xu, M.-L.; Gao, Y. Exploring the efficacy of four essential oils as potential insecticides against Thrips flavus. Agronomy 2024, 14, 1212. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Y.J.; Ding, N.; Gao, B.S.; Gao, Y.; Shi, S.S. Biological activity tests and field trials of eight kinds of insecticides to Thrips flavus. Agrochemicals 2021, 60, 220–222. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Y.; Hu, C.; Chen, G.; Li, X.; Liu, J.; Xu, Z.; Zhou, Y.; Wu, D.; Zhang, X. Insecticide-mediated changes in the population and toxicity of the thrips species, Frankliniella occidentalis (Pergande) and Thrips flavus (Schrank) (Thysanoptera: Thripidae). J. Econ. Entomol. 2024, 117, 293–301. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Zhang, W.B.; Ren, H.; Sun, F.L.; Shen, T.T.; Yuan, S.; Gao, X.W.; Tan, Y. Evaluation of the toxicity of chemical and biogenic insecticides to three outbreaking insects in desert steppes of northern China. Toxins 2022, 14, 546. [Google Scholar] [CrossRef]
- Guo, Z.M.; Tang, J.H.; Ma, H.A.; Wu, M.Y.; He, S.; Wan, H.; Ma, K.S.; Li, J.H. Investigation of lambda-cyhalothrin resistance in Spodoptera frugiperda: Heritability, cross-resistance, and mechanisms. Pestic. Biochem. Physiol. 2024, 202, 105916. [Google Scholar] [CrossRef]
- WHO. WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 2019 Edition; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Pei, T.H.; Zhao, Y.J.; Huang, X.D.; Zhao, Y.Y.; Pan, L.D.; Wang, L.W.; Gao, H.X.; Xu, M.L.; Gao, Y. Chemical composition of five Lamiaceae essential oils and their insecticidal and phytotoxic activity. Plants 2024, 13, 2204. [Google Scholar] [CrossRef]
- Gao, X.W.; Liang, P. Insect Toxicology; China Agriculture University Press: Beijing, China, 2022. [Google Scholar]
- Xu, S.B.; Zhang, X.Z.; Wang, Y.N.; Han, R.; Miao, X.X.; Li, H.C.; Guan, R.B. Targets selection and field evaluation of an RNA biopesticide to control Phyllotreta striolata. Pest. Biochem. Physiol. 2025, 209, 106330. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.Y.; Zhang, C.X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.H.; Sadhu, A.; Ghosh, S.; Saha, N.C.; Mossotto, C.; Pastorino, P.; Saha, S.; Faggio, C. Evaluating the impact of neonicotinoids on aquatic non-target species: A comprehensive review. Environ. Toxicol. Pharmacol. 2025, 113, 104606. [Google Scholar] [CrossRef]
- Walter, N.T.; Rojas, R.J.O.; Strzyzewski, I.; Funderburk, J.; Martini, X. Toxicity of different insecticides against Franklinellia invasor (Thysanoptera: Thripidae), a mango pest in Central America. Fla. Entomol. 2020, 103, 296–298. [Google Scholar] [CrossRef]
- Choudhary, J.S.; Monobrullah, M.D.; Kumar, R.; Raghav, D.K.; Singh, A.K. Field efficacy of insecticides against chilli thrips (Scirtothrips dorsalis) and their effect on coccinellids. Indian J. Agric. Sci. 2022, 92, 1196–1201. [Google Scholar] [CrossRef]
- Shen, X.J.; Chen, J.C.; Cao, L.J.; Ma, Z.Z.; Sun, L.N.; Gao, Y.F.; Ma, L.J.; Wang, J.X.; Ren, Y.J.; Cao, H.Q.; et al. Interspecific and intraspecific variation in susceptibility of two co-occurring pest thrips, Frankliniella occidentalis and Thrips palmi, to nine insecticides. Pest Manag. Sci. 2023, 79, 3218–3226. [Google Scholar] [CrossRef]
- Karar, H.; Javed, M.U.; Yaseen, M.; Bashir, M.A.; Sajjad, A.; Essa, M.; Wajid, M.; Mubashir, M.; Mustafa, G.; Zubair, M.; et al. Comparative efficacy of conventional vs. new chemistry insecticides against mango thrips, Scirtothrips dorsalis Hood (Thripidae: Thysanoptera). J. King Saud Univ. Sci. 2022, 34, 102233. [Google Scholar] [CrossRef]
