Differences in Morphology of Rural vs. Urban Individuals of the Flightless Ground Beetle, Carabus convexus
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Species and Sampling
2.3. Evaluating and Measuring Morphological Traits
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Methodological Considerations
4.2. Evaluating Morphological Traits
4.3. Sex-Specific Differences in Morphological Traits
4.4. Urbanization-Related Differences in Morphological Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Paillet, Y.; Bergès, L.; Hjältén, J.; Ódor, P.; Avon, C.; Bernhardt-Römermann, M.; Bijlsma, R.-J.; De Bruyn, L.; Fuhr, M.; Grandin, U.; et al. Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conserv. Biol. 2010, 24, 101–112. [Google Scholar] [CrossRef]
- Hahs, A.K.; Fournier, B.; Aronson, M.F.J.; Nilon, C.H.; Herrera-Montes, A.; Salisbury, A.B.; Threlfall, C.G.; Rega-Brodsky, C.C.; Lepczyk, C.A.; La Sorte, F.A.; et al. Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nat. Commun. 2023, 14, 4751. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, N.E. Urban ecology—Definitions and goals. In The Routledge Handbook of Urban Ecology; Douglas, I., Goode, D., Houck, M., Wang, R., Eds.; Routledge: London, UK, 2011; pp. 7–16. [Google Scholar]
- Parris, K.M. Ecology of Urban Environments; Wiley-Blackwell: Hoboken, NJ, USA, 2016; ISBN 978-1-444-33265-0. [Google Scholar]
- Wilson, E.O. The Future of Life; Little, Brown & Co.: New York, NY, USA, 2002. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Phelan, P.E.; Kaloush, K.; Miner, M.; Golden, J.; Phelan, B.; Silva, H.; Taylor, R.A. Urban heat island: Mechanisms, implications, and possible remedies. Annu. Rev. Environ. Resour. 2015, 40, 285–307. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, R.; Pielke, R.A., Sr.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.; Beltrán-Przekurat, A.; et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 2014, 34, 929–953. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.V.; Zipperer, W.C.; Costanza, R. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 2001, 32, 127–157. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Pickett, S.T.A.; Groffman, P.; Bohlen, P.; Pouyat, R.V.; Zipperer, W.C.; Parmelee, R.W.; Carreiro, M.M.; Medley, K. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1997, 1, 21–36. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Szlavecz, K.; Csuzdi, C.; Hornung, E.; Korsós, Z.; Russell-Anelli, J.; Giorgio, V. Response of forest soil properties to urbanization gradients in three metropolitan areas. Landsc. Ecol. 2008, 23, 1187–1203. [Google Scholar] [CrossRef]
- Faeth, S.H.; Bang, C.; Saari, S. Urban biodiversity: Patterns and mechanisms. Ann. N. Y. Acad. Sci. 2011, 1223, 69–81. [Google Scholar] [CrossRef] [PubMed]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Shochat, E.; Lerman, S.B.; Anderies, J.M.; Warren, P.S.; Faeth, S.H.; Nilon, C.H. Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 2010, 60, 199–208. [Google Scholar] [CrossRef]
- De Pauw, K.; Depauw, L.; Cousins, S.A.O.; De Lombaerde, E.; Diekmann, M.; Frey, D.; Kwietniowska, K.; Lenoir, J.; Meeussen, C.; Orczewska, A.; et al. The urban heat island accelerates litter decomposition through microclimatic warming in temperate urban forests. Urban Ecosyst. 2024, 27, 909–926. [Google Scholar] [CrossRef]
