Development and Population Growth Rates of Sitophilus zeamais (Coleoptera: Curculionidae) Exposed to a Sublethal Concentration of Essential Oil of Piper hispidinervum
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Populations of Sitophilus zeamais
2.2. Obtaining and Extracting the Essential Oil
2.3. Essential Oil Composition
2.4. Absolute Quantification of Safrole
2.5. Population Development Rates
2.6. Population Growth and Grain Mass Loss
2.7. Persistence of the Safrole Residue
2.8. Statistical Analyses
3. Results
3.1. Composition of the EOPH
3.2. Population Development Rates
3.3. Population Growth and Grain Mass Loss
3.4. Safrole Residue
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ribeiro, I.A.T.A.; Silva, R.; Silva, A.G.S.; Milet-Pinheiro, P.; Paiva, P.M.G.; Navarro, D.M.A.F.; Silva, M.V.; Napoleão, T.H.; Correia, M.T.S. Chemical characterization and insecticidal effect against Sitophilus zeamais (maize weevil) of essential oil from Croton rudolphianus leaves. Crop. Prot. 2020, 29, 105043. [Google Scholar] [CrossRef]
- Sousa, A.H.; Faroni, L.R.A.; Guedes, R.N.C.; Tótola, M.R.; Urrich, W.I. Ozone as a management alternative against phosphine-resistant insect-pests of stored products. J. Stored Prod. Res. 2008, 44, 379–385. [Google Scholar] [CrossRef]
- Pimentel, M.A.G.; Faroni, L.R.A.; Correa, A.S.; Guedes, R.N.C. Phosphine-induced walking response of the lesser grain borer (Rhyzoperta dominica). Pest Manag. Sci. 2012, 68, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, D.B.; Guedes, R.N.C.; Peternelli, L.A. Developmental rates and population growth of insecticide-resistant and susceptible populations of Sitophilus zeamais. J. Stored Prod. Res. 2005, 41, 271–281. [Google Scholar] [CrossRef]
- Freitas, R.C.P.; Faroni, L.R.D.; Haddi, K.; Jumbo, L.O.V.; Oliveira, E.E. Allyl isothiocyanate actions on populations of Sitophilus zeamais resistant to phosphine: Toxicity, emergence inhibition and repellency. J. Stored Prod. Res. 2016, 69, 257–264. [Google Scholar] [CrossRef]
- Haddi, K.; Valbon, W.R.; Viteri Jumbo, L.O.; Oliveira, L.O.; Guedes, R.N.C.; Oliveira, E.E. Diversity and convergence of mechanisms involved in pyrethroid resistance in the stored grain weevils, Sitophilus spp. Sci. Rep. 2018, 8, e16361. [Google Scholar] [CrossRef]
- Barbosa, D.R.E.S.; dos Santos, R.B.V.; Santos, F.M.P.; Silva Junior, P.J.; Oliveira Neto, F.M.; Silva, G.N.; de Andrade Dutra, K.; do Amaral Ferraz Navarro, D.M. Evaluation of Cymbopogon flexuosus and Alpinia zerumbet essential oils as biopesticides against Callosobruchus maculatus. J. Plant Dis. Prot. 2022, 129, 125–136. [Google Scholar] [CrossRef]
- Souza, L.P.; Faroni, L.R.D.; Lopes, L.M.; Sousa, A.H.; Prates, L.H.F. Toxicity and sublethal effects of allyl isothiocyanate to Sitophilus zeamais on population development and walking behavior. J. Pest Sci. 2018, 91, 761–770. [Google Scholar] [CrossRef]
- Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored product insect control. J. Stored Prod. Res. 2008, 44, 126–135. [Google Scholar] [CrossRef]