- Renkema, J.M.; Evans, B.; Devkota, S. Management of flower thrips in Florida strawberries with Steinernema feltiae (Rhabditida: Steinernematidae) and the insecticide sulfoxaflor. Fla. Entomol. 2018, 101, 102–108. [Google Scholar] [CrossRef]
- Darnell-Crumpton, C.; Catchot, A.L.; Cook, D.R.; Gore, J.; Dodds, D.M.; Morsello, S.C.; Musser, F.R. Neonicotinoid insecticide resistance in tobacco thrips (Thysanoptera: Thripidae) of Mississippi. J. Econ. Entomol. 2018, 111, 2824–2830. [Google Scholar] [CrossRef]
- Fernández, M.M.; Medina, P.; Wanumen, A.; Del Estal, P.; Smagghe, G.; Viñuela, E. Compatibility of sulfoxaflor and other modern pesticides with adults of the predatory mite Amblyseius swirskii. Residual contact and persistence studies. Biocontrol 2017, 62, 197–208. [Google Scholar] [CrossRef]
- Cloyd, R.A.; Bethke, J.A. Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. Pest Manag. Sci. 2011, 67, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, B.A.; Bullock, J.M.; Shore, R.F.; Heard, M.S.; Pereira, M.G.; Redhead, J.; Ridding, L.; Dean, H.; Sleep, D.; Henrys, P.; et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 2017, 356, 1393–1395. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.S.; Huang, Z.Y.; Milbrath, M.O. Neonicotinoid pesticides are more toxic to honey bees at lower temperatures: Implications for overwintering bees. Front. Ecol. Evol. 2020, 8, 556856. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, F.; Lin, S.; Huang, P.; Akutse, K.S.; Yu, D.; Gao, Y. Imidacloprid pesticide regulates Gynaikothrips uzeli (Thysanoptera: Phlaeothripidae) host choice behavior and immunity against Lecanicillium lecanii (Hypocreales: Clavicipitaceae). J. Econ. Entomol. 2018, 111, 2069–2075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, R.; Hu, C.; Chen, G.; Xu, H.; Chen, Z.; Li, Z. Population numbers and physiological response of an invasive and native thrip species following repeated exposure to imidacloprid. Front. Physiol. 2020, 11, 216. [Google Scholar] [CrossRef]
- Bao, W.X.; Kataoka, Y.; Fukada, K.; Sonoda, S. Imidacloprid resistance of melon thrips, Thrips palmi, is conferred by CYP450-mediated detoxification. J. Pestic. Sci. 2015, 40, 65–68. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, L.; Chen, J.; Huang, H.; Liu, K.; Zhang, Y.; Yang, J.; Wu, S. Mutation V65I in the β1 subunit of the nicotinic acetylcholine receptor confers neonicotinoid and sulfoxaflor resistance in insects. J. Agric. Food Chem. 2024, 72, 5671–5681. [Google Scholar] [CrossRef]
- Willmott, A.L.; Cloyd, R.A.; Zhu, K.Y. Efficacy of pesticide mixtures against the western flower thrips (Thysanoptera: Thripidae) under laboratory and greenhouse conditions. J. Econ. Entomol. 2013, 106, 247–256. [Google Scholar] [CrossRef]
- Carvalho, F.K.; Antuniassi, U.R.; Chechetto, R.G.; Barbieri Mota, A.A.; de Jesus, M.G.; de Carvalho, L.R. Viscosity, surface tension and droplet size of sprays of different formulations of insecticides and fungicides. Crop Prot. 2017, 101, 19–23. [Google Scholar] [CrossRef]
- Bueno, M.R.; Sousa Alves, G.; Silva, S.M.; Hachiya, T.S.S.; Guimarães, H.T.S.; Costa, G.A.; Gonçalves, F.S.; Oliveira, M.A.V.G. Air assistance and electrostatic spraying in soybean crops. Agrochemicals 2024, 3, 107–117. [Google Scholar] [CrossRef]