- Wan, S.-Z.; Chen, F.-S.; Hu, X.-F.; Zhang, Y.; Fang, X.-M. Urbanization aggravates imbalances in the active C, N and P pools of terrestrial ecosystems. Glob. Ecol. Conserv. 2020, 21, e00831. [Google Scholar] [CrossRef]
- Eötvös, C.B.; Magura, T.; Lövei, G.L. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc. Urban Plan. 2018, 180, 54–59. [Google Scholar] [CrossRef]
- Wenzel, A.; Grass, I.; Belavadi, V.V.; Tscharntke, T. How urbanization is driving pollinator diversity and pollination—A systematic review. Biol. Conserv. 2020, 241, 108321. [Google Scholar] [CrossRef]
- Zuñiga-Palacios, J.; Zuria, I.; Castellanos, I.; Lara, C.; Sánchez-Rojas, G. What do we know (and need to know) about the role of urban habitats as ecological traps? Systematic review and meta-analysis. Sci. Total Environ. 2021, 780, 146559. [Google Scholar] [CrossRef]
- Dammhahn, M.; Mazza, V.; Schirmer, A.; Göttsche, C.; Eccard, J.A. Of city and village mice: Behavioural adjustments of striped field mice to urban environments. Sci. Rep. 2020, 10, 13056. [Google Scholar] [CrossRef]
- Møller, A.P. Flight distance of urban birds, predation, and selection for urban life. Behav. Ecol. Sociobiol. 2008, 63, 63–75. [Google Scholar] [CrossRef]
- Pellitteri-Rosa, D.; Bellati, A.; Cocca, W.; Gazzola, A.; Martín, J.; Fasola, M. Urbanization affects refuge use and habituation to predators in a polymorphic lizard. Anim. Behav. 2017, 123, 359–367. [Google Scholar] [CrossRef]
- Kralj-Fišer, S.; Hebets, E.A.; Kuntner, M. Different patterns of behavioral variation across and within species of spiders with differing degrees of urbanization. Behav. Ecol. Sociobiol. 2017, 71, 125. [Google Scholar] [CrossRef]
- Magura, T.; Mizser, S.; Horváth, R.; Nagy, D.D.; Tóth, M.; Csicsek, R.; Lövei, G.L. Are there personality differences between rural vs. urban-living individuals of a specialist ground beetle, Carabus convexus? Insects 2021, 12, 646. [Google Scholar] [CrossRef]
- Ronget, V.; Gaillard, J.-M.; Coulson, T.; Garratt, M.; Gueyffier, F.; Lega, J.-C.; Lemaître, J.-F. Causes and consequences of variation in offspring body mass: Meta-analyses in birds and mammals. Biol. Rev. 2018, 93, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Magura, T.; Ferrante, M.; Lövei, G.L. Only habitat specialists become smaller with advancing urbanization. Glob. Ecol. Biogeogr. 2020, 29, 1978–1987. [Google Scholar] [CrossRef]
- Davy, C.M.; von Zuben, V.; Kukka, P.M.; Gerber, B.D.; Slough, B.G.; Jung, T.S. Rapidly declining body size in an insectivorous bat is associated with increased precipitation and decreased survival. Ecol. Appl. 2022, 32, e2639. [Google Scholar] [CrossRef]
- Jung, K.; Threlfall, C.G. Urbanisation and Its Effects on Bats—A Global Meta-Analysis. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer: Cham, Switzerland, 2016; pp. 13–33. ISBN 978-3-319-25220-9. [Google Scholar]
- San Martin y Gomez, G.; Van Dyck, H. Ecotypic differentiation between urban and rural populations of the grasshopper Chorthippus brunneus relative to climate and habitat fragmentation. Oecologia 2012, 169, 125–133. [Google Scholar] [CrossRef]
