Isolation and Characterization of a Native Metarhizium rileyi Strain Mrpgbm2408 from Paralipsa gularis in Maize: First Data on Efficacy and Enzymatic Host Response Dynamics
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Larvae and Strains
2.2. Strain Isolation and Purification
2.3. Molecular Identification of the Strain
2.4. Culture Characteristics of Strain Mrpgbm2408
2.5. Biological and Growth Phenotype of Strain Mrpgbm2408
2.6. Virulence of the Strain
2.7. Protective and Detoxification Enzymes in P. gularis
2.8. Data Analysis
3. Results
3.1. Identification of the Isolate as Metarhizium rileyi
3.2. Culture Medium Influences Growth, Sporulation, and Stress Resistance
3.3. Temperature Influences Growth, Sporulation, and Stress Resistance
3.4. Photoperiod Influences Growth, Sporulation, and Stress Resistance
3.5. Nutrient Source Modulates Fungal Growth
3.6. Pathogenicity Against P. gularis Larvae
3.7. Host Enzyme Responses to Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, P. Illustrated Catalogue of Chinese Moths Ⅰ. Pyralidae; Science Press: Beijing, China, 1981. [Google Scholar]
- Trematerra, P. Distribution and Activity of Paralipsa gularis (Zeller) (Lep., Galleriidae) in Italy. J. Appl. Entomol. 1987, 104, 227–233. [Google Scholar] [CrossRef]
- Cai, W. Latin-English-Chinese Dictionary of Entomology; Henan Science and Technology Press: Zhengzhou, China, 2023. (In Chinese) [Google Scholar]
- Xie, X.; Meng, J.; Li, H.; Zhao, G.; Xu, J.; Shen, Y. A preliminary report on the infestation of Paralipsa gularis (Zeller) in summer maize fields in Baoshan, Yunnan Province, China. China Plant Prot. 2023, 43, 38–40. [Google Scholar]
- Chen, S.; Wang, W.; Kang, G.; Yang, X.; Wu, K. Toxic Effects of Bt-(Cry1Ab+Vip3Aa) Maize on Storage Pest Paralipsa gularis (Zeller). Toxins 2024, 16, 92. [Google Scholar] [CrossRef]
- Yuan, X.; Meng, Q.; Lu, Z.; Chen, W.; He, Y.; Li, K.; Du, J.; Fu, Y. ACMNPV, A Viral Insecticide of Lepidoptera Pests, Stimulates the Immune Response of the Natural Enemy Arma chinensis Fallou. Appl. Environ. Microb. 2025, 91, e00613-25. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Zheng, X.; Li, Q.; Wang, L.; Liu, Y.; Lan, Y.; Wang, Z. Current Status, Strategies and Suggestions for Controlling the Corn. Mod. Agrochem. 2022, 21, 6–14. [Google Scholar]
- Pradhan, S.; Mailapalli, D.R. Nanopesticides for Pest Control. In Sustainable Agriculture Reviews 40; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 43–74. ISBN 978-3-030-33281-5. [Google Scholar]
- Umina, P.; McDonald, G.; Maino, J.; Edwards, O.; Hoffmann, A. Escalating insecticide resistance in Australian grain pests: Contributing factors, industry trends and management opportunities. Pest. Manag. Sci. 2019, 75, 1494–1506. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wu, J.; Huang, X.; Han, Y.; Zhou, F.; Zhang, Y. Acute toxicity and risk assessment of 5 multiple combined herbicides to Trichogramma dendrolimi and Coccinella septempunctata. Agrochemicals 2024, 63, 26–31. [Google Scholar] [CrossRef]
- van Lenteren, J.C.; Bolckmans, K.; Köhl, J.; Ravensberg, W.J.; Urbaneja, A. Biological Control Using Invertebrates and Microorganisms: Plenty of New Opportunities. BioControl 2018, 63, 39–59. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.; Yadav, P. Entomopathogenic fungi and their relevance in sustainable agriculture: A review. Cogent Food Agric. 2023, 9, 2180857. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Dubovskiy, I.M.; Slyamova, N.D.; Kryukov, V.Y.; Yaroslavtseva, O.N.; Levchenko, M.V.; Belgibaeva, A.B.; Adilkhankyzy, A.; Glupov, V.V. The activity of nonspecific esterases and glutathione-S-transferase in Locusta migratoria larvae infected with the fungus Metarhizium anisopliae (Ascomycota, Hypocreales). Entomol. Rev. 2012, 92, 27–31. [Google Scholar] [CrossRef]