- Yadav, P.; Nair, A.; Chawla, R.; Ghosh, S.; Aleem, M.; Butola, B.S.; Sharma, N.; Khan, H.A. From cell to organ: Exploring the toxicological correlation of organophosphorus compounds in living system. Toxicology 2025, 511, 154049. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.H. Simultaneous analysis of fenthion and its five metabolites in produce using ultra-high performance liquid chromatography-tandem mass spectrometry. Molecules 2020, 25, 1938. [Google Scholar] [CrossRef] [PubMed]
- Fukuto, T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 1990, 87, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Cubillos-Salamanca, Y.P.; Rodriguez-Maciel, J.C.; Pineda-Guillermo, S.; Silva-Rojas, H.V.; Berzosa, J.; Tejeda-Reyes, M.A.; Rebollar-Alviter, A. Identification of thrips species and resistance of Frankliniella occidentalis (Thysanoptera: Thripidae) to malathion, spinosad, and bifenthrin in blackberry crops. Fla. Entomol. 2019, 102, 738–746. [Google Scholar] [CrossRef]
- Yang, F.W.; Li, Y.X.; Ren, F.Z.; Wang, R.; Pang, G.F. Toxicity, residue, degradation and detection methods of the insecticide triazophos. Environ. Chem. Lett. 2019, 17, 1769–1785. [Google Scholar] [CrossRef]
- Jiang, L.L.; Wang, H.R.; Qiao, K.; Wu, C. Increasing cyetpyrafen spray volume and ozone spray improves the control effects against two-spotted spider mite (Tetranychus urticae) in strawberries. Plants 2024, 13, 1792. [Google Scholar] [CrossRef]
- Hayashi, N.; Sasama, Y.; Takahashi, N.; Ikemi, N. Cyflumetofen, a novel acaricide–its mode of action and selectivity. Pest Manag. Sci. 2013, 69, 1080–1084. [Google Scholar] [CrossRef]
- Nakahira, K. Strategy for discovery of a novel miticide cyenopyrafen which is one of electron transport chain inhibitors. J. Pestic. Sci. 2011, 36, 511–515. [Google Scholar] [CrossRef]
- Yu, H.; Cheng, Y.; Xu, M.; Song, Y.; Luo, Y.; Li, B. Synthesis, Acaricidal activity, and structure-activity relationships of pyrazolyl acrylonitrile derivatives. J. Pestic. Sci. 2016, 64, 9586–9591. [Google Scholar] [CrossRef]
- Lin, T.; Zeng, Z.; Chen, Y.; You, Y.; Hu, J.; Yang, F.; Wei, H. Compatibility of six reduced-risk insecticides with Orius strigicollis (Heteroptera: Anthocoridae) predators for controlling Thrips hawaiiensis (Thysanoptera: Thripidae) pests. Ecotox. Environ. Saf. 2021, 226, 112812. [Google Scholar] [CrossRef]
- Inak, E.; De Rouck, S.; Demirci, B.; Dermauw, W.; Geibel, S.; Van Leeuwen, T. A novel target-site mutation (H146Q) outside the ubiquinone binding site of succinate dehydrogenase confers high levels of resistance to cyflumetofen and pyflubumide in Tetranychus urticae. Insect Biochem. Mol. Biol. 2024, 170, 104127. [Google Scholar] [CrossRef] [PubMed]
- Li, R.A.; Wang, S.J.; Chang, J.H.; Pan, X.L.; Dong, F.S.; Li, Z.Y.; Zheng, Y.Q.; Li, Y.B. Insight into the uptake and metabolism of a new insecticide cyetpyrafen in plants. Environ. Int. 2022, 169, 107522. [Google Scholar] [CrossRef] [PubMed]
- Merchán, H.A.; Burrack, H.J. Using bioassays with the green peach aphid (Myzus persicae) to determine residual activity of two systemically soil-applied neonicotinoid insecticides in field-grown tobacco. Int. J. Pest Manag. 2017, 63, 322–330. [Google Scholar] [CrossRef]