- Schoville, S.D.; Widmer, I.; Deschamps-Cottin, M.; Manel, S. Morphological clines and weak drift along an urbanization gradient in the butterfly, Pieris rapae. PLoS ONE 2013, 8, e83095. [Google Scholar] [CrossRef]
- Papp, D.; Mizser, S.; Nagy, L.; Vidic, A.; Simon, E.; Tóthmérész, B. Changes in morphometric traits of ground beetles along urbanization gradients. J. Insect Sci. 2020, 20, 5. [Google Scholar] [CrossRef]
- Meillère, A.; Brischoux, F.; Parenteau, C.; Angelier, F. Influence of Urbanization on Body Size, Condition, and Physiology in an Urban Exploiter: A Multi-Component Approach. PLoS ONE 2015, 10, e0135685. [Google Scholar] [CrossRef]
- Córdoba-Aguilar, A.; Rocha-Ortega, M. Damselfly (Odonata: Calopterygidae) population decline in an urbanizing watershed. J. Insect Sci. 2019, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Lövei, G.L.; Sunderland, K.D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 1996, 41, 231–256. [Google Scholar] [CrossRef] [PubMed]
- Kotze, D.J.; Brandmayr, P.; Casale, A.; Dauffy-Richard, E.; Dekoninck, W.; Koivula, M.; Lövei, G.L.; Mossakowski, D.; Noordijk, J.; Paarmann, W.; et al. Forty years of carabid beetle research in Europe—From taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. Zookeys 2011, 100, 55–148. [Google Scholar] [CrossRef]
- Fahrig, L.; Rytwinski, T. Effects of roads on animal abundance: An empirical review and synthesis. Ecol. Soc. 2009, 14, 21. [Google Scholar] [CrossRef]
- Niemelä, J.; Kotze, J.; Ashworth, A.; Brandmayr, P.; Desender, K.; New, T.; Penev, L.; Samways, M.; Spence, J. The search for common anthropogenic impacts on biodiversity: A global network. J. Insect Conserv. 2000, 4, 3–9. [Google Scholar] [CrossRef]
- Magura, T.; Lövei, G.L. Consequences of urban living: Urbanization and ground beetles. Curr. Landsc. Ecol. Rep. 2021, 6, 9–21. [Google Scholar] [CrossRef]
- Magura, T.; Mizser, S.; Horváth, R.; Tóth, M.; Kozma, F.S.; Kádas, J.; Lövei, G.L. Gut Bacterial Communities in the Ground Beetle Carabus convexus. Insects 2024, 15, 612. [Google Scholar] [CrossRef]
- Magura, T.; Mizser, S.; Horváth, R.; Nagy, D.D.; Tóth, M.; Csicsek, R.; Lövei, G.L. Differences in life history traits in rural vs. urban populations of a specialist ground beetle, Carabus convexus. Insects 2021, 12, 540. [Google Scholar] [CrossRef]
- Bogyó, D.; Magura, T.; Simon, E.; Tóthmérész, B. Millipede (Diplopoda) assemblages alter drastically by urbanisation. Landsc. Urban Plan. 2015, 133, 118–126. [Google Scholar] [CrossRef]
- Turin, H.; Penev, L.; Casale, A.; Arndt, E.; Assmann, T.; Makarov, K.V.; Mossakowski, D.; Szél, G.; Weber, F. Species accounts. In The Genus Carabus in Europe: A Synthesis; Turin, H., Penev, L., Casale, A., Eds.; Pensoft Publishers: Moscow, Russia, 2003; pp. 151–284. ISBN 954-642-120-0. [Google Scholar]
- Magura, T.; Tóthmérész, B.; Molnár, T. A species-level comparison of occurrence patterns in carabids along an urbanisation gradient. Landsc. Urban Plan. 2008, 86, 134–140. [Google Scholar] [CrossRef]
- Martinson, H.M.; Raupp, M.J. A meta-analysis of the effects of urbanization on ground beetle communities. Ecosphere 2013, 4, 60. [Google Scholar] [CrossRef]
