Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Beetles
2.2. Fungi
2.3. Determining Fungal Suspension Spore Density and Viability
2.4. Determining the Acquisition of Spores by Each Beetle Species per Fungal Suspension
2.5. Filter Paper Disk Bioassays Chambers and Survival Assessment
2.6. Statistical Analysis
3. Results
3.1. Fungal Suspension Spore Density and Viability
3.2. Acquisition of Spores by Each Beetle Species per Fungal Suspension
3.3. Survival after Exposure to Each Fungal Treatment in a Filter Paper Disk Bioassay
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Beaver, R.A. Insect-Fungus relationships in the bark and ambrosia beetles. In Insect-Fungus Interactions; Wilding, N., Collins, N.M., Hammond, P., Webber, J.F., Eds.; Elsevier Ltd.: London, UK, 1989; pp. 121–137. [Google Scholar]
- Rudinsky, J.A. Ecology of Scolytidae. Ann. Rev. Entomol. 1962, 7, 327–348. [Google Scholar] [CrossRef]
- Six, D.L. Ecological and evolutionary determinants of bark beetle-fungus symbioses. Insects 2012, 3, 339–366. [Google Scholar] [CrossRef] [PubMed]
- Harrington, T.C.; Fraedrich, S.W.; Aghayeva, D.N. Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 2008, 104, 399–404. [Google Scholar]
- Hulcr, J.; Mann, R.; Stelinski, L.L. The scent of a partner: Ambrosia beetles are attracted to volatiles from their fungal symbionts. J. Chem. Ecol. 2011, 12, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Sink, S.; Libeskind-Hadas, R.; Hulcr, J.; Kasson, M.T.; Ploetz, R.C.; Joshua, L.; Konkol, J.L.; Ploetz, J.N.; Carrillo, D.; et al. Discordant phylogenies suggest repeated host shifts in the Fusarium–Euwallacea ambrosia beetle mutualism. Fungal Genet. Biol. 2015, 82, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Fraedrich, S.W.; Harrington, T.C.; Rabaglia, R.J. Laurel Wilt: A New and Devastating Disease of Redbay Caused by a Fungal Symbiont of the Exotic Redbay Ambrosia Beetle. Available online: http://www.public.iastate.edu/~tcharrin/NewsMich.pdf (accessed on 6 November 2017).
- Carrillo, D.; Duncan, R.E.; Ploetz, J.N.; Campbell, A.F.; Ploetz, R.C.; Peña, J.E. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol. 2014, 63, 54–62. [Google Scholar] [CrossRef]
- Ploetz, R.C.; Konkol, J.L.; Narvaez, T.; Duncan, R.E.; Saucedo, R.J.; Campbell, A.; Mantilla, J.; Carrillo, D.; Kendra, P.E. Presence and prevalence of Raffaelea lauricola, cause of laurel wilt, in different species of ambrosia beetle in Florida, USA. J. Econ. Entomol. 2017, 110, 347–354. [Google Scholar] [PubMed]
- Inch, S.A.; Ploetz, R.C. Impact of laurel wilt, caused by Raffaelea lauricola, on xylem function in avocado, Persea americana. For. Pathol. 2012, 42, 239–245. [Google Scholar] [CrossRef]
- Carrillo, D.; Crane, J.H.; Peña, J.E. Potential of contact insecticides to control Xyleborus glabratus (Coleoptera: Curculionidae), a vector of laurel wilt disease in avocados. J. Econ. Entomol. 2013, 106, 2286–2295. [Google Scholar] [CrossRef] [PubMed]
- Castrillo, L.A.; Griggs, M.H.; Ranger, C.M.; Reding, M.E.; Vandenberg, J.D. Virulence of commercial strains of Beauveria bassiana and Metarhizium brunneum (Ascomycota: Hypocreales) against adult Xylosandrus germanus (Coleoptera: Curculionidae) and impact on brood. Biol. Control 2011, 58, 121–126. [Google Scholar] [CrossRef]
- Ansaria, M.A.; Butt, T.M. Susceptibility of different developmental stages of large pine weevil Hylobius abietis (Coleoptera: Curculionidae) to entomopathogenic fungi and effect of fungal infection to adult weevils by formulation and application methods. J. Invertebr. Pathol. 2012, 111, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Castrillo, L.A.; Griggs, M.H.; Vandenberg, J.D. Granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae), survival and brood production following exposure to entomopathogenic and mycoparasitic fungi. Biol. Control 2013, 67, 220–226. [Google Scholar] [CrossRef]
