Suitability of Artificial Diets Containing Various Types of Pollen Grains to Helicoverpa armigera (Hübner, 1808): Nutritional Performance and Digestive Enzyme Response
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pollen Collection
2.2. Insect Source and Rearing
2.3. Preparation of Artificial Diets with Different Pollen Grains
2.4. Diet Consumption and Utilization
2.5. Analysis of Midgut Enzymes
2.6. Biochemical Analysis of Pollen Grains
2.7. Data Analysis
3. Results
3.1. Diet Consumption and Utilization
3.2. Analysis of Midgut Enzymes
3.3. Pollen Grain Biochemical Analysis
3.4. Correlation Analysis
3.5. Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | Consumption index |
AD | Approximate digestibility |
ECI | Efficiency of conversion of ingested food |
ECD | Efficiency of conversion of digested food |
RCR | Relative consumption rate |
RGR | Relative growth rate |
References
- Cônsoli, F.L.; Parra, J.R.P.; Zucchi, R.A. Egg Parasitoidsin Agroecosystems with Emphasis on Trichogramma; Springer: New York, NY, USA, 2010; 482p. [Google Scholar] [CrossRef]
- Xie, J.; Wu, H.; Pang, H.; De Clercq, P. An artificial diet containing plant pollen for the mealybug predator Cryptolaemus montrouzieri. Pest Manag. Sci. 2016, 73, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.C. Principles and Procedures for Rearing High Quality Insects; Mississipi State University: Starkville, MS, USA, 2009; 352p. [Google Scholar]
- Hajek, A. Natural Enemies, an Introduction to Biological Control; Cambridge University Press: Cambridge, UK, 2004; 378p. [Google Scholar] [CrossRef]
- Nathan, S.S.; Kalaivani, K.; Mankin, R.W.; Murugan, K. Effects of millet, wheat, rice and sorghum diets on development of Corcyra cephalonica (Stainton) (Lepidoptera: Galleriidae) and its suitability as a host for Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae). Environ. Entomol. 2006, 35, 784–788. [Google Scholar] [CrossRef]
- Atapour, M.; Abbaszadeh, R.; Kashi, E. Optimization of a new technique in mass-rearing of insects used in biological control of important pests. Agrotech. Ind. Crops 2022, 2, 131–139. [Google Scholar] [CrossRef]
- Zalucki, M.P.; Gregg, P.C.; Fitt, G.P.; Murray, D.A.H.; Twine, P.H.; Jones, C. Ecology of Helicoverpa armigera (Hübner) and H. punctigera in the inland areas of eastern Australia: Larval sampling and host plant relationships during winter/spring. Aust. J. Zool. 1994, 42, 329–346. [Google Scholar] [CrossRef]
- Fathipour, Y.; Babaei, M.; Bagheri, A.; Talebi, A.A.; Yazdanpanah, S. Demographic parameters of Helicoverpa armigera on ten corn hybrids-mediated artificial diets reveals striking differences. J. Crop Prot. 2021, 10, 363–374. [Google Scholar]
- Jat, B.L.; Dahiya, K.K.; Rolania, K.; Yadav, S.S. Standardization of artificial diet for the mass rearing of Helicoverpa armigera. Indian J. Plant Prot. 2020, 48, 55–63. [Google Scholar]
- Goudarzi Mohammadi, N.; Hemmati, S.A.; Shishehbor, P. Effect of different sunflower cultivars on nutritional and physiological responses of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J. Entomol. Soc. Iran 2024, 44, 307–320. [Google Scholar] [CrossRef]
- Jarjees, E.A.; Merritt, D.J. Development of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) in Helicoverpa (Lepidoptera: Noctuidae) host eggs. Aust. J. Entomol. 2002, 41, 310–315. [Google Scholar] [CrossRef]
- Axmatovich, J.R. In vitro rearing of parasitoids (Hymenoptera: Trichogrammatidae and Braconidae). Texas J. Agri. Biol. Sci. 2022, 4, 33–37. [Google Scholar]
- Sheikh, M.R.; Sheikh, D.; Naqvi, S.B. Inexpensive technology for mass rearing of corn earworm Heliothis armigera (Hubn) on modified noctuid diet beyond 20th generations. J. Islam. Acad. Sci. 1990, 3, 333–335. [Google Scholar]