- Lansdell, S.J.; Millar, N.S. Molecular characterization of Dalpha6 and Dalpha7 nicotinic acetylcholine receptor subunits from Drosophila: Formation of a high-affinity alpha-bungarotoxin binding site revealed by expression of subunit chimeras. J. Neurochem. 2004, 90, 479–489. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Han, G.; Du, Y.; Wang, J. Lack of cross-resistance between neonicotinoids and sulfoxaflor in field strains of Q-biotype of whitefly, Bemisia tabaci, from eastern China. Pestic. Biochem. Physiol. 2017, 136, 46–51. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, S.-H.; Ren, M.-M.; Tian, X.-R.; Wei, Q.; Mburu, D.K.; Su, J.-Y. The expression of Spodoptera exigua P450 and UGT genes: Tissue specificity and response to insecticides. Insect Sci. 2019, 26, 199–216. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Y.; Ju, Y.; Zhang, W.; Wang, Y. Insect cuticle and insecticide development. Arch. Insect Biochem. Physiol. 2023, 114, e22057. [Google Scholar] [CrossRef]
- Gao, Y.L.; Lei, Z.R.; Reitz, S.R. Western flower thrips resistance to insecticides: Detection, mechanisms and management strategies. Pest Manag. Sci. 2012, 68, 1111–1121. [Google Scholar] [CrossRef]
- Preftakes, C.J.; Schleier, J.J., III; Kruger, G.R.; Weaver, D.K.; Peterson, R.K.D. Effect of insecticide formulation and adjuvant combination on agricultural spray drift. PeerJ 2019, 7, e7136. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Margaritis, A.; Sourouni, T.; Georgopoulou, V.; Zarmakoupi, C.; Papantzikos, V.; Lagogiannis, I.; Eliopoulos, P.A.; Patakioutas, G. Insecticidal action of local isolates of entomopathogenic fungi against Bactrocera oleae Pupae. Biology 2025, 14, 5. [Google Scholar] [CrossRef]
- Zhou, Y.; Pei, T.; Zhou, X.; Xu, M.-L.; Gao, H.; Wang, L.; Gao, Y. An investigation into the biological activities of four Lamiaceae essential oils against Thrips flavus, crops, and weeds. Plants 2025, 14, 448. [Google Scholar] [CrossRef] [PubMed]
Group | Insecticide | Probit Model | Correlation Coefficient | LC50 (mg/L) 95% Confidence Interval | LC90 (mg/L) 95% Confidence Interval | Relative Bioactivity Index | Chi-Square |
---|---|---|---|---|---|---|---|
Neonicotinoids | Sulfoxaflor | y = 2.19 + 4.45x | 0.96 | 4.28 3.68–5.56 | 8.30 6.14~20.78 | 33.86 | 1.26 |
Imidacloprid | y = 3.13 + 2.74x | 0.85 | 6.16 0.82–11.10 | 21.32 12.50~29.85 | 23.52 | 2.28 | |
Nitenpyram | y = 1.92 + 2.20x | 0.82 | 24.91 15.24–32.47 | 95.15 69.62~181.38 | 5.81 | 7.11 | |
Dinotefuran | y = −6.31 + 7.17x | 0.97 | 37.69 25.45–41.20 | 56.87 50.60~101.67 | 3.84 | 0.43 | |
Acetamiprid | y = 0.97 + 2.37x | 0.96 | 50.18 36.69–66.70 | 174.24 109.51~690.93 | 2.89 | 1.55 | |
Thiacloprid | y = 10.96 + 7.39x | 0.91 | 144.77 129.81–158.36 | 215.86 185.93~346.61 | 1.00 | 3.03 | |
Pyrethroids | Fenpropathrin | y = 0.93 + 3.63x | 0.96 | 13.20 2.75–16.81 | 29.76 24.80~85.24 | 10.96 | 0.67 |
lambda-Cyhalothrin | y = 2.65 + 1.89x | 0.88 | 19.67 7.20–28.65 | 99.63 67.72~284.07 | 7.36 | 3.88 | |
beta-Cypermethrin | y = −1.02 + 3.46x | 0.95 | 55.25 44.02–65.17 | 129.74 99.07~251.80 | 2.62 | 2.06 | |
Diamides | Chlorantraniliprole | y = 2.88 + 1.86x | 0.86 | 13.78 8.62–18.36 | 67.20 39.80~326.28 | 10.51 | 4.54 |
Tetrachlorantraniliprole | y = 1.18 + 3.34x | 0.99 | 13.92 10.31–16.90 | 33.68 27.77~45.41 | 10.40 | 1.12 | |
Cyantraniliprole | y = 2.30 + 2.22x | 0.89 | 16.33 9.18–21.62 | 61.60 42.93~152.38 | 8.87 | 4.20 | |
Tetraniliprole | y = 1.91 + 2.29x | 0.93 | 22.35 10.24–31.53 | 81.11 61.93~133.47 | 6.48 | 3.28 | |
Nereistoxins | Cartap | y = −0.72 + 3.25x | 0.98 | 57.25 33.23–69.32 | 141.87 109.69~341.79 | 2.53 | 2.12 |
Bisultap | y = −1.51 + 3.88x | 0.96 | 47.60 38.40–56.67 | 101.79 79.42~175.91 | 3.04 | 3.18 | |
Monosultap | y = −2.63 + 3.92x | 0.99 | 88.34 75.88–113.24 | 187.48 134.67~571.45 | 1.64 | 0.45 | |
Organophosphates | Fenthion | y = 4.20 + 2.27x | 0.86 | 2.26 0.19–4.68 | 8.31 3.29~11.86 | 64.08 | 1.65 |