- Li, B. Preliminary Studies on the Isolation and Characterization of Pathogenic Bacteria from Batocera lineolata and Their Pathogenic Mechanisms. Master’s Thesis, Guangxi University, Nanning, China, 2022. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, M.; Wang, X.; He, X.; Lu, W.; Zheng, X. Pathogenicity of Beauveria bassiana PfBb and Immune Responses of a Non-Target Host, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022, 13, 914. [Google Scholar] [CrossRef]
- Felton, G.; Summers, C. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 1995, 29, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Feng, X.; Lin, Q.; Chen, H.; Li, Z.; Yin, F.; Liang, P.; Gao, X. Biochemical Mechanism of Chlorantraniliprole Resistance in the Diamondback Moth, Plutella xylostella Linnaeus. J. Integr. Agric. 2014, 13, 2452–2459. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Y.; Wang, L.; Liu, S.; Wu, S.; Yang, Y.; Feyereisen, R.; Wu, Y. CYP6AE Gene Cluster Knockout in Helicoverpa armigera Reveals Role in Detoxification of Phytochemicals and Insecticides. Nat. Commun. 2018, 9, 4820. [Google Scholar] [CrossRef]
- Wen, S.; Xue, Y.; Du, R.; Liu, C.; Wang, X.; Wang, Y.; Liu, C.; Wang, S.; Wang, J.; Xia, X. Toxicity and Sublethal Effects of Triflumezopyrim on the Development and Detoxification Enzymatic Activities in the Small Brown Planthopper (SBPH), Laodelphax striatellus (Fallen). Crop Prot. 2021, 150, 105813. [Google Scholar] [CrossRef]
- Furihata, T.; Hosokawa, M.; Satoh, T.; Chiba, K. Synergistic Role of Specificity Proteins and Upstream Stimulatory Factor 1 in Transactivation of the Mouse Carboxylesterase 2/Microsomal Acylcarnitine Hydrolase Gene Promoter. Biochem. J. 2004, 384, 101–110. [Google Scholar] [CrossRef]
- Pang, J.; Peng, Y.; Di, T.; Du, G.; Chen, B. Virulence of Metarhizium rileyi Is Determined by Its Growth and Antioxidant Stress and the Protective and Detoxifying Enzymes of Spodoptera frugiperda. Insects 2023, 14, 260. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef]
- Pu, Z.; Li, Z. Insect Mycology; Anhui Science and Technology Press: Hefei, China, 1996; pp. 131–139. [Google Scholar]
- Fan, L.; Li, B.; Wang, J.; Li, X.; Ma, F.; Du, F.; Li, H.; Lin, Y. Multifunctional Regulation of NADPH Oxidase in Growth, Microsclerotia Formation and Virulence in Metarhizium rileyi. Biotechnol. Lett. 2023, 45, 1441–1455. [Google Scholar] [CrossRef]
- Xue, R.; Chen, S.; Sheng, Y. Biological characteristics of the Metarhizium rileyi SZCY200812 fungal strain responsible for an epidemic in Spodoptera frugiperda. Chin. J. Appl. Entomol. 2023, 60, 1233–1243. [Google Scholar]
- Wang, G.; Xu, S.; Chen, L.; Zhan, T.; Zhang, X.; Liang, H.; Chen, B.; Peng, Y. Gut Microbial Diversity Reveals Differences in Pathogenicity between Metarhizium rileyi and Beauveria bassiana during the Early Stage of Infection in Spodoptera litura Larvae. Microorganisms 2024, 12, 1129. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, J.; Yin, X.; Wang, Y.; Qi, J. Study on the Biological Characteristics of Nomuraea rileyi and Its Pathogenicity Against Spodoptera exigua. Jiangsu J. Agric. Sci. 2009, 25, 68–72. [Google Scholar]
- Cui, X. The Biological Resrarch and Application of One Entomogenous Fungi-Nomuraea rileyi 1001. Master’s Thesis, Henan University, Kaifeng, China, 2012. [Google Scholar]