- Cheng, Y.; Yu, Y.; Zhou, Y.H.; Li, F.L. An improved artificial diet for larvae of the seven-spotted ladybird beetle Coccinella septempunctata L. Biol. Control 2022, 171, 104949. [Google Scholar] [CrossRef]
- Wakil, W.; Ghazanfar, M.U.; Shahi, S.T.; Kwon, Y.J.; Qayyum, M.A. Effect of modified meridic diet on the development and growth of tomato fruitworm Helicoverpa armigera (Lepidoptera: Noctuidae). Entomol. Res. 2011, 41, 88–94. [Google Scholar] [CrossRef]
- Jafari, H.; Hemmati, S.A.; Habibpour, B. Evaluation of artificial diets based on different legume seeds on the nutritional physiology and digestive function of Helicoverpa armigera (Hübner). Bull. Entomol. Res. 2023, 113, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.D.; Geng, Y.S.; Hu, T.Y.; Li, W.X.; Liang, Y.Y.; Hao, D.J. Comparing the Performance of Hyphantria cunea (Lepidoptera: Arctiidae) on artificial and natural diets: Feasibility of mass-rearing on artificial diets. J. Econ. Entomol. 2023, 116, 181–191. [Google Scholar] [CrossRef]
- Metayi, M.H.A.; Shekeban, M.M.K.; El-Deeb, A.S. Evaluation of three semi-artificial diets for cotton leafworm mass rearing and their effects on some biological parameters. Alex. J. Agri. Sci. 2016, 61, 237–241. [Google Scholar]
- Bisht, K.; Verma, S.; Singh, N.N. Comparison of enhanced artificial diets for mass rearing of Helicoverpa armigera (Hubner) under laboratory conditions. J. Entomol. Zool. Stud. 2018, 6, 2551–2553. [Google Scholar]
- List, F.; Lesne, P.; Behmer, S.T.; Zhu-Salzman, K.; Tarone, A.M.; Vargo, E.L. Going back to the basics: The use of cricket powder as a protein supplement in artifcial ant diets. Insectes Soc. 2024, 71, 423–430. [Google Scholar] [CrossRef]
- de Guzman, J.A.; Caoili, B.L.; Taylo, L.D.; Hautea, D.M.; Javier, P.A. An improved artificial diet for the eggplant fruit and shoot borer Leucinodes orbonalis Guenee (Lepidoptera: Pyralidae). J. Artic. 2012, 26, 5091. [Google Scholar]
- Ermolaev, A.; Mardini, M.; Buravkov, S.; Kudryavtseva, N.; Khrustaleva, L. A simple and user-friendly method for high-guality preparation of pollen grains for scanning electron microscopy (SEM). Plants 2024, 13, 2140. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Z.; Cao, J. Pollen wall development: The associated enzymes and metabolic pathways. Plant Biol. 2013, 15, 249–263. [Google Scholar] [CrossRef]
- Brys, M.S.; Skowronek, P.; Strachecka, A. Pollen diet–properties and impact on a bee colony. Insects 2021, 12, 798. [Google Scholar] [CrossRef]
- Roulston, T.H.; Cane, J.H. Pollen nutritional content and digestibility for animals. In Pollen and Pollination; Dafni, A., Hesse, M., Pacini, E., Eds.; Springer: Vienna, Austria, 2000; pp. 187–211. [Google Scholar]
- Wackers, F.L.; Romeis, J.; van Rijn, P. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu. Rev. Entomol. 2007, 52, 301–323. [Google Scholar] [CrossRef] [PubMed]
- Lukšic, K.; Mucalo, A.; Marinov, L.; Ozreti’c Zokovic, M.; Rankovic-Vasic, Z.; Nikolic, D.; Zdunic, G. X-ray microanalysis of elemental composition of Vitis sylvestris pollen grains. Plants 2024, 13, 2338. [Google Scholar] [CrossRef]
- El Ghouizi, A.; Bakour, M.; Laaroussi, H.; Ousaaid, D.; El Menyiy, N.; Hano, C.; Lyoussi, B. Bee pollen as functional food: Insights into its composition and therapeutic properties. Antioxidants 2023, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Riahi, E.; Fathipour, Y.; Talebi, A.A.; Mehrabadi, M. Pollen quality and predator viability: Life table of Typhlodromus bagdasarjani on seven different plant pollens and two-spotted spider mite. Syst. Appl. Acarol. 2016, 21, 1399–1412. [Google Scholar] [CrossRef]