- Nenaah, G.E.; Ibrahim, S.I.A.; Al-Assiuty, B.A. Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). J. Stored Prod. Res. 2015, 61, 9–16. [Google Scholar] [CrossRef]
- de Andrade Rodrigues, R.M.B.; da Silva Fontes, L.; de Carvalho Brito, R.; Barbosa, D.R.E.S.; das Graças Lopes Citó, A.M.; do Carmo, I.S.; de Jesus Sousa, E.M.; Silva, G.N. A sustainable approach in the management of Callosobruchus maculatus: Essential oil of Protium heptaphyllum and its major compound d-limonene as biopesticides. J. Plant Dis. Prot. 2022, 129, 831–841. [Google Scholar] [CrossRef]
- Rocha, S.F.R.; Lin, C.M. Piper hispidinervum: A sustainable source of Safrole. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, Egypte, 1999; pp. 479–481. [Google Scholar]
- Andréas, M.F.; Rossa, G.E.; Cassel, E.; Vargas, R.M.F.; Santana, O.; Díaz, C.E.; González-Coloma, A. Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components. Food Chem. Toxicol. 2017, 109, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.S.; Barbosa, Q.P.S.; Vanin, S.A. Metabolism of safrole by Heraclides thoas brasiliensis (Papilionidae). J. Lepid. Soc. 2014, 68, 283–285. [Google Scholar] [CrossRef]
- Sohilait, H.J.; Kainama, H. Synthesis of 1-(3,4-methylenedioxyphenyl)-1-butene-3- one from safrole. EJPAC 2016, 3, 66–70. [Google Scholar]
- Araújo, A.M.N.; Faroni, L.R.D.; Oliveira, J.V.; Navarro, D.M.A.F.; Barbosa, D.R.S.; Breda, M.O.; França, S.M. Lethal and sublethal responses of Sitophilus zeamais populations to essential oils. J. Pest Sci. 2017, 90, 589–600. [Google Scholar] [CrossRef]
- Lopes, L.M.; Sousa, A.H.; Faroni, L.R.A.; Silva, M.V.A.; Ferraz, M.S.S.; Santos, V.B. Toxicity and sublethal effects of Piper hispidinervum essential oil on behavioral and physiological responses of Sitophilus zeamais populations. Molecules 2024, 29, e4116. [Google Scholar] [CrossRef]
- Oliveira, J.V.; França, S.M.; Barbosa, D.R.S.; Dutra, K.A.; Araújo, A.M.N.; Navarro, D.M.A.F. Fumigation and repellency of essential oils against Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) in cowpea. Pesqui. Agropecu. Bras. 2017, 52, 10–17. [Google Scholar] [CrossRef]
- Pereira, A.C.R.L.; Oliveira, J.V.; Gondim Junior, M.G.C.; Câmara, C.A.G. Atividade inseticida de óleos essenciais e fixos sobre Callosobruchus maculatus (Fabr., 1775) (Coleoptera: Bruchidae) em grãos de caupi [Vigna unguiculata (L.) Walp.]. Ciênc. Agrotec. 2008, 32, 717–724. [Google Scholar] [CrossRef]
- Pereira, A.C.R.L.; Oliveira, J.V.; Gondim Junior, M.G.C.; Câmara, C.A.G. Influência do período de armazenamento do caupi [Vigna unguiculata (L.) Walp.], tratado com óleos essenciais e fixos, no controle de Callosobruchus maculatus (Fabricius, 1775) (Coleoptera, Chrysomelidae, Bruchinae). Ciênc. Agrotec. 2009, 33, 319–325. [Google Scholar] [CrossRef]
- Coitinho, R.L.B.C.; Oliveira, J.V.; Gondim, M.G.C.J.; Câmara, C.A.G. Toxicidade por fumigação, contato e ingestão de óleos essenciais para Sitophilus zeamais Motschulsky, 1885 (Coleoptera: Curculionidae). Ciênc. Agrotec. 2011, 35, 172–178. [Google Scholar] [CrossRef]