- Licona-Juárez, K.C.; Andrade, E.P.; Medina, H.R.; Oliveira, J.N.S.; Sosa-Gómez, D.R.; Rangel, D.E.N. Tolerance to UV-B Radiation of the Entomopathogenic Fungus Metarhizium rileyi. Fungal Biol. 2023, 127, 1250–1258. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Qiao, L.; Zhu, J.; Fan, J.; Zhang, T.; Wang, Z.; Li, W.; Chen, A.; Huang, B. DNA Methyltransferases Contribute to the Fungal Development, Stress Tolerance and Virulence of the Entomopathogenic Fungus Metarhizium robertsii. Appl. Microbiol. Biot. 2017, 101, 4215–4226. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Zhang, C.; Yu, X.; Cuthbertson, A.G.S.; Ali, S. Biological Impact and Enzyme Activities of Spodoptera litura (Lepidoptera: Noctuidae) in Response to Synergistic Action of Matrine and Beauveria brongniartii. Front. Physiol. 2020, 11, 584405. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, Y.; Lu, Z. Response comparison of protective and detoxification enzymes in Spodoptera frugiperda (J. E. Smith) and Spodoptera litura (Fabricius) larvae to two insecticides. J. South. Agric. 2021, 52, 559–569. [Google Scholar]
- Wang, Q.; Chi, D. Insecticidal Effects of Bacillus thuringiensis subsp. Aizawai and Pyemotes zhonghuajia on Dioryctria abietella. J. Northeast For. Univ. 2023, 51, 146–154. [Google Scholar]
- Vivekanandhan, P.; Swathy, K.; Lucy, A.; Sarayut, P.; Patcharin, K. Entomopathogenic fungi based microbial insecticides and their physiological and biochemical effects on Spodoptera frugiperda (JE Smith). Front. Cell Infect. Microbiol. 2023, 13, 1254475. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Zhou, J.; Dong, H.; Bai, X.; Liu, W.; Gu, Z. Pathogenicity, infection process, physiological and biochemical effects of Metarhizium rileyi against Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) larvae. Egypt. J. Biol. Pest. Control 2024, 34, 19. [Google Scholar] [CrossRef]
- Ling, W.; Kaliaperumal, K.; Huang, M.; Liang, Y.; Ouyang, Z.; Zhou, Z.; Jiang, Y.; Zhang, J. Pomelo Seed Oil: Natural Insecticide against Cowpea Aphid. Front. Plant Sci. 2022, 13, 1048814. [Google Scholar] [CrossRef] [PubMed]
Conidia/mL | Regression Equation | Correlation Coefficient | LT50 (d) | LC50 (Conidia/mL) |
---|---|---|---|---|
5 × 108 | Y = 10.67X − 15.33 | 0.8660 | 5.3 | 1.36 × 107 |
5 × 107 | Y = 8.606X − 13.00 | 0.8840 | 7.1 | |
5 × 106 | Y = 4.758X − 7.333 | 0.8707 | - | |
5 × 105 | Y = 2.899X − 3.778 | 0.6239 | - | |
5 × 104 | Y = 1.444X − 1.778 | 0.6585 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Fu, K.; Wang, X.; Du, G.; Peng, Y.; Smagghe, G.; Wang, W.; Chen, B. Isolation and Characterization of a Native Metarhizium rileyi Strain Mrpgbm2408 from Paralipsa gularis in Maize: First Data on Efficacy and Enzymatic Host Response Dynamics. Insects 2025, 16, 872. https://doi.org/10.3390/insects16090872
Yao Y, Fu K, Wang X, Du G, Peng Y, Smagghe G, Wang W, Chen B. Isolation and Characterization of a Native Metarhizium rileyi Strain Mrpgbm2408 from Paralipsa gularis in Maize: First Data on Efficacy and Enzymatic Host Response Dynamics. Insects. 2025; 16(9):872. https://doi.org/10.3390/insects16090872
Chicago/Turabian StyleYao, Yunhao, Kaiyu Fu, Xiaoyu Wang, Guangzu Du, Yuejin Peng, Guy Smagghe, Wenqian Wang, and Bin Chen. 2025. "Isolation and Characterization of a Native Metarhizium rileyi Strain Mrpgbm2408 from Paralipsa gularis in Maize: First Data on Efficacy and Enzymatic Host Response Dynamics" Insects 16, no. 9: 872. https://doi.org/10.3390/insects16090872
APA StyleYao, Y., Fu, K., Wang, X., Du, G., Peng, Y., Smagghe, G., Wang, W., & Chen, B. (2025). Isolation and Characterization of a Native Metarhizium rileyi Strain Mrpgbm2408 from Paralipsa gularis in Maize: First Data on Efficacy and Enzymatic Host Response Dynamics. Insects, 16(9), 872. https://doi.org/10.3390/insects16090872