miRNA Expression Response of Aedes aegypti (Linnaeus 1762) (Diptera: Culicidae) to Imidacloprid Exposure
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. CDC Bottle Bioassay
2.3. RNA Extraction and Sequencing
2.4. miRNA Distribution
3. Results
4. Discussion
4.1. miRNAs Associated with Metabolism and Cellular Regulation
4.2. miRNAs Linked to Insecticide Resistance and Response
4.3. miRNAs Involved in Development and Reproduction
4.4. miRNAs Associated with Stress Response and Physiological Plasticity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NO | New Orleans strain |
NOI | New Orleans strain exposed to imidacloprid |
MT | Martinez de la Torre strain |
MTI | Martinez de la Torre strain exposed to imidacloprid |
References
- Asgarian, T.S.; Vatandoost, H.; Hanafi-Bojd, A.A.; Nikpoor, F. Worldwide Status of Insecticide Resistance of Aedes aegypti and Ae. albopictus, Vectors of Arboviruses of Chikungunya, Dengue, Zika and Yellow Fever. J. Arthropod Borne Dis. 2023, 17, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sanchez, I.P.; Saldaña-Torres, D.R.; Villanueva-Segura, O.K.; Garza-Rodriguez, M.L.; Gómez-Govea, M.A.; Liang, G.; Ramírez-Ahuja, M.L.; Martinez-Fierro, M.L.; Delgado-Enciso, I.; Martinez-de-Villarreal, L.E.; et al. miRNAs of Aedes aegypti (Linnaeus 1762) Conserved in Six Orders of the Class Insecta. Sci. Rep. 2021, 11, 10706. [Google Scholar] [CrossRef]
- Ambros, V.; Ruvkun, G. Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018, 209, 651–673. [Google Scholar] [CrossRef] [PubMed]
- Lucas, K.J.; Zhao, B.; Roy, S.; Gervaise, A.L.; Raikhel, A.S. Mosquito-Specific microRNA-1890 Targets the Juvenile Hormone-Regulated Serine Protease JHA15 in the Female Mosquito Gut. RNA Biol. 2015, 12, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhou, L.; Pei, C.; Lin, X.; Yuan, Z. Dysfunction of Wntless Triggers the Retrograde Golgi-to-ER Transport of Wingless and Induces ER Stress. Sci. Rep. 2016, 6, 19418. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Walker, T.; O’Neill, S.L.; Asgari, S. Blood Meal Induced microRNA Regulates Development and Immune Associated Genes in the Dengue Mosquito Vector, Aedes aegypti. Insect Biochem. Mol. Biol. 2013, 43, 146–152. [Google Scholar] [CrossRef]
- Qiao, J.; Du, Y.; Yu, J.; Guo, J. MicroRNAs as Potential Biomarkers of Insecticide Exposure: A Review. Chem. Res. Toxicol. 2019, 32, 2169–2181. [Google Scholar] [CrossRef]
- Tian, M.; Liu, B.; Hu, H.; Li, X.; Guo, Q.; Zou, F.; Liu, X.; Hu, M.; Guo, J.; Ma, L.; et al. MiR-285 targets P450 (CYP6N23) to regulate pyrethroid resistance in Culex pipiens pallens. Parasitol. Res. 2016, 115, 4511–4517. [Google Scholar] [CrossRef]
- Liu, B.; Tian, M.; Guo, Q.; Ma, L.; Zhou, D.; Shen, B.; Sun, Y.; Zhu, C. MiR-932 regulates pyrethroid resistance in Culex pipiens pallens (Diptera: Culicidae). J. Med. Entomol. 2016, 53, 1205–1210. [Google Scholar] [CrossRef]
- Lei, Z.; Lv, Y.; Wang, W.; Guo, Q.; Zou, F.; Hu, S.; Fang, F.; Tian, M.; Liu, B.; Liu, X.; et al. MiR-278-3p regulates pyrethroid resistance in Culex pipiens pallens. Parasitol. Res. 2014, 114, 699–706. [Google Scholar] [CrossRef]
- Dennison, N.J.; Benmarzouk-Hidalgo, O.J.; Dimopoulos, G. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota. Dev. Comp. Immunol. 2015, 49, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Wang, Y.; Li, Y.; Sun, P.; Jiang, J.; Zhou, H.; Liu, J.; Wang, S. Expression of mosquito miRNAs in entomopathogenic fungus induces pathogen-mediated host RNA interference and increases fungal efficacy. Cell Rep. 2022, 41, 111527. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhou, S.; Wang, J.; Hu, W. microRNA profiles and functions in mosquitoes. PLoS Neglected Trop. Dis. 2018, 12, e0006463. [Google Scholar] [CrossRef] [PubMed]
- Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 Accurately Identifies Known and Hundreds of Novel microRNA Genes in Seven Animal Clades. Nucleic Acids Res. 2012, 40, 37–52. [Google Scholar] [CrossRef]
- Yan, L. ggvenn: Draw Venn Diagram by ‘ggplot2’ (R Package Version 0.1.10). Available online: https://CRAN.R-project.org/package=ggvenn (accessed on 10 February 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012; Available online: https://www.R-project.org/ (accessed on 10 February 2025).