- Niemelä, J.; Kotze, D.J.; Venn, S.; Penev, L.; Stoyanov, I.; Spence, J.; Hartley, D.; de Oca, E.M. Carabid beetle assemblages (Coleoptera, Carabidae) across urban-rural gradients: An international comparison. Landsc. Ecol. 2002, 17, 387–401. [Google Scholar] [CrossRef]
- Magura, T.; Lövei, G.L.; Tóthmérész, B. Time-consistent rearrangement of carabid beetle assemblages by an urbanisation gradient in Hungary. Acta Oecologica 2008, 34, 233–243. [Google Scholar] [CrossRef]
- Mader, H.J.; Schell, C.; Kornacker, P. Linear barriers to arthropod movements in the landscape. Biol. Conserv. 1990, 54, 209–222. [Google Scholar] [CrossRef]
- Yamada, Y.; Sasaki, H.; Harauchi, Y. Effects of narrow roads on the movement of carabid beetles (Coleoptera, Carabidae) in Nopporo Forest Park, Hokkaido. J. Insect Conserv. 2010, 14, 151–157. [Google Scholar] [CrossRef]
- Koivula, M.J.; Vermeulen, H.J.W. Highways and forest fragmentation—Effects on carabid beetles (Coleoptera, Carabidae). Landsc. Ecol. 2005, 20, 911–926. [Google Scholar] [CrossRef]
- Ködöböcz, V. Ground Beetles of Hungary (Coleoptera: Carabidae) [in Hungarian]; Rónaörző Természetvédelmi Egyesület: Debrecen, Hungary, 2024; ISBN 978-615-02-2356-8. [Google Scholar]
- Sowa, G.; Skalski, T. Effects of chronic metal exposure on the morphology of beetles species representing different ecological niches. Bull. Environ. Contam. Toxicol. 2019, 102, 191–197. [Google Scholar] [CrossRef]
- Elek, Z.; Lövei, G.L.; Bátki, M. Sex-specific interaction of body condition and asymmetry in carabids in distinct urbanisation stages. Community Ecol. 2017, 18, 253–259. [Google Scholar] [CrossRef]
- Yarwood, E.; Drees, C.; Niven, J.E.; Gawel, M.; Schuett, W. Sex differences in morphology across an expanding range edge in the flightless ground beetle, Carabus hortensis. Ecol. Evol. 2021, 11, 9949–9957. [Google Scholar] [CrossRef]
- Evans, M.E.G. Locomotion in the Coleoptera Adephaga, especially Carabidae. J. Zool. 1977, 181, 189–226. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. Artic. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; SAGE Publications: Thousand Oaks, CA, USA, 2018; ISBN 9781544336473. [Google Scholar]
- Venables, W.; Ripley, B. Modern Applied Statistics with S; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research 2023. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 10 January 2025).
- Green, P.; MacLeod, C.J. SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods Ecol. Evol. 2016, 7, 493–498. [Google Scholar] [CrossRef]
- Keinath, S.; Hölker, F.; Müller, J.; Rödel, M.-O. Impact of light pollution on moth morphology—A 137-year study in Germany. Basic Appl. Ecol. 2021, 56, 1–10. [Google Scholar] [CrossRef]
- Chen, X.; Guo, X.; Xiong, W.; Zhan, A. Pollution-driven morphological plasticity in a running water ecosystem. Environ. Sci. Pollut. Res. 2022, 29, 2783–2791. [Google Scholar] [CrossRef]
- Thompson, M.J.; Capilla-Lasheras, P.; Dominoni, D.M.; Réale, D.; Charmantier, A. Phenotypic variation in urban environments: Mechanisms and implications. Trends Ecol. Evol. 2022, 37, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Caizergues, A.E.; Charmantier, A.; Lambrechts, M.M.; Perret, S.; Demeyrier, V.; Lucas, A.; Grégoire, A. An avian urban morphotype: How the city environment shapes great tit morphology at different life stages. Urban Ecosyst. 2021, 24, 929–941. [Google Scholar] [CrossRef]