- Carrillo, D.; Dunlap, C.A.; Avery, P.B.; Navarrete, J.B.; Duncan, R.E.; Jackson, M.A.; Behle, R.W.; Cave, R.D.; Crane, J.; Rooney, A.P.; et al. Entomopathogenic fungi as biological control agents of the vector of the laurel wilt disease, the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae). Biol. Control 2015, 81, 44–50. [Google Scholar] [CrossRef]
- Kocaçevik, S.; Sevim, A.; Eroğlu, M.; Demirbağ, Z.; Demir, I. Virulence and horizontal transmission of Beauveria pseudobassiana S.A. Rehner & Humber in Ips sexdentatus and Ips typographus (Coleoptera: Curculionidae). Turk. J. Agric. For. 2016, 40, 241–248. [Google Scholar]
- Mayfield, A.E., III; Peña, J.E.; Crane, J.H.; Smith, J.A.; Branch, C.L.; Ottoson, E.D.; Hughes, M. Ability of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) to bore into young avocado (Lauraceae) plants and transmit the laurel wilt pathogen (Raffaelea sp.). Fla. Entomol. 2008, 91, 485–487. [Google Scholar] [CrossRef]
- Carrillo, D.; Duncan, R.E.; Peña, J.E. Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) that breed in avocado wood in Florida. Fla. Entomol. 2012, 95, 573–579. [Google Scholar] [CrossRef]
- Atkinson, T.H.; Carrillo, D.; Duncan, R.E.; Peña, J.E. Occurrence of Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae) Eichhoff in southern Florida. Zootaxa 2013, 3669, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Menocal, O.; Cruz, L.F.; Kendra, P.E.; Crane, J.H.; Ploetz, R.C.; Carrillo, D. Rearing Xyleborus volvulus (Coleoptera: Curculionidae) on media containing sawdust from avocado or silkbay, with or without Raffaelea lauricola (Ophiostomatales: Ophiostomataceae). Environ. Entomol. 2017, 46, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Lacey, L.A.; Brooks, W.M. Initial handling and diagnosis of diseased insects. In Manual of Techniques in Insect Pathology; Lacey, L., Ed.; Academic Press, Inc.: San Diego, CA, USA, 1997; p. 5. [Google Scholar]
- Vincent, J.F.V. Arthropod cuticle: A natural composite shell system. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1311–1315. [Google Scholar] [CrossRef]
- Boucias, D.G.; Pendland, J.C.; Latge, J.P. Nonspecific factors involved in attachment of entomopathogenic deuteromycetes to host insect cuticle. Appl. Environ. Microbiol. 1988, 54, 1795–1805. [Google Scholar] [PubMed]
- Jeffs, L.B.; Xavier, I.J.; Matai, R.E.; Khachatourians, G.G. Relationships between fungal spore morphologies and surface properties for entomopathogenic members of the genera Beauveria, Metarhizium, Paecilomyces, Tolypocladium, and Verticillium. Can. J. Microbiol. 1999, 45, 936–948. [Google Scholar] [CrossRef]
- Holder, D.J.; Kirkland, B.H.; Lewis, M.W.; Keyhani, N.O. Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 2007, 153, 3448–3457. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, C.A.; Biresaw, G.; Jackson, M.A. Hydrophobic and electrostatic cell surface properties of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus. Colloids Surf. B 2005, 46, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Van Oss, C.J. Hydrophobicity of biosurfaces—Origin, quantitative determination and interaction energies. Colloids Surf. B 1995, 5, 91–110. [Google Scholar] [CrossRef]
- Fernandez, S.; Groden, E.; Vandenburg, J.D.; Furlong, M.J. The effect of mode of exposure to Beauveria bassiana on conidia acquisition and host mortality of Colorado potato beetle, Leptinotarsa decemlineata. J. Invertebr. Pathol. 2001, 77, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Prior, C.; Jollands, P.; Le Patourel, G. Infectivity of oil and water formulations of Beauveria bassiana (Deuteromycotina: Hyphomycetes) to the cocoa weevil pest Pantorhytes plutus (Coleoptera: Curculionidae). J. Invertebr. Pathol. 1988, 52, 66–72. [Google Scholar] [CrossRef]
- Batta, Y.A. Biocontrol of almond bark beetle (Scolytus amygdali