- Maruccia, R.C.; Souzaa, I.L.; Silvab, L.O.; Auadc, A.M.; Mendes, S.M. Pollen as a component of the diet of Doru luteipes (Scudder, 1876) (Dermaptera: Forficulidade). Braz. J. Biol. 2019, 79, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzazy, M.M.; Alhewairini, S.S. The potential of two phytoseiid mites as predators of the grape erineum mite, Colomerus vitis. Plants 2024, 13, 1953. [Google Scholar] [CrossRef]
- Ghasemzadeh, S.; Leman, A.; Messelink, G.J. Biological control of Echinothrips americanus by phytoseiid predatory mites and the effect of pollen as supplemental food. Exp. Appl. Acarol. 2017, 73, 209–221. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, M.; Li, M.; Qin, Y.; Zhong, M. Effects of pollen-added artificial diets on the development of Harmonia axyridis larvae. Chin. J. Biol. Control 2023, 39, 1058–1065. [Google Scholar]
- Sani, A.M.; Hemmati Kakhki, A.; Moradi, E. Chemical composition and nutritional value of saffron’s pollen (Crocus sativus L.). Nutr. Food Sci. 2012, 43, 490–495. [Google Scholar] [CrossRef]
- Shorey, H.H.; Hale, R.L. Mass–rearing of the larvae of nine noctuid species on a simple artificial medium. J. Econ. Entomol. 1965, 58, 522–524. [Google Scholar] [CrossRef]
- Waldbauer, G.P. The consumption and utilization of food by insects. Adv. Insect Physiol. 1968, 5, 229–288. [Google Scholar] [CrossRef]
- Hemati, S.A.; Naseri, B.; Ganbalani, G.N.; Dastjerdi, H.R.; Golizadeh, A. Effect of different host plants on nutritional indices of the pod borer, Helicoverpa armigera. J. Insect Sci. 2012, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Atashi, N.; Shishehbor, P.; Seraj, A.A.; Rasekh, A.; Hemmati, S.A.; Riddick, E.W. Effects of Helicoverpa armigera egg age on development, reproduction, and life table parameters of Trichogramma euproctidis. Insects 2021, 12, 569. [Google Scholar] [CrossRef] [PubMed]
- Bernfeld, P. Amylases, α and β. Method Enzymol. 1955, 1, 149–158. [Google Scholar]
- Elpidina, E.N.; Vinokurov, K.S.; Gromenko, V.A.; Rudenshaya, Y.A.; Dunaevsky, Y.E.; Zhuzhikov, D.P. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Arch. Insect Biochem. Physiol. 2001, 48, 206–216. [Google Scholar] [CrossRef]
- Somerville, D.C.; Nicol, H.I. Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity. Aust. J. Exp. Agric. 2006, 46, 141–149. [Google Scholar] [CrossRef]
- Lau, P.; Lesne, P.; Grebenok, R.J.; Rangel, J.; Behmer, S.T. Assessing pollen nutrient content: A unifying approach for the study of bee nutritional ecology. Phil. Trans. R. Soc. B 2022, 377, 20210510. [Google Scholar] [CrossRef]
- Sahin, H.; Aliyazicioglu, R.; Yildiz, O.; Kolayli, S.; Innocenti, A.; Supuran, C.T. Honey, pollen, and propolis extracts show potent inhibitory activity against the zinc metalloenzyme carbonic anhydrase. J. Enzym. Inhib. Med. Chem. 2011, 26, 440–444. [Google Scholar] [CrossRef]
- Hoo, C.F.S.; Fraenkel, G. The consumption, digestion, and utilization of food plants by a polyphagous insect, Prodenia eridania (Cramer). J. Insect Physiol. 1966, 12, 711–730. [Google Scholar] [CrossRef]
- Khanamani, M.; Fathipour, Y.; Talebi, A.A.; Mehrabadi, M. Linking pollen quality and performance of Neoseiulus californicus (Acari: Phytoseiidae) in two-spotted spider mite management programmes. Pest Manag. Sci. 2017, 73, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.F. The Insects: Structure and Function; Cambridge University Press: London, UK, 1998; 770p. [Google Scholar]
- Naseri, B.; Aeinehchi, P.; Ashjerdi, A.R. Nutritional responses and digestive enzymatic profile of Trogoderma granarium Everts (Coleoptera: Dermestidae) on 10 commercial rice cultivars. J. Stored Prod. Res. 2020, 87, 101591. [Google Scholar] [CrossRef]