- Fenoglio, M.S.; Calviño, A.; González, E.; Salvo, A.; Videla, M. Urbanisation drivers and underlying mechanisms of terrestrial insect diversity loss in cities. Ecol. Entomol. 2021, 46, 757–771. [Google Scholar] [CrossRef]
- Kotze, D.J.; O’Hara, R.B. Species decline—But why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 2003, 135, 138–148. [Google Scholar] [CrossRef]
- Jones, L.E.; Leather, R.S. Invertebrates in urban areas: A review. Eur. J. Entomol. 2012, 109, 463–478. [Google Scholar] [CrossRef]
- Gray, J.S. Effects of environmental stress on species rich assemblages. Biol. J. Linn. Soc. 1989, 37, 19–32. [Google Scholar] [CrossRef]
- Weiss, F.; Linde, A. How to estimate carabid biomass?—An evaluation of size-weight models for ground beetles (Coleoptera: Carabidae) and perspectives for further improvement. J. Insect Conserv. 2022, 26, 537–548. [Google Scholar] [CrossRef]
- den Nijs, L.J.M.F.; Lock, C.A.M.; Noorlander, J.; Booij, C.J.H. Search for quality parameters to estimate the condition of Pterostichus cupreus (Col., Carabidae) in view of population dynamic modelling. J. Appl. Entomol. 1996, 120, 147–151. [Google Scholar] [CrossRef]
- Bell, A.J.; Phillips, I.D.; Nielsen, S.E.; Spence, J.R. Species traits modify the species-area relationship in ground-beetle (Coleoptera: Carabidae) assemblages on islands in a boreal lake. PLoS ONE 2017, 12, e0190174. [Google Scholar] [CrossRef] [PubMed]
- Tyler, G. Differences in abundance, species richness, and body size of ground beetles (Coleoptera: Carabidae) between beech (Fagus sylvatica L.) forests on Podzol and Cambisol. For. Ecol. Manag. 2008, 256, 2154–2159. [Google Scholar] [CrossRef]
- Lagisz, M. Changes in morphology of the ground beetle Pterostichus oblongopunctatus F. (Coleoptera; Carabidae) from vicinities of a zinc and lead smelter. Environ. Toxicol. Chem. 2008, 27, 1744–1747. [Google Scholar] [CrossRef]
- Östman, Ö. Asynchronous temporal variation among sites in condition of two carabid species. Ecol. Entomol. 2005, 30, 63–69. [Google Scholar] [CrossRef]
- Laparie, M.; Renault, D.; Lebouvier, M.; Delattre, T. Is dispersal promoted at the invasion front? Morphological analysis of a ground beetle invading the Kerguelen Islands, Merizodus soledadinus (Coleoptera, Carabidae). Biol. Invasions 2013, 15, 1641–1648. [Google Scholar] [CrossRef]
- Giglio, A.; Cavaliere, F.; Giulianini, P.G.; Mazzei, A.; Talarico, F.; Vommaro, M.L.; Brandmayr, P. Impact of agrochemicals on non-target species: Calathus fuscipes Goeze 1777 (Coleoptera: Carabidae) as model. Ecotoxicol. Environ. Saf. 2017, 142, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Knapp, M.; Knappová, J. Measurement of body condition in a common carabid beetle, Poecilus cupreus: A comparison of fresh weight, dry weight, and fat content. J. Insect Sci. 2013, 13, 6. [Google Scholar] [CrossRef]
- Huk, T.; Kühne, B. Substrate selection by Carabus clatratus (Coleoptera, Carabidae) and its consequences for offspring development. Oecologia 1999, 121, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Vesović, N.; Ivanović, A.; Ćurčić, S. Sexual size and shape dimorphism in two ground beetle taxa, Carabus (Procrustes) coriaceus cerisyi and C. (Morphocarabus) kollari praecellens (Coleoptera: Carabidae)—A geometric morphometric approach. Arthropod Struct. Dev. 2019, 49, 1–9. [Google Scholar] [CrossRef]