- Silva, S.M.; Haddi, K.; Viteri Jumbo, L.O.; Oliveira, E.E. Progeny of the maize weevil, Sitophilus zeamais, is affected by parental exposure to clove and cinnamon essential oils. Entomol. Exp. Appl. 2017, 163, 220–228. [Google Scholar] [CrossRef]
- Correa, Y.D.C.G.; Faroni, L.R.A.; Haddi, K.; Oliveira, E.E.; Pereira, E.J.G. 2015 Locomotory and physiological responses induced by clove and cinnamon essential oils in the maize weevil Sitophilus zeamais. Pestic. Biochem. Physiol. 2015, 125, 31–37. [Google Scholar] [CrossRef]
- Jumbo, L.O.V.; Haddi, K.; Faroni, L.R.D.; Heleno, F.F.; Pinto, F.G.; Oliveira, E.E. Toxicity to, oviposition and population growth impairments of Callosobruchus maculatus exposed to clove and cinnamon essential oils. PLoS ONE 2018, 13, e0207618. [Google Scholar] [CrossRef]
- Guedes, N.M.P.; Tolledo, J.; Corrêa, A.S.; Guedes, R.N.C. Insecticide induced hormesis in an insecticide resistant strain of the maize weevil, Sitophilus zeamais. J. Appl. Entomol. 2010, 134, 142–148. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Cutler, G.C. Insecticide induced hormesis and arthropod pest management. Pest Manag. Sci. 2014, 70, 690–697. [Google Scholar] [CrossRef]
- Mallqui, K.S.V.; Vieira, J.L.; Guedes, R.N.C.; Gontijo, L.M. Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the mexican bean weevil (Chrysomelidae: Bruchinae). J. Econ. Entomol. 2014, 107, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Cutler, G.C.; Guedes, R.N.C. Occurrence and significance of insecticide-induced hormesis in insects. In Pesticide Dose: Effects on the Environment and Target and Non-Target Organisms; Duke, S.O., Kudesk, P., Solomon, K., Eds.; American Chemical Society: Washington, DC, USA, 2017; pp. 101–119. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Cromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- SAS/STAT(R) 9.3 User’s Guide. 2011. Available online: http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#chap0_toc.htm. (accessed on 29 January 2025).
- Trematerra, P.; Fontana, F.; Mancini, M. Analysis of development rates of Sitophilus oryzae (L.) in five cereals of the genus Triticum. J. Stored Prod. Res. 1996, 32, 315–322. [Google Scholar] [CrossRef]
- Sousa, A.H.; Faroni, L.R.A.; Pimentel, M.A.G.; Guedes, R.N.C. Developmental and population growth rates of phosphine-resistant and—Susceptible populations of stored product insect-pests. J. Stored Prod. Res. 2009, 45, 241–246. [Google Scholar] [CrossRef]
- Lopes, L.M.; Araújo, A.E.F.; Santos, W.B.; Sousa, A.H. Population development of Zabrotes subfasciatus (Coleoptera: Chrysomelidae) in landrace bean varieties occurring in southwestern Amazonia. J. Econ. Entomol. 2016, 109, 467–471. [Google Scholar] [CrossRef]
- Ferraz, M.S.S.; Faroni, L.R. D’A.; Heleno, F.F.; Sousa, A.H.; Prates, L.H.F.; Rodrigues, A.A.Z. Method validation and evaluation of safrole persistence in cowpea beans using headspace solid-phase microextraction and gas chromatography. Molecules 2021, 26, e6914. [Google Scholar] [CrossRef]
