Isogroup Selection to Optimize Biocontrol Increases Cannibalism in Omnivorous (Zoophytophagous) Bugs
Abstract
:1. Introduction
2. Methods
2.1. Populations and Rearing Conditions
2.2. Cannibalism Tests
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fox, L.R. Cannibalism in natural populations. Ann. Rev. Ecol. Syst. 1975, 6, 87–106. [Google Scholar] [CrossRef]
- Polis, G.A. The evolution and dynamics of intraspecific predation. Ann. Rev. Ecol. Syst. 1981. [Google Scholar] [CrossRef]
- Ullyett, G.C. Competition for food and allied phenomena in sheep blowfly population. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1950, 234, 77–174. [Google Scholar] [CrossRef]
- Snyder, W.E.; Joseph, S.B.; Preziosi, R.F.; Moore, A.J. Nutritional benefits of cannibalism for the lady beetle Harmonia axyridis (Coleoptera: Coccinellidae) when prey quality is poor. Environ. Entomol. 2000, 29, 1173–1179. [Google Scholar] [CrossRef]
- Mayntz, D.; Toft, S. Nutritional value of cannibalism and the role of starvation and nutrient imbalance for cannibalistic tendencies in a generalist predator. J. Anim. Ecol. 2006, 75, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Leon-Beck, M.; Coll, M. Plant and prey consumption cause a similar reductions in cannibalism by an omnivorous bug. J. Insect Behav. 2007, 20, 67–76. [Google Scholar] [CrossRef]
- Wagner, J.D.; Wise, D.H. Influence of prey availability and conspecifics on patch quality for a cannibalistic forager: laboratory experiments with the wolf spider Schizocosa. Oecologia 1997, 109, 474–482. [Google Scholar] [CrossRef]
- Hironori, Y.; Katsuhiro, S. Cannibalism and interspecific predation in two predatory ladybirds in relation to prey abundance in the field. Entomophaga 1997, 42, 153–163. [Google Scholar] [CrossRef]
- Cottrell, T.E.; Yeargan, K.V. Effect of pollen on Coleomegilla maculata (Coleoptera: Coccinellidae) population density, predation, and cannibalism in sweet corn. Environ. Entomol. 1998, 27, 1402–1410. [Google Scholar] [CrossRef]
- Dumont, F.; Lucas, E.; Réale, D. Evidence of genetic basis of zoophagy and nymphal developmental time in isogroup lines of the zoophytophagous mullein bug, Campylomma verbasci (Hemiptera: Miridae). BioControl 2016. [Google Scholar] [CrossRef]
- Dumont, F.; Lucas, E.; Réale, D. Coexistence of phytozoophagous and zoophytophagous strategies linked to genotypic diet specialization in mullein bug Campylomma verbasci. PLoS ONE 2017, 12, e0176369. [Google Scholar] [CrossRef] [PubMed]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer Science and Business Media: New York, NY, USA, 2009. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Crawley, M.J. The R Book; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Herberich, E.; Sikorski, J.; Hothorn, T. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS ONE 2010, 5, e9788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for statistical Computing: Vienna, Austria, 2017; Available online: http://www.R-project.org/ (accessed on 21 July 2017).
- Wagner, J.D.; Wise, D.H. Cannibalism regulates densities of young wolf spiders: Evidence from field and laboratory experiments. Ecology 1996, 77, 639–652. [Google Scholar] [CrossRef]
- Bolnick, D.I.; Svanbäck, R.; Fordyce, J.A.; Yang, L.H.; Davis, J.M.; Hulsey, C.D.; Forister, M.L. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 2003, 161, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Svanbäck, R.; Bolnick, D.I. Intraspecific competition affects the strength of individual specialization: An optimal diet theory method. Evol. Ecol. Res. 2005, 7, 993–1012. [Google Scholar]
- Pruitt, J.N.; Riechert, S.E. The ecological consequences of temperament in spiders. Curr. Zool. 2012, 58, 588–595. [Google Scholar] [CrossRef]
- Claessen, D.; de Roos, A.M.; Persson, L. Population dynamic theory of size-dependent cannibalism. Proc. R. Soc. B. 2004, 271, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Wise, D.H. Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu. Rev. Entomol. 2006, 51, 441–465. [Google Scholar] [CrossRef] [PubMed]