Malathion | y = 2.20 + 2.53x | 0.98 | 12.73 6.81–16.84 | 40.86 31.09~74.56 | 11.37 | 1.97 | |
Acaricides | Cyetpyrafen | y = 3.90 + 1.58x | 0.88 | 4.94 2.09–7.09 | 31.87 21.37~71.07 | 29.29 | 4.42 |
Cyenopyrafen | y = 3.13 + 1.69x | 0.86 | 12.62 3.45–18.83 | 73.21 45.08~426.62 | 11.48 | 3.39 | |
Chlorfenapyr | y = 1.74 + 2.85x | 0.80 | 13.99 8.20–18.34 | 39.46 31.06~59.78 | 10.35 | 3.36 | |
Spirotetramat | y = 2.38 + 2.09x | 0.91 | 17.97 12.01–23.88 | 73.71 44.97~330.43 | 8.06 | 3.92 | |
Pyridaben | y = 0.65 + 3.20x | 0.94 | 22.75 18.16–26.96 | 57.18 45.72~83.82 | 6.36 | 5.53 | |
Bifenazate | y = −0.63 + 3.51x | 0.96 | 40.23 31.66–47.19 | 93.26 76.25~134.34 | 3.59 | 2.94 | |
Spirodiclofen | y = −3.46 + 4.77x | 0.96 | 59.65 51.67–67.88 | 110.80 91.21~165.43 | 2.43 | 2.8 | |
Cyflumetofen | y = −10.88 + 8.69x | 0.95 | 67.26 59.53–72.20 | 94.47 87.66~107.96 | 2.15 | 2.33 | |
Others | Buprofezin | y = −1.25 + 3.97x | 0.97 | 37.64 30.66–44.10 | 79.23 60.54~180.90 | 3.85 | 1.30 |
Flonicamid | y = −4.89 + 5.81x | 0.99 | 50.62 36.17–57.00 | 84.19 74.61~118.95 | 2.86 | 0.29 | |
Pymetrozine | y = 0.78 + 2.78x | 0.74 | 50.43 29.25–66.24 | 165.79 123.63~309.02 | 2.87 | 5.75 | |
Pyriproxyfen | y = −12.51 + 9.71x | 0.98 | 63.72 59.49–69.80 | 86.36 76.60~112.75 | 2.27 | 0.86 |
Group | Insecticides | Dose (g a.i.·hm−2) | Insecticide Efficacy (%) | ||
---|---|---|---|---|---|
Days After Application (day) | |||||
1 | 3 | 7 | |||
Neonicotinoids | Sulfoxaflor | 0.40 | 33.74 ± 7.90 b | 41.03 ± 6.79 c | 60.27 ± 1.37 d |
0.59 | 45.78 ± 4.17 b | 53.85 ± 5.87 bc | 72.60 ± 3.62 cd | ||
0.79 | 51.81 ± 3.19 b | 62.82 ± 6.78 bc | 78.08 ± 3.62 bc | ||
0.99 | 67.47 ± 2.08 ab | 79.49 ± 3.39 b | 87.67 ± 2.37 b | ||
1.19 | 89.16 ± 5.52 a | 97.44 ± 2.56 a | 100.00± 0 a | ||
Imidacloprid | 2.25 | 23.81 ± 3.15 a | 30.12 ± 4.34 a | 51.90 ± 6.70 b | |
4.50 | 28.57 ± 4.12 a | 42.17 ± 3.61 a | 72.15 ± 2.53 b | ||
6.75 | 28.57 ± 3.57 a | 42.17 ± 6.26 a | 72.15 ± 5.52 b | ||
9.00 | 29.76 ± 6.30 a | 45.78 ± 4.17 a | 93.67 ± 3.35 a | ||
11.25 | 38.10 ± 3.15 a | 53.01 ± 5.52 a | 98.73 ± 1.27 a | ||
Nitenpyram | 2.88 | 40.96 ± 6.71 a | 47.44 ± 6.78 ab | 54.79 ± 2.37 c | |
5.94 | 31.32 ± 9.56 a | 44.87 ± 5.59 ab | 75.34 ± 6.28 bc | ||
9.00 | 31.32 ± 5.52 a | 39.74 ± 10.01 b | 43.84 ± 8.33 ab | ||
11.88 | 49.40 ± 2.09 a | 58.97 ± 4.62 ab | 61.64 ± 5.97 abc | ||
14.94 | 59.04 ± 1.20 a | 73.08 ± 4.44 a | 83.56 ± 2.37 a | ||
Dinotefuran | 6.84 | 4.76 ± 1.19 c | 14.46 ± 2.41 b | 31.65 ± 5.80 b | |
7.38 | 5.95 ± 1.19 c | 28.92 ± 3.19 ab | 40.51 ± 5.52 b | ||
8.10 | 10.71 ± 4.13 bc | 36.14 ± 4.34 ab | 56.96 ± 4.56 b | ||
8.64 | 25.00 ± 5.45 ab | 50.60 ± 8.69 a | 58.23 ± 6.58 b | ||
9.18 | 46.43 ± 5.46 a | 59.04 ± 10.50 a | 93.67 ± 3.35 a | ||
Acetamiprid | 0.90 | 42.17 ± 2.09 b | 52.57 ± 5.59 c | 67.78 ± 2.94 c | |
1.80 | 46.99 ± 4.35 b | 50.00 ± 4.44 c | 66.67 ± 1.93 c | ||
2.70 | 51.81 ± 5.25 ab | 61.54 ± 2.22 bc | 88.89 ± 2.94 ab | ||
3.60 | 56.63 ± 5.52 ab | 71.79 ± 4.62 ab | 77.78 ± 4.84 bc | ||
4.50 | 67.47 ± 2.08 a | 83.34 ± 1.28 a | 94.44 ± 1.11 a | ||
Thiacloprid | 41.98 | 24.10 ± 5.52 b | 36.14 ± 7.90 a | 31.51 ± 6.85 b | |
47.99 | 37.35 ± 1.20 ab | 53.01 ± 2.09 a | 53.42 ± 3.62 ab | ||
54.00 | 37.35 ± 3.19 ab | 44.58 ± 1.20 a | 46.58 ± 4.11 ab | ||
59.98 | 46.99 ± 8.43 ab | 54.22 ± 7.90 a | 53.42 ± 5.48 ab | ||
65.99 | 55.42 ± 4.82 a | 62.65 ± 4.34 a | 69.86 ± 4.94 a | ||
Pyrethroids | beta-Cypermethrin | 1.35 | 8.43 ± 3.19 b | 30.77 ± 7.69 a | 61.64 ± 2.74 b |
2.03 | 20.48 ± 7.52 ab | 28.21 ± 3.39 a | 61.64 ± 8.33 ab | ||