- Fazolin, M.; Estrela, J.L.V.; Catani, V.; Alécio, M.R.; Lima, M.S. Propriedade inseticida dos óleos essenciais de Piper hispidinervum C.DC.; Piper aduncum L. e Tanaecium nocturnum (Barb. Rodr.) Bur. & K. Schum sobre Tenebrio molitor L., 1758. Ciênc. Agrotec. 2007, 31, 113–120. [Google Scholar] [CrossRef]
- Nascimento, F.R.; Cardoso, M.G.; Souza, P.E.; Lima, R.K.; Salgado, A.P.S.P.; Guimarães, L.G.L. The effect of long pepper essential oil (Piper hispidinervum C. DC.) and of Tween®; 80 emulsifier on the mycelial growth of Alternaria alternate (Fungi: Hyphomycetes). Acta Amazon. 2008, 38, 503–508. [Google Scholar] [CrossRef]
- Riva, D.; Simionatto, E.L.; Wisniewski, A., Jr.; Salerno, A.R.; Schallenberger, T.H. Adaptation studies of Piper hispidinervum C. DC. (long pepper) species in Itajaí Valley- SC by the chemical composition of essential oil obtained by microwave and traditional hydrodistillation. Acta Amazon. 2011, 41, 297–302. [Google Scholar] [CrossRef]
- Sauter, I.P.; Rossa, G.E.; Lucas, A.M.; Cibulski, S.P.; Roehe, P.M.; Alves da Silva, L.A.; Rotta, M.B.; Vargas, R.M.F. Chemical composition and amoebicidal activity of Piper hispidinervum (Piperaceae) essential oil. Ind. Crop. Prod. 2012, 40, 292–295. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Guedes, N.M.P.; Rosi-Denadai, C.A. Sub-lethal effects of insecticides on stored product insects: Current knowledge and future needs. Stewart Postharv. Rev. 2011, 3, 1–5. [Google Scholar] [CrossRef]
- Rossa, G.E.; Almeida, R.N.; Vargas, R.M.F.; Cassel, E.; Moyna, G. Sequential extraction methods applied to Piper hispidinervum: An improvement in the processing of natural products. Can. J. Chem. Eng. 2018, 96, 756–762. [Google Scholar] [CrossRef]
- Negreiros, J.R.D.S.; Miqueloni, D.P.; Cartaxo, C.B.D.C. Yield of essential oil and safrole content based on fresh and dry biomass of long pepper in the Brazilian Amazon. Acta Amazon. 2015, 45, 75–80. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Gandara, L.; Jacoby, R.; Laurent, F.; Spatuzzi, M.; Vlachopoulos, N.; Borst, N.O.; Ekmen, G.; Potel, C.M.; Garrido-Rodriguez, M.; Böhmert, A.; et al. Pervasive sublethal effects of agrochemicals on insects at environmentally relevant concentrations. Science 2024, 386, 446–453. [Google Scholar] [CrossRef]
- Appleby, J.H.; Credland, P.F. Environmental conditions affect the response of West African Callosobruchus maculatus (Coleoptera: Bruchidae) populations to and resistant cowpeas. J. Stored Prod. Res. 2004, 40, 269–287. [Google Scholar] [CrossRef]
- Feyereisen, R. Insect cytochrome P450. In Comprehensive Molecular Insect Science; Gilbert, L.I., Iatrou, K., Gill, S.S., Eds.; Elsevier: Oxford, UK, 2005; pp. 1–77. [Google Scholar]
- Panda, N.; Khush, G.S. Host Plant Resistance to Insects; CAB International: Wallingford, UK, 1995. [Google Scholar]