- Galili, T.; O’Callaghan, A.; Sidi, J.; Sievert, C. heatmaply: An R Package for Creating Interactive Cluster Heatmaps for Online Publishing. Bioinformatics 2018, 34, 1600–1602. [Google Scholar] [CrossRef]
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes (R Package Version 1.0-2). Available online: https://CRAN.R-project.org/package=RColorBrewer (accessed on 10 February 2024).
- Su, J.L.; Chen, P.S.; Johansson, G.; Kuo, M.L. Function and Regulation of Let-7 Family microRNAs. MicroRNA 2012, 1, 34–39. [Google Scholar] [CrossRef]
- Safa, A.; Bahroudi, Z.; Shoorei, H.; Majidpoor, J.; Abak, A.; Taheri, M.; Ghafouri-Fard, S. miR-1: A Comprehensive Review of Its Role in Normal Development and Diverse Disorders. Biomed. Pharmacother. 2020, 132, 110903. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Ye, X.Q.; Shi, M.; Li, F.; Wang, Z.H.; Zhou, Y.N.; Gu, Q.J.; Wu, X.T.; Yin, C.L.; Guo, D.H.; et al. Parasitic Insect-Derived miRNAs Modulate Host Development. Nat. Commun. 2018, 9, 2205. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Wang, A.; Duan, A.; Xue, C.; Wang, K.; Zhao, M.; Zhang, J. Four MicroRNAs, miR-13b-3p, miR-278-5p, miR-10483-5p, and miR-10485-5p, Mediate Insecticide Tolerance in Spodoptera frugiperda. Front. Genet. 2022, 12, 820778. [Google Scholar] [CrossRef]
- Wen, Z.; Li, K.; Xu, W.; Zhang, Z.; Liang, N.; Chen, M.; Guo, L. Role of miR-276-3p in the Cyantraniliprole Resistance Mechanism of Bemisia tabaci via CYP6CX3 Targeting. Int. J. Biol. Macromol. 2024, 254 Pt 2, 127830. [Google Scholar] [CrossRef]
- Peng, T.; Pan, Y.; Gao, X.; Xi, J.; Zhang, L.; Ma, K.; Wu, Y.; Zhang, J.; Shang, Q. Reduced Abundance of the CYP6CY3-Targeting Let-7 and miR-100 miRNAs Accounts for Host Adaptation of Myzus persicae nicotianae. Insect Biochem. Mol. Biol. 2016, 75, 89–97. [Google Scholar] [CrossRef]
- Zhu, B.; Sun, X.; Nie, X.; Liang, P.; Gao, X. MicroRNA-998-3p Contributes to Cry1Ac-Resistance by Targeting ABCC2 in Lepidopteran Insects. Insect Biochem. Mol. Biol. 2020, 117, 103283. [Google Scholar] [CrossRef]
- Rubio, M.; Belles, X. Subtle roles of microRNAs let-7, miR-100 and miR-125 on wing morphogenesis in hemimetabolan metamorphosis. J. Insect Physiol. 2013, 59, 1089–1094. [Google Scholar] [CrossRef]
- Gendron, C.M.; Pletcher, S.D. Micro RNA s mir-184 and let-7 alter Drosophila metabolism and longevity. Aging Cell 2017, 16, 1434–1438. [Google Scholar] [CrossRef]
- Etebari, K.; Afrad, M.H.; Tang, B.; Silva, R.; Furlong, M.J.; Asgari, S. Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella. Insect Mol. Biol. 2018, 27, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, M.; Deng, Z.; Xi, M.; Dong, Y.; Wang, H.; Xu, Q. The miR-184-3p promotes rice black-streaked dwarf virus infection by suppressing Ken in Laodelphax striatellus (Fallén). Pest Manag. Sci. 2024, 80, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fu, J. The microRNA miR-14 Regulates Egg-Laying by Targeting EcR in Honeybees (Apis mellifera). Insects 2021, 12, 351. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, C.; Chen, M.; Shi, Z.; Zhou, Y.; Shi, X.; Zhou, W.; Zhu, Z. Characterization of MicroRNAs Associated with Reproduction in the Brown Planthopper, Nilaparvata lugens. Int. J. Mol. Sci. 2022, 23, 7808. [Google Scholar] [CrossRef] [PubMed]