- Rudolf, V.H. The interaction of cannibalism and omnivory: Consequences for community dynamics. Ecology 2007, 88, 2697–2705. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.B.; Barros, E.M.; Coelho, R.R.; Pimentel, R.M.M. Zoophytophagous pentatomids feeding on plants and implications for biological control. Arth. Plant Int. 2010, 4, 219–227. [Google Scholar] [CrossRef]
- Castañé, C.; Arno, J.; Gabarra, R.; Alomar, O. Plant damage to vegetable crops by zoophytophagous mirid predators. Biolog. Control 2011, 59, 22–29. [Google Scholar] [CrossRef]
- Arnoldi, D.; Stewart, R.K.; Boivin, G. Predatory mirids of the green apple aphid Aphid pomi, the two-spotted spider mite Tetranychus urticae and the European red spider mite Panonychus ulmi in apple orchards in Québec. Entomophaga 1992, 37, 283–292. [Google Scholar] [CrossRef]
- Boivin, G.; Stewart, R.K. Identification and evaluations of damage to McIntosh apples by phytophagous mirids (Hemiptera: Miridae) in southwestern Québec. Can. Entomol. 1982, 114, 1037–1045. [Google Scholar] [CrossRef]
- Kain, D.P.; Agnello, A.M. Relationship between plant phenology and Campylomma verbasci (Hemiptera: Miridae) damage to apple fruit. Environ. Entomol. 2013, 42, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.A. Zoophytophagy in the plantbug Nesidiocoris tenuis. Agric. Forest Entomol. 2008, 10, 75–80. [Google Scholar] [CrossRef]
- Aubry, O.; Cormier, D.; Chouinard, G.; Lucas, E. Influence of extraguild prey and intraguild predators on the phytophagy of the zoophytophagous bug Campylomma verbasci. J. Pest Sci. 2017, 90, 287–297. [Google Scholar] [CrossRef]
- Bartlett, D. Feeding and egg laying behaviour in Campylomma verbasci Meyer (Hemiptera: Miridae). Master’s Thesis, Simon Fraser University, Burnaby, Canada, 1996. [Google Scholar]
- Aubry, O.; Cormier, D.; Chouinard, G.; Lucas, E. Influence of plant, animal and mixed resources on development of the zoophytophagous plant bug Campylomma verbasci (Hemiptera: Miridae). Biocontrol Sci. Technol. 2015, 25, 1426–1442. [Google Scholar] [CrossRef]
- Pels, B.; Sabelis, M.W. Local dynamics, overexploitation and predator dispersal in an acarine predator-prey system. Oikos 1999, 86, 573–583. [Google Scholar] [CrossRef]
- Hoy, M.A. The potential for genetic improvement of predators for pest management programs. In Genetics in Relation to Insect Management; Rockefeller Foundation Press: New York, NY, USA, 1979; pp. 106–115. [Google Scholar]
- Segal, D.; Glazer, I. Genetics for improving biological control agents: The case of entomopathogenic nematodes. Crop Prot. 2000, 19, 685–689. [Google Scholar] [CrossRef]
Comparisons | Estimates ± s.e. | z-Value | p-Value |
---|---|---|---|
Prey–Control | −0.61 ± 0.25 | −2.39 | 0.04 |
Pollen–Control | −1.39 ± 0.34 | −4.11 | <0.001 |
Prey–Pollen | 0.78 ± 0.36 | 2.14 | 0.08 |
Treatment | Estimates (± SD) | z-Value | p-Value |
---|---|---|---|
Prey-Specialized Line | |||
Pollen | −1.32 ± 0.40 | −3.32 | 0.0009 |
Prey | −0.84 ± 0.33 | −2.52 | 0.01 |
Pollen-Specialized Line | |||
Pollen | −1.54 ± 0.64 | −2.42 | 0.02 |
Prey | −0.24 ± 0.40 | −0.60 | 0.55 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumont, F.; Réale, D.; Lucas, E. Isogroup Selection to Optimize Biocontrol Increases Cannibalism in Omnivorous (Zoophytophagous) Bugs. Insects 2017, 8, 74. https://doi.org/10.3390/insects8030074
Dumont F, Réale D, Lucas E. Isogroup Selection to Optimize Biocontrol Increases Cannibalism in Omnivorous (Zoophytophagous) Bugs. Insects. 2017; 8(3):74. https://doi.org/10.3390/insects8030074
Chicago/Turabian StyleDumont, François, Denis Réale, and Eric Lucas. 2017. "Isogroup Selection to Optimize Biocontrol Increases Cannibalism in Omnivorous (Zoophytophagous) Bugs" Insects 8, no. 3: 74. https://doi.org/10.3390/insects8030074
APA StyleDumont, F., Réale, D., & Lucas, E. (2017). Isogroup Selection to Optimize Biocontrol Increases Cannibalism in Omnivorous (Zoophytophagous) Bugs. Insects, 8(3), 74. https://doi.org/10.3390/insects8030074