- Subramanyam, B.; Hagstrum, D.W. Resistance measurement and management. In Integrated Management of Insects in Stored Products; Subramanyam, B., Hagstrum, D.W., Eds.; Marcel Dekker: New York, NY, USA, 1996; pp. 331–397. [Google Scholar]
- Coitinho, R.L.B.C.; Oliveira, J.V.; Gondim Junior, M.G.C.; Câmara, C.A.G. Persistência de óleos essenciais em milho armazenado, submetido à infestação de gorgulho do milho. Cienc. Rural. 2010, 40, 1492–1496. [Google Scholar] [CrossRef]
- Hasan, W.; Hussain, G.J.; Doggalli, G.; Alagumanian, S.; Jena, N.K.; Saravanan, A.; Hazarika, S.; Saravanamoorthy, M.D. Plant based products as control agents of stored product insect pests: Prospects, applications and challenges. Int. J. Plant Soil Sci. 2023, 35, 866–873. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Khayyat, S.A.; Roselin, L.S. Recent progress in photochemical reaction on main components of some essential oils. J. Saudi Chem. Soc. 2018, 22, 855–875. [Google Scholar] [CrossRef]
- Ganosi, E.; Barda, C.; Grafakou, M.E.; Rallis, M.C.; Skaltsa, H. An indepth stability study of the essential oils from Mentha × piperita, Mentha spicata, Origanum vulgare, and Thymus vulgaris: The impact of thermal and storage conditions. Separations 2023, 10, e488. [Google Scholar] [CrossRef]
Constituent | RI1 Literature | RI1 Calculated | %Relative |
---|---|---|---|
Safrole | 1285 | 1292 | 93.00 |
Bicyclogermacrene | 1500 | 1493 | 2.05 |
Pentadecane | 1500 | 1498 | 1.60 |
Espathulenol | 1577 | 1573 | 1.46 |
p-Cimen-8-ol | 1179 | 1184 | 1.20 |
(E)-caryophyllene | 1417 | 1415 | 0.69 |
Variable (Figure) | Model | Pop * | Treatment | Parameter Estimates (±SEM) ** | dferror | F | R2 | ||
---|---|---|---|---|---|---|---|---|---|
a | b | c | |||||||
NCE (%) (Figure 1) | y = a/(1 + exp(−(x−b)/c)) | CA | Control | 197.64 ± 1.43 | 19.59 ± 0.20 | 3.19 ± 0.17 | 15 | 2562.50 | 0.99 |
85.42 µL kg−1 | 103.89 ± 2.16 | 26.01 ± 0.19 | 2.99 ± 0.13 | 15 | 4601.12 | 0.99 | |||
CS | Control | 100.37 ± 1.11 | 20.95 ± 0.15 | 3.58 ± 0.12 | 15 | 6310.82 | 0.99 | ||
85.42 µL kg−1 | 104.28 ± 1.06 | 25.76 ± 0.10 | 3.04 ± 0.07 | 15 | 14,632.46 | 0.99 | |||
JO | Control | 99.34 ± 0.83 | 18.85 ± 0.12 | 3.48 ± 0.10 | 15 | 7682.27 | 0.99 | ||
85.42 µL kg−1 | 100.86 ± 1.23 | 23.35 ± 0.14 | 3.19 ± 0.11 | 15 | 6658.73 | 0.99 | |||
JF | Control | 99.55 ± 1.64 | 21.19 ± 0.22 | 3.52 ± 0.17 | 15 | 2925.45 | 0.99 | ||
85.42 µL kg−1 | 110.84 ± 3.40 | 27.51 ± 0.31 | 3.68 ± 0.17 | 15 | 3694.30 | 0.99 | |||
DE (Figure 2) | y = aexp(−0.5((x−b)/c)2) | CA | Control | 27.67 ± 1.63 | 18.97 ± 0.34 | 5.07 ± 0.34 | 15 | 98.92 | 0.93 |
85.42 µL kg−1 | 10.73 ± 0.68 | 27.87 ± 0.41 | 5.35 ± 0.45 | 15 | 104.42 | 0.93 | |||
CS | Control | 35.15 ± 1.49 | 21.69 ± 0.30 | 6.13 ± 0.30 | 15 | 170.60 | 0.96 | ||
85.42 µL kg−1 | 22.17 ± 1.10 | 26.70 ± 0.29 | 5.00 ± 0.30 | 15 | 164.74 | 0.96 | |||
JO | Control | 35.01 ± 1.28 | 18.71 ± 0.25 | 5.94 ± 0.25 | 15 | 231.13 | 0.97 | ||
85.42 µL kg−1 | 25.16 ± 1.39 | 23.25 ± 0.32 | 5.03 ± 0.32 | 15 | 122.07 | 0.94 | |||
JF | Control | 31.85 ± 1.92 | 21.89 ± 0.43 | 6.23 ± 0.44 | 15 | 84.29 | 0.92 | ||