- Lucas, K.J.; Zhao, B.; Liu, S.; Raikhel, A.S. Regulation of Physiological Processes by microRNAs in Insects. Curr. Opin. Insect Sci. 2015, 11, 1–7. [Google Scholar] [CrossRef]
- Li, J.; Kang, Z.; Xu, H.; Li, S.; Li, G.; Sun, X.; Lei, C.; Chen, Y. Functional Regulation of microRNA-184 in the Replication and Infection of Autographa californica Multiple Nucleopolyhedrovirus. Pestic. Biochem. Physiol. 2024, 204, 106062. [Google Scholar] [CrossRef]
- Abbas, M.N.; Kausar, S.; Asma, B.; Ran, W.; Li, J.; Lin, Z.; Li, T.; Cui, H. MicroRNAs Reshape the Immunity of Insects in Response to Bacterial Infection. Front. Immunol. 2023, 14, 1176966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, W.; Fu, J.; Zhang, Z. MicroRNA-989 Controls Aedes albopictus Pupal-Adult Transition Process by Influencing Cuticle Chitin Metabolism in Pupae. Parasit. Vectors 2023, 16, 397. [Google Scholar] [CrossRef] [PubMed]
- Meuti, M.E.; Bautista-Jimenez, R.; Reynolds, J.A. Evidence That microRNAs Are Part of the Molecular Toolkit Regulating Adult Reproductive Diapause in the Mosquito, Culex pipiens. PLoS ONE 2018, 13, e0203015. [Google Scholar] [CrossRef] [PubMed]
Strain | Treatment | Abbreviation |
---|---|---|
New Orleans (susceptible) | Control (acetone only) | NO |
New Orleans (susceptible) | Exposed to imidacloprid | NOI |
Martínez de la Torre (wild) | Control (acetone only) | MT |
Martínez de la Torre (wild) | Exposed to imidacloprid | MTI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillo-Rodríguez, G.; Jiménez-Martínez, M.L.; Flores-Contreras, E.; González Gonzalez, E.; Ramírez Ahuja, M.d.L.; Garza Veloz, I.; Flores Suarez, A.E.; Correa Morales, F.; Dzul Manzanilla, F.; Rodriguez Sanchez, I.P.; et al. miRNA Expression Response of Aedes aegypti (Linnaeus 1762) (Diptera: Culicidae) to Imidacloprid Exposure. Insects 2025, 16, 460. https://doi.org/10.3390/insects16050460
Trujillo-Rodríguez G, Jiménez-Martínez ML, Flores-Contreras E, González Gonzalez E, Ramírez Ahuja MdL, Garza Veloz I, Flores Suarez AE, Correa Morales F, Dzul Manzanilla F, Rodriguez Sanchez IP, et al. miRNA Expression Response of Aedes aegypti (Linnaeus 1762) (Diptera: Culicidae) to Imidacloprid Exposure. Insects. 2025; 16(5):460. https://doi.org/10.3390/insects16050460
Chicago/Turabian StyleTrujillo-Rodríguez, Gerardo, Mariana Lizbeth Jiménez-Martínez, Elda Flores-Contreras, Everardo González Gonzalez, María de Lourdes Ramírez Ahuja, Idalia Garza Veloz, Adriana E. Flores Suarez, Fabian Correa Morales, Felipe Dzul Manzanilla, Iram P. Rodriguez Sanchez, and et al. 2025. "miRNA Expression Response of Aedes aegypti (Linnaeus 1762) (Diptera: Culicidae) to Imidacloprid Exposure" Insects 16, no. 5: 460. https://doi.org/10.3390/insects16050460
APA StyleTrujillo-Rodríguez, G., Jiménez-Martínez, M. L., Flores-Contreras, E., González Gonzalez, E., Ramírez Ahuja, M. d. L., Garza Veloz, I., Flores Suarez, A. E., Correa Morales, F., Dzul Manzanilla, F., Rodriguez Sanchez, I. P., & Martínez Fierro, M. L. (2025). miRNA Expression Response of Aedes aegypti (Linnaeus 1762) (Diptera: Culicidae) to Imidacloprid Exposure. Insects, 16(5), 460. https://doi.org/10.3390/insects16050460