- Perry, K.I.; Hoekstra, N.C.; Delgado de la flor, Y.A.; Gardiner, M.M. Disentangling landscape and local drivers of ground-dwelling beetle community assembly in an urban ecosystem. Ecol. Appl. 2020, 30, e02191. [Google Scholar] [CrossRef]
- Turin, H.; Penev, L.; Casale, A. The Genus Carabus in Europe—A Synthesis; Pensoft: Moscow, Russia, 2003. [Google Scholar]
- Szyszko, J.; Gryuntal, S.; Schwerk, A. Differences in locomotory activity between male and female Carabus hortensis (Coleoptera: Carabidae) in a pine forest and a beech forest in relation to feeding state. Environ. Entomol. 2004, 33, 1442–1446. [Google Scholar] [CrossRef]
- Wolf, M.; van Doorn, G.S.; Leimar, O.; Weissing, F.J. Life-history trade-offs favour the evolution of animal personalities. Nature 2007, 447, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Schuett, W.; Delfs, B.; Haller, R.; Kruber, S.; Roolfs, S.; Timm, D.; Willmann, M.C.D. Ground beetles in city forests: Does urbanization predict a personality trait? PeerJ 2018, 6, e4360. [Google Scholar] [CrossRef]
- Amarasekare, P. Interference competition and species coexistence. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2002, 269, 2541–2550. [Google Scholar] [CrossRef] [PubMed]
- Pett, B.L.; Raymond, B.; Hackman, J.R.; Hotchkiss, A.; Knott, R.; Royle, N.J. Contrasting patterns of habitat use in a threatened carabid (Carabus intricatus) and a sympatric congener in ancient temperate rainforest. Insect Conserv. Divers. 2024, 17, 512–525. [Google Scholar] [CrossRef]
- Růžičková, J.; Elek, Z. Beetles on the move: Not-just-a-technical review of beetles’ radio-tracking. Entomol. Exp. Appl. 2023, 171, 82–93. [Google Scholar] [CrossRef]
- Vergnes, A.; Chantepie, S.; Robert, A.; Clergeau, P. Are urban green spaces suitable for woodland carabids? First insights from a short-term experiment. J. Insect Conserv. 2013, 17, 671–679. [Google Scholar] [CrossRef]
- Angold, P.G.; Sadler, J.P.; Hill, M.O.; Pullin, A.; Rushton, S.; Austin, K.; Small, E.; Wood, B.; Wadsworth, R.; Sanderson, R.; et al. Biodiversity in urban habitat patches. Sci. Total Environ. 2006, 360, 196–204. [Google Scholar] [CrossRef] [PubMed]
- McKinney, M.L. Urbanization, biodiversity, and conservation. Bioscience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Merckx, T.; Kaiser, A.; Van Dyck, H. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. Glob. Change Biol. 2018, 24, 3837–3848. [Google Scholar] [CrossRef] [PubMed]
- Cabon, V.; Quénol, H.; Deletre, B.; Copin, L.; Dubreuil, V.; Bergerot, B. Body size responses to urban temperature variations are driven by life history traits in spiders. Funct. Ecol. 2024, 38, 1578–1589. [Google Scholar] [CrossRef]
- Husak, J.F.; Fox, S.F. Sexual selection on locomotor performance. Evol. Ecol. Res. 2008, 10, 213–228. [Google Scholar]
- Glaudas, X.; Rice, S.E.; Clark, R.W.; Alexander, G.J. Male energy reserves, mate-searching activities, and reproductive success: Alternative resource use strategies in a presumed capital breeder. Oecologia 2020, 194, 415–425. [Google Scholar] [CrossRef]