2.70 | 28.92 ± 2.41 ab | 39.74 ± 2.56 a | 76.71 ± 8.33 ab | ||
3.37 | 38.55 ± 2.09 ab | 58.97 ± 7.14 a | 90.41 ± 3.62 ab | ||
4.04 | 30.12 ± 8.69 a | 51.1 ± 10.17 a | 94.52 ± 2.74 a | ||
lambda-Cyhalothrin | 0.75 | 15.66 ± 3.19 b | 26.92 ± 4.44 a | 63.01 ± 11.86 a | |
1.50 | 10.84 ± 4.82 b | 25.64 ± 3.39 a | 64.38 ± 13.07 b | ||
2.25 | 26.51 ± 4.34 ab | 30.77 ± 2.22 a | 68.49 ± 5.48 ab | ||
3.00 | 24.10 ± 5.52 ab | 32.05 ± 5.59 a | 58.90 ± 4.11 ab | ||
3.75 | 40.96 ± 4.34 a | 55.13 ± 3.39 a | 89.04 ± 5.48 a | ||
Fenpropathrin | 2.88 | 15.66 ± 2.41 d | 37.18 ± 2.56 b | 49.32 ± 4.94 c | |
3.42 | 40.96 ± 3.19 bc | 55.13 ± 4.62 b | 71.23 ± 4.11 bc | ||
3.96 | 31.33 ± 7.52 cd | 55.13 ± 5.59 b | 78.08 ± 3.62 bc | ||
4.50 | 54.22 ± 1.21 ab | 60.26 ± 6.41 ab | 91.78 ± 4.11 ab | ||
5.04 | 66.26 ± 3.19 a | 78.21 ± 4.62 a | 97.26 ± 2.74 a | ||
Diamides | Chlorantraniliprole | 1.21 | 50.59 ± 5.39 b | 60.00 ± 6.22 b | 80.00 ± 4.24 b |
2.39 | 65.88 ± 13.57 ab | 72.94 ± 11.59 ab | 87.06 ± 3.11 b | ||
3.60 | 75.29 ± 7.35 ab | 80.00 ± 6.22 ab | 97.65 ± 1.18 a | ||
4.81 | 83.53 ± 4.24 ab | 87.06 ± 3.11 ab | 100.00 ± 0 a | ||
5.99 | 87.06 ± 3.11 a | 91.76 ± 3.11 a | 100.00± 0 a | ||
Tetrachlorantraniliprole | 0.75 | 39.76 ± 8.43 a | 42.31 ± 8.01 a | 52.05 ± 10.96 a | |
1.50 | 24.10 ± 2.09 a | 41.03 ± 12.62 a | 46.58 ± 12.55 a | ||
2.25 | 48.19 ± 5.25 a | 53.85 ± 6.66 a | 68.49 ± 8.98 a | ||
3.00 | 25.30 ± 3.19 a | 51.28 ± 8.41 a | 69.86 ± 13.90 a | ||
3.75 | 42.17 ± 5.52 a | 44.87 ± 6.78 a | 56.16 ± 9.88 a | ||
Cyantraniliprole | 2.70 | 16.87 ± 8.35 a | 15.38 ± 8.88 a | 27.40 ± 8.98 ab | |
5.40 | 8.43 ± 1.21 a | 11.54 ± 2.22 a | 19.18 ± 5.48 b | ||
8.10 | 28.92 ± 4.35 a | 30.77 ± 5.88 a | 42.47 ± 4.74 ab | ||
10.80 | 20.48 ± 5.52 a | 20.51 ± 5.59 a | 36.99 ± 4.94 ab | ||
13.50 | 20.48 ± 10.84 a | 23.08 ± 9.68 a | 56.16 ± 3.62 a | ||
Tetraniliprole | 3.60 | 15.66 ± 6.38 a | 17.95 ± 8.41 a | 27.40 ± 9.59 a | |
7.20 | 33.73 ± 3.19 a | 39.74 ± 1.28 a | 42.47 ± 2.37 a | ||
10.80 | 20.48 ± 10.43 a | 24.36 ± 11.39 a | 32.88 ± 15.80 a | ||
14.40 | 22.89 ± 2.41 a | 33.34 ± 1.28 a | 61.64 ± 19.76 a | ||
18.00 | 42.17 ± 6.26 a | 56.41 ± 12.23 a | 67.12 ± 9.49 a | ||
Nereistoxins | Cartap | 44.10 | 7.23 ± 2.41 c | 19.23 ± 2.22 c | 27.40 ± 5.97 c |
58.21 | 38.55 ± 2.09 b | 42.31 ± 3.85 b | 42.47 ± 2.37 bc | ||
73.21 | 45.78 ± 2.09 ab | 44.87 ± 2.56 b | 46.58 ± 4.74 bc | ||
88.20 | 53.01 ± 4.17 ab | 57.69 ± 5.88 ab | 60.27 ± 1.37 ab | ||
102.31 | 59.04 ± 1.20 a | 65.38 ± 2.22 a | 71.23 ± 4.75 a | ||
Bisultap | 4.50 | 12.05 ± 3.19 b | 14.10± 3.39 b | 38.36 ± 7.12 c | |
9.00 | 16.87 ± 3.61 ab | 25.64 ± 5.13 ab | 57.53 ± 9.59 bc | ||
13.50 | 27.71 ± 5.52 ab | 35.90 ± 6.78 a | 78.08 ± 10.70 ab | ||
18.00 | 21.69 ± 2.41 ab | 30.77 ± 2.22 ab | 94.52 ± 1.37 a | ||
22.50 | 32.53 ± 1.20 a | 43.59 ± 5.59 a | 82.19 ± 7.63 ab | ||
Monosultap | 40.50 | 7.23 ± 1.21 c | 12.82 ± 3.39 d | 17.81 ± 2.37 c | |
53.46 | 19.28 ± 1.20 c | 26.93 ± 3.85 cd | 26.03 ± 2.37 c | ||
67.23 | 36.15 ± 3.19 b | 38.46 ± 3.84 bc | 41.10 ± 4.94 b | ||
81.00 | 43.37 ± 5.25 ab | 47.44 ± 3.39 ab | 54.79 ± 2.37 ab | ||
93.96 | 56.63 ± 5.52 ab | 60.26 ± 4.62 a | 67.12 ± 2.37 a | ||
Organophosphates | Fenthion | 2.25 | 33.74 ± 5.25 b | 42.31 ± 5.87 b | 58.90 ± 10.87 b |
4.50 | 38.55 ± 7.52 b | 47.43 ± 5.59 b | 50.68 ± 2.37 b | ||
6.75 | 46.99 ± 8.43 ab | 58.97 ± 10.01 ab | 68.49 ± 13.07 b | ||
9.00 | 38.56 ± 5.52 b | 56.41 ± 3.39 b | 82.19 ± 1.37 b | ||
11.25 | 71.09 ± 3.61 a | 84.62 ± 3.85 a | 100.00± 0 a | ||