- Truzi, C.C.; Vieira, N.F.; de Souza, J.M.; de Bortoli, S.A. Artificial diets with different protein levels for rearing Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Insect Sci. 2021, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, O.; Sorgatto, R.J.; Barbosa, A.D.; Domingues, F.A.; Dourado, P.M.; Carvalho, R.A.; Martinelli, S.; Head, G.P.; Omoto, C. Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically-modified soybean expressing Cry1Ac protein. Crop Prot. 2014, 58, 33–40. [Google Scholar] [CrossRef]
- Kraft, S.K.; Denno, R.F. Feeding responses of adapted and non-adapted insects to the defensive properties of Baccharis halimifolia L. (Compositae). Oecologia 1982, 52, 156–163. [Google Scholar] [CrossRef]
- Rivera-Ciprian, J.P.; Aceituno-Medina, M.; Guillen, K.; Hernandez, E.; Toledo, J. Midgut protease activity during larval development of Anastrepha obliqua (Diptera: Tephritidae) fed with natural and artificial diet. J. Insect Sci. 2017, 17, 116. [Google Scholar] [CrossRef]
- Haslett, J.R. A photographic account of pollen digestion by adult hoverflies. Physiol. Entomol. 1983, 8, 167–171. [Google Scholar] [CrossRef]
- Sarate, P.; Tamhane, V.; Kotkar, H.; Ratnakaran, N.; Susan, N.; Gupta, V.; Giri, A. Developmental and digestive flexibilities in the midgut of a polyphagous pest, the cotton bollworm, Helicoverpa armigera. J. Insect Sci. 2012, 12, 42. [Google Scholar] [CrossRef]
- Bidar, F.; Naseri, B.; Razmjou, J. Barley cultivars affecting nutritional performance and digestive enzymatic activities of Ephestia kuehniella Zeller (Pyralidae). J. Lepid. Soc. 2016, 70, 1–8. [Google Scholar] [CrossRef]
- Volpicella, M.; Schipper, A.; Jongsma, M.A.; Spoto, N.; Gallerani, R.; Ceci, L.R. Characterization of recombinant mustard trypsin inhibitor 2 (MTI2) expressed in Pichia pastoris. FEBS Lett. 2000, 468, 137–141. [Google Scholar] [CrossRef]
- Franco, O.L.; Rigden, D.J.; Melo, F.R.; Grossi-De-Sá, M.F. Plant α-amylase inhibitors and their interaction with insect α-amylases. Eur. J. Biochem. 2002, 269, 397–412. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Unit | Artificial Diet | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | Honey Bee | Rapeseed | Maize | Sunflower | Hollyhock | Glossy-Shower | Saffron | Date Palm | ||
Pollen | g | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Cowpea | g | 20.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 |
Wheat germ | g | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Brewer’s yeast | g | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
Ascorbic acid | g | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Sorbic acid | g | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
Methyl–p–hydroxy–benzoate | g | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 |
Formaldehyde, 37% | mL | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Sunflower oil | mL | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Agar | g | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
Distilled water | mL | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |
Artificial Diet | CI | AD% | ECI% | ECD% | RCR (mg mg−1 day−1) | RGR (mg mg−1 day−1) |
---|---|---|---|---|---|---|
Control | 4.278 ± 0.074 abc | 83.520 ± 0.370 bcd | 4.160 ± 0.034 e | 4.990 ± 0.039 e | 2.172 ± 0.044 e | 0.127 ± 0.007 d |
Honey bee | 4.156 ± 0.075 bc | 82.790 ± 0.346 d | 6.700 ± 0.221 b | 8.100 ± 0.270 b | 2.784 ± 0.102 bcd | 0.213 ± 0.009 b |
Rapeseed | 4.060 ± 0.048 bcd | 83.050 ± 0.199 cd | 5.820 ± 0.126 bcd | 7.010 ± 0.158 bcd | 2.441 ± 0.066 de | 0.150 ± 0.007 cd |