- Elek, Z.; Růžičková, J.; Ódor, P. Individual decisions drive the changes in movement patterns of ground beetles between forestry management types. Biologia 2021, 76, 3287–3296. [Google Scholar] [CrossRef]
- Smallegange, I.M.; Guenther, A. A development-centric perspective on pace-of-life syndromes. Evol. Lett. 2024, in press. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Response Variable | Fixed Effect | Estimate ± SE | χ2 | df | p |
---|---|---|---|---|---|
Pronotum volume | Urbanization level | −0.0172 ± 0.8522 | 0.0004 | 1 | 0.9839 |
Statistical power: 8.70% (CI95: 7.03, 10.62) | Sex | 0.5867 ± 0.3676 | 2.5476 | 1 | 0.1105 |
Urbanization level × Sex | −0.2040 ± 0.9323 | 0.0479 | 1 | 0.8268 | |
Area of the frontal tibia | Urbanization level | 0.0112 ± 0.0080 | 1.9534 | 1 | 0.1622 |
Statistical power: 21.50% (CI95: 18.99, 24.18) | Sex | −0.0136 ± 0.0040 | 11.4015 | 1 | 0.0007 |
Urbanization level × Sex | −0.0072 ± 0.0104 | 0.4750 | 1 | 0.4907 | |
Area of the frontal femur | Urbanization level | −0.0024 ± 0.0133 | 0.0331 | 1 | 0.8557 |
Statistical power: 8.30% (CI95: 6.66, 10.19) | Sex | −0.0476 ± 0.0066 | 51.6991 | 1 | <0.0001 |
Urbanization level × Sex | −0.0038 ± 0.0173 | 0.0476 | 1 | 0.8273 | |
Area of the middle tibia | Urbanization level | −0.0037 ± 0.0068 | 0.2890 | 1 | 0.5909 |
Statistical power: 14.90% (CI95: 12.75, 17.26) | Sex | −0.0182 ± 0.0035 | 27.7876 | 1 | <0.0001 |
Urbanization level × Sex | 0.0084 ± 0.0088 | 0.9148 | 1 | 0.3388 | |
Area of the middle femur | Urbanization level | −0.0029 ± 0.0110 | 0.0671 | 1 | 0.7955 |
Statistical power: 6.00% (CI95: 4.61, 7.66) | Sex | −0.0372 ± 0.0055 | 45.4003 | 1 | <0.0001 |
Urbanization level × Sex | 0.0043 ± 0.0141 | 0.0933 | 1 | 0.7600 | |
Area of the hind tibia | Urbanization level | 0.0215 ± 0.0117 | 3.3710 | 1 | 0.0664 |
Statistical power: 50.70% (CI95: 47.55, 53.84) | Sex | −0.0128 ± 0.0045 | 8.0972 | 1 | 0.0044 |
Urbanization level × Sex | −0.0207 ± 0.0122 | 2.8753 | 1 | 0.0899 | |
Area of the hind femur | Urbanization level | 0.0306 ± 0.0171 | 3.1998 | 1 | 0.0736 |
Statistical power: 42.40% (CI95: 39.31, 45.53) | Sex | −0.0228 ± 0.0078 | 8.5564 | 1 | 0.0034 |
Urbanization level × Sex | −0.0210 ± 0.0213 | 0.9775 | 1 | 0.3228 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magura, T.; Horváth, R.; Mizser, S.; Tóth, M.; Lövei, G.L. Differences in Morphology of Rural vs. Urban Individuals of the Flightless Ground Beetle, Carabus convexus. Insects 2025, 16, 430. https://doi.org/10.3390/insects16040430
Magura T, Horváth R, Mizser S, Tóth M, Lövei GL. Differences in Morphology of Rural vs. Urban Individuals of the Flightless Ground Beetle, Carabus convexus. Insects. 2025; 16(4):430. https://doi.org/10.3390/insects16040430
Chicago/Turabian StyleMagura, Tibor, Roland Horváth, Szabolcs Mizser, Mária Tóth, and Gábor L. Lövei. 2025. "Differences in Morphology of Rural vs. Urban Individuals of the Flightless Ground Beetle, Carabus convexus" Insects 16, no. 4: 430. https://doi.org/10.3390/insects16040430
APA StyleMagura, T., Horváth, R., Mizser, S., Tóth, M., & Lövei, G. L. (2025). Differences in Morphology of Rural vs. Urban Individuals of the Flightless Ground Beetle, Carabus convexus. Insects, 16(4), 430. https://doi.org/10.3390/insects16040430