Malathion | 4.05 | 40.96 ± 6.71 b | 62.82 ± 3.39 b | 69.86 ± 4.94 b | |
7.29 | 44.58 ± 1.20 b | 73.08 ± 4.44 ab | 73.97 ± 2.74 b | ||
10.53 | 38.55 ± 4.17 b | 64.10 ± 13.01 b | 80.82 ± 1.37 b | ||
13.77 | 56.63 ± 2.09 ab | 88.46 ± 2.22 ab | 95.89 ± 2.37 a | ||
17.01 | 65.06 ± 4.34 a | 94.87 ± 2.56 a | 100.00± 0 a | ||
Acaricides | Cyetpyrafen | 0.90 | 23.81 ± 3.15 d | 41.67 ± 6.63 c | 65.48 ± 1.19 c |
2.70 | 46.43 ± 2.06 c | 54.76 ± 3.15 bc | 73.81 ± 5.19 bc | ||
4.51 | 51.19 ± 1.19 c | 66.67 ± 4.29 b | 91.67 ± 4.29 ab | ||
6.29 | 69.05 ± 2.38 b | 75.00 ± 2.06 b | 97.62 ± 2.38 a | ||
8.10 | 80.95 ± 2.38 a | 91.67 ± 3.15 a | 98.81 ± 1.19 a | ||
Cyenopyrafen | 2.70 | 6.02 ± 2.09 b | 11.54 ± 2.22 c | 36.99 ± 3.62 b | |
5.40 | 32.53 ± 4.34 a | 41.02 ± 7.14 bc | 72.60 ± 3.62 a | ||
8.10 | 37.35 ± 6.71 a | 39.74 ± 7.80 bc | 75.34 ± 4.75 a | ||
10.80 | 46.99 ± 2.41 a | 57.69 ± 3.85 ab | 76.71 ± 9.88 a | ||
13.50 | 59.03 ± 11.49 a | 79.49 ± 10.01 a | 90.41 ± 3.62 a | ||
Chlorfenapyr | 0.90 | 37.35 ± 4.34 bc | 56.41 ± 3.39 b | 58.90 ± 2.37 bc | |
1.80 | 34.94 ± 6.26 c | 47.44 ± 7.14 b | 47.95 ± 7.62 c | ||
2.70 | 53.01 ± 3.61 abc | 57.69 ± 3.85 b | 69.86 ± 5.97 bc | ||
3.60 | 59.04 ± 6.71 ab | 64.10 ± 10.01 ab | 76.71 ± 6.85 ab | ||
4.50 | 69.88 ± 3.19 a | 88.46 ± 2.22 a | 92.29 ± 2.43 a | ||
Spirotetramat | 1.61 | 16.87 ± 5.52 b | 25.64 ± 4.62 b | 34.25 ± 6.28 c | |
3.23 | 32.53 ± 7.33 ab | 34.62 ± 6.66 ab | 50.68 ± 2.37 bc | ||
4.84 | 59.04 ± 6.71 ab | 65.39 ± 5.87 a | 86.30 ± 4.94 ab | ||
6.45 | 43.37 ± 3.19 a | 51.28 ± 3.39 ab | 83.56 ± 10.34 ab | ||
8.06 | 45.78 ± 4.17 a | 60.26 ± 11.18 a | 87.67 ± 6.28 a | ||
Pyridaben | 1.50 | 35.37 ± 1.22 c | 70.73 ± 2.11 b | 80.49 ± 5.32 b | |
3.00 | 51.22 ± 3.23 bc | 74.39 ± 3.66 b | 81.71 ± 2.11 b | ||
4.50 | 59.76 ± 4.22 b | 78.05 ± 2.11 b | 84.15 ± 3.23 b | ||
5.99 | 64.63 ± 8.54 ab | 80.49 ± 1.22 ab | 87.80 ± 1.22 ab | ||
7.49 | 82.93 ± 3.22 a | 90.24 ± 3.23 a | 96.34 ± 2.11 a | ||
Bifenazate | 9.68 | 42.35 ± 16.6 b | 41.18 ± 5.88 b | 75.29 ± 7.35 b | |
16.14 | 43.53 ± 2.04 b | 54.12 ± 2.04 b | 64.71 ± 2.04 b | ||
22.56 | 55.3 ± 1.18 b | 65.89 ± 1.18 b | 84.7 ± 2.35 b | ||
29.03 | 72.94 ± 5.13 b | 62.35 ± 20.10 b | 98.82 ± 1.18 a | ||
35.49 | 100.00 ± 0 a | 100.00 ± 0 a | 100.00 ± 0 a | ||
Spirodiclofen | 7.20 | 27.71 ± 5.52 a | 29.49 ± 4.62 b | 36.99 ± 3.62 b | |
10.80 | 32.53 ± 3.19 a | 39.74 ± 4.62 ab | 53.42 ± 5.48 ab | ||
14.40 | 33.73 ± 8.69 a | 43.59 ± 10.49 ab | 53.42 ± 3.62 ab | ||
18.00 | 40.96 ± 2.41 a | 58.97 ± 7.8 ab | 64.38 ± 14.50 ab | ||
21.53 | 48.19 ± 3.19 a | 62.82 ± 3.39 a | 78.08 ± 3.62 a | ||
Cyflumetofen | 10.80 | 15.66 ± 1.21 b | 32.05 ± 6.79 bc | 46.58 ± 8.55 bc | |
12.60 | 13.25 ± 2.09 b | 16.66 ± 1.28 c | 23.29 ± 5.97 c | ||
14.40 | 34.94 ± 2.08 ab | 46.15 ± 2.22 abc | 49.31 ± 3.62 bc | ||
16.20 | 45.78 ± 12.52 a | 61.54 ± 13.33 ab | 89.04 ± 7.25 a | ||
18.00 | 56.63 ± 3.62 a | 71.80 ± 6.79 a | 76.71 ± 8.33 ab | ||
Others | Buprofezin | 5.18 | 7.14 ± 2.06 b | 33.73 ± 3.19 a | 50.63 ± 4.39 c |
5.92 | 25.00 ± 4.12 ab | 34.94 ± 6.26 a | 54.43 ± 5.80 c | ||
6.66 | 32.14 ± 7.43 a | 39.76 ± 6.71 a | 69.62 ± 4.39 bc | ||
7.4 | 46.43 ± 3.57 a | 57.83 ± 7.33 a | 83.54 ± 2.53 ab | ||
8.15 | 45.24 ± 7.24 a | 62.65 ± 6.38 a | 92.41 ± 2.19 a | ||
Flonicamid | 4.5 | 20.48 ± 8.35 b | 29.49 ± 3.39 c | 36.99 ± 3.62 c | |
5.22 | 36.14 ± 4.34 b | 42.31 ± 5.87 bc | 50.68 ± 2.37 bc | ||
5.94 | 34.94 ± 2.08 b | 38.46 ± 2.22 bc | 50.68 ± 6.27 bc | ||
6.66 | 43.37 ± 6.37 ab | 50.00 ± 3.85 b | 60.27 ± 2.74 b | ||