85.42 µL kg−1 | 18.42 ± 0.57 | 28.68 ± 0.33 | 7.02 ± 0.36 | 15 | 380.58 | 0.98 |
Variable (Figure) | Model | Pop | Treatment * | Parameter Estimates (±SEM) ** | dferror | F | R2 | ||
---|---|---|---|---|---|---|---|---|---|
a | b | b | |||||||
CP (Figure 4) | y = a + bexp(cx) | CA | Control | 43.51 ± 7.11 | 10.85 ± 0.32 | 0.09 ± 0.01 * | 1 | 1088.47 | 0.99 |
85.42 µL kg−1 | 48.49 ± 1.56 * | 0.04 ± 0.01 | 0.13 ± 0.00 * | 1 | 1494.40 | 0.99 | |||
CS | Control | 46.25 ± 3.25 | 0.40 ± 0.10 | 0.10 ± 0.00 * | 1 | 3182.00 | 0.99 | ||
85.42 µL kg−1 | 46.50 ± 3.70 | 0.24 ± 0.06 | 0.11 ± 0.00 * | 1 | 4115.95 | 0.99 | |||
JO | Control | 44.32 ± 5.90 | 0.78 ± 0.19 | 0.10 ± 0.00 * | 1 | 3297.52 | 0.99 | ||
85.42 µL kg−1 | 46.86 ± 3.32 * | 0.21 ± 0.05 | 0.11 ± 0.00 * | 1 | 4082.61 | 0.99 | |||
JF | Control | 38.82 ± 12.66 | 1.86 ± 0.91 | 0.08 ± 0.00 * | 1 | 572.54 | 0.99 | ||
85.42 µL kg−1 | 47.68 ± 2.43 * | 0.12 ± 0.02 | 0.13 ± 0.00 * | 1 | 8765.08 | 0.99 |
Treatment | Model | Equation | R2 | RQEM | p |
---|---|---|---|---|---|
Contact | Linear | y = −0.0845x + 6.3884 | 0.4309 | 3.1405 | 0.2288 |
Quadratic | y = 0.0029x2 − 0.3559x + 9.4685 | 0.6563 | 2.4406 | 0.3437 | |
Exponential | y = 43.7320e−0.2806x + 0.4901 | 0.9983 | 0.1723 | 0.0017 | |
Potential | y = 442.664 (1 + x)−2.0510 | 0.9954 | 0.2834 | 0.0001 | |
Logarithmic | y = −0.9699ln (x − 4.9992) + 4.3262 | 0.9902 | 5.0454 | 0.0098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, L.M.; Faroni, L.R.D.; Silva, G.N.; Barbosa, D.R.e.S.; Carvalho, M.S.; Martins, H.P.F.; Santos, T.R.d.; Dias, I.d.S.; Sousa, A.H.d. Development and Population Growth Rates of Sitophilus zeamais (Coleoptera: Curculionidae) Exposed to a Sublethal Concentration of Essential Oil of Piper hispidinervum. Insects 2025, 16, 697. https://doi.org/10.3390/insects16070697
Lopes LM, Faroni LRD, Silva GN, Barbosa DReS, Carvalho MS, Martins HPF, Santos TRd, Dias IdS, Sousa AHd. Development and Population Growth Rates of Sitophilus zeamais (Coleoptera: Curculionidae) Exposed to a Sublethal Concentration of Essential Oil of Piper hispidinervum. Insects. 2025; 16(7):697. https://doi.org/10.3390/insects16070697
Chicago/Turabian StyleLopes, Lucas Martins, Lêda Rita D’Antonino Faroni, Gutierres Nelson Silva, Douglas Rafael e Silva Barbosa, Marcela Silva Carvalho, Herus Pablo Firmino Martins, Thaís Rodrigues dos Santos, Igor da Silva Dias, and Adalberto Hipólito de Sousa. 2025. "Development and Population Growth Rates of Sitophilus zeamais (Coleoptera: Curculionidae) Exposed to a Sublethal Concentration of Essential Oil of Piper hispidinervum" Insects 16, no. 7: 697. https://doi.org/10.3390/insects16070697
APA StyleLopes, L. M., Faroni, L. R. D., Silva, G. N., Barbosa, D. R. e. S., Carvalho, M. S., Martins, H. P. F., Santos, T. R. d., Dias, I. d. S., & Sousa, A. H. d. (2025). Development and Population Growth Rates of Sitophilus zeamais (Coleoptera: Curculionidae) Exposed to a Sublethal Concentration of Essential Oil of Piper hispidinervum. Insects, 16(7), 697. https://doi.org/10.3390/insects16070697