Maize | 4.113 ± 0.077 bc | 83.030 ± 0.355 cd | 6.390 ± 0.261 bc | 7.700 ± 0.322 bc | 2.992 ± 0.118 abc | 0.192 ± 0.011 bc |
Sunflower | 4.605 ± 0.091 a | 85.060 ± 0.354 ab | 6.030 ± 0.275 bcd | 7.100 ± 0.332 bcd | 3.454 ± 0.137 a | 0.208 ± 0.012 b |
Hollyhock | 4.303 ± 0.101 ab | 81.720 ± 0.406 d | 5.390 ± 0.148 cd | 6.600 ± 0.186 cd | 3.148 ± 0.0156 ab | 0.169 ± 0.009 bcd |
Glossy shower | 4.251 ± 0.057 abc | 85.910 ± 0.240 a | 5.080 ± 0.087 de | 5.910 ± 0.109 d | 2.537 ± 0.089 cde | 0.139 ± 0.007 d |
Saffron | 3.895 ± 0.055 cd | 84.770 ± 0.426 abc | 6.740 ± 0.236 b | 7.970 ± 0.297 b | 2.397 ± 0.084 de | 0.168 ± 0.010 bcd |
Date palm | 3.702 ± 0.081 d | 83.150 ± 0.467 cd | 8.430 ± 0.337 a | 10.140 ± 0.404 a | 2.714 ± 0.043 bcd | 0.264 ± 0.012 a |
Pollen | Protein (%) | Sugar (mg/g) | Lipid (%) | Phenol (µg/g) |
---|---|---|---|---|
Honey bee | 16.74 ± 0.01 d | 15.830 ± 0.012 b | 2.77 ± 0.01 f | 60.277 ± 0.015 g |
Rapeseed | 21.52 ± 0.01 b | 8.450 ± 0.012 h | 25.80 ± 0.11 a | 93.410 ± 0.010 c |
Maize | 16.66 ± 0.01 e | 10.623 ± 0.015 f | 12.97 ± 0.01 d | 91.083 ± 0.018 d |
Sunflower | 17.13 ± 0.01 c | 13.883 ± 0.018 c | 12.70 ± 0.14 d | 102.923 ± 0.015 a |
Hollyhock | 16.68 ± 0.01 de | 12.657 ± 0.018 d | 17.52 ± 0.01 b | 73.147 ± 0.015 f |
Glossy shower | 15.63 ± 0.01 f | 31.353 ± 0.224 a | 14.52 ± 0.24 c | 99.650 ± 0.012 b |
Saffron | 9.52 ± 0.01 g | 11.233 ± 0.145e | 6.71 ± 0.14 e | 79.00 ± 0.115 e |
Date palm | 26.43 ± 0.01 a | 9.400 ± 0.012 g | 6.38 ± 0.01 e | 44.290 ± 0.023 h |
Parameter | Protein | Sugar | Lipid | Total Phenolic |
---|---|---|---|---|
Larval weight | 0.339 (0.105) | −0.618 (0.001) * | −0.190 (0.374) | −0.536 (0.007) * |
Food consumed | 0.246 (0.129) | −0.378 (0.069) | 0.143 (0.504) | 0.129 (0.548) |
Pupal weight | 0.363 (0.081) | −0.681 (0.000) * | 0.102 (0.392) | −0.535 (0.007) * |
ECI | 0.524 (0.009) * | −0.588 (0.003) * | −0.361 (0.083) | −0.731 (0.000) * |
ECD | 0.532 (0.007) * | −0.613 (0.001) * | −0.317 (0.132) | −0.738 (0.000) * |
RCR | 0.280 (0.184) | −0.116 (0.942) | −0.069 (0.749) | 0.040 (0.854) |
RGR | 0.565 (0.004) * | −0.462 (0.023) * | −0.335 (0.109) | −0.568 (0.004) * |
Amylolytic activity | 0.219 (0.303) | −0.192 (0.369) | −0.741 (0.000) * | −0.573 (0.003) * |
Proteolytic activity | −0.543 (0.006) * | 0.213 (0.317) | 0.425 (0.038) * | 0.494 (0.009) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kefayat, F.; Hemmati, S.A.; Rasekh, A.; Nasernakhaei, F.; Stelinski, L.L. Suitability of Artificial Diets Containing Various Types of Pollen Grains to Helicoverpa armigera (Hübner, 1808): Nutritional Performance and Digestive Enzyme Response. Insects 2025, 16, 429. https://doi.org/10.3390/insects16040429
Kefayat F, Hemmati SA, Rasekh A, Nasernakhaei F, Stelinski LL. Suitability of Artificial Diets Containing Various Types of Pollen Grains to Helicoverpa armigera (Hübner, 1808): Nutritional Performance and Digestive Enzyme Response. Insects. 2025; 16(4):429. https://doi.org/10.3390/insects16040429
Chicago/Turabian StyleKefayat, Fatemeh, Seyed Ali Hemmati, Arash Rasekh, Fatemeh Nasernakhaei, and Lukasz L. Stelinski. 2025. "Suitability of Artificial Diets Containing Various Types of Pollen Grains to Helicoverpa armigera (Hübner, 1808): Nutritional Performance and Digestive Enzyme Response" Insects 16, no. 4: 429. https://doi.org/10.3390/insects16040429
APA StyleKefayat, F., Hemmati, S. A., Rasekh, A., Nasernakhaei, F., & Stelinski, L. L. (2025). Suitability of Artificial Diets Containing Various Types of Pollen Grains to Helicoverpa armigera (Hübner, 1808): Nutritional Performance and Digestive Enzyme Response. Insects, 16(4), 429. https://doi.org/10.3390/insects16040429