7.38 | 67.47 ± 2.08 a | 69.23 ± 2.22 a | 86.30 ± 3.62 a | ||
Pymetrozine | 14.85 | 22.89 ± 1.21 a | 23.08 ± 2.22 a | 28.77 ± 3.62 a | |
29.7 | 31.33 ± 9.56 a | 30.77 ± 10.18 a | 42.47 ± 16.61 a | ||
45 | 40.96 ± 7.33 a | 43.59 ± 7.80 a | 54.80 ± 12.55 a | ||
59.85 | 34.94 ± 7.52 a | 37.18 ± 7.80 a | 41.10 ± 7.63 a | ||
74.7 | 33.74 ± 6.37 a | 38.46 ± 4.44 a | 52.05 ± 3.62 a | ||
Pyriproxyfen | 3.78 | 32.53 ± 9.41 a | 37.18 ± 11.18 a | 53.43 ± 13.07 a | |
4.68 | 21.69 ± 11.49 a | 24.36 ± 10.01 a | 39.73 ± 2.74 a | ||
5.58 | 39.76 ± 4.34 a | 43.59 ± 6.41 a | 56.16 ± 3.62 a | ||
6.48 | 37.35 ± 10.71 a | 42.31 ± 14.56 a | 60.27 ± 10.7 a | ||
7.38 | 43.37 ± 8.69 a | 47.44 ± 9.25 a | 69.86 ± 11.7 a |
Insecticides | Dose (g a.i.·hm−2) | Field Efficacy (%) | |||
---|---|---|---|---|---|
Days After Application (day) | |||||
1 | 3 | 7 | 14 | ||
Imidacloprid | 2.25 | 45.76 ± 9.74 a | 46.10 ± 7.71 b | 57.88 ± 3.49 b | 39.68 ± 13.47 a |
4.50 | 61.37 ± 5.25 a | 62.12 ± 4.27 ab | 78.04 ± 3.71 ab | 62.68 ± 2.90 a | |
6.75 | 59.18 ± 7.52 a | 63.09 ± 2.27 ab | 60.64 ± 6.22 ab | 55.44 ± 11.18 a | |
9.00 | 62.27 ± 5.58 a | 68.19 ± 6.16 ab | 68.04 ± 7.50 ab | 58.25 ± 9.96 a | |
11.25 | 74.57 ± 1.31 a | 77.31 ± 4.97 a | 82.91 ± 3.63 a | 52.34 ± 19.30 a | |
Fenthion | 2.25 | 63.10 ± 7.55 a | 64.32 ± 3.26 a | 68.28 ± 3.48 a | 60.92 ± 6.46 a |
4.50 | 66.15 ± 10.07 a | 72.10 ± 1.82 a | 67.08 ± 1.42 a | 49.87 ± 8.66 a | |
6.75 | 60.81 ± 11.81 a | 59.26 ± 11.90 a | 69.98 ± 9.32 a | 33.71 ± 6.91 a | |
9.00 | 71.14 ± 6.40 a | 68.31 ± 4.18 a | 61.9 ± 8.75 a | 58.71 ± 12.08 a | |
11.25 | 67.99 ± 8.77 a | 78.65 ± 8.18 a | 84.23 ± 2.05 a | 41.88 ± 4.06 a | |
Sulfoxaflor | 0.40 | 66.97 ± 7.50 a | 69.78 ± 4.86 a | 70.64 ± 7.07 a | 29.07 ± 21.53 a |
0.59 | 69.06 ± 6.41 a | 67.73 ± 8.40 a | 67.77 ± 9.14 a | 38.61 ± 10.80 a | |
0.79 | 71.26 ± 4.46 a | 69.74 ± 9.79 a | 72.49 ± 5.28 a | 40.33 ± 6.98 a | |
0.99 | 42.51 ± 11.12 a | 67.69 ± 2.89 a | 63.39 ± 7.52 a | 21.40 ± 9.85 a | |
1.19 | 69.23 ± 2.94 a | 73.35 ± 3.74 a | 80.23 ± 2.08 a | 37.40 ± 11.48 a | |
Cyetpyrafen | 0.90 | 59.88 ± 5.04 a | 64.77 ± 4.61 a | 64.80 ± 5.61 a | 35.48 ± 11.85 a |
2.70 | 53.91 ± 11.94 a | 65.14 ± 1.79 a | 41.99 ± 14.76 a | 32.78 ± 8.05 a | |
4.51 | 66.35 ± 2.28 a | 59.68 ± 7.57 a | 53.89 ± 7.27 a | 39.23 ± 12.25 a | |
6.29 | 58.46 ± 4.83 a | 62.37 ± 5.66 a | 53.43 ± 13.17 a | 30.13 ± 17.69 a | |
8.10 | 79.88 ± 1.67 a | 83.61 ± 5.36 a | 85.68 ± 0.44 a | 44.63 ± 14.37 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, T.; Wang, L.; Zhao, Y.; Shi, S.; Gao, Y. Toxicity and Efficacy of Thirty Insecticides Against Thrips flavus in Northeast China: Laboratory, Semifield, and Field Trials. Insects 2025, 16, 405. https://doi.org/10.3390/insects16040405
Pei T, Wang L, Zhao Y, Shi S, Gao Y. Toxicity and Efficacy of Thirty Insecticides Against Thrips flavus in Northeast China: Laboratory, Semifield, and Field Trials. Insects. 2025; 16(4):405. https://doi.org/10.3390/insects16040405
Chicago/Turabian StylePei, Tianhao, Long Wang, Yijin Zhao, Shusen Shi, and Yu Gao. 2025. "Toxicity and Efficacy of Thirty Insecticides Against Thrips flavus in Northeast China: Laboratory, Semifield, and Field Trials" Insects 16, no. 4: 405. https://doi.org/10.3390/insects16040405
APA StylePei, T., Wang, L., Zhao, Y., Shi, S., & Gao, Y. (2025). Toxicity and Efficacy of Thirty Insecticides Against Thrips flavus in Northeast China: Laboratory, Semifield, and Field Trials. Insects, 16(4), 405. https://doi.org/10.3390/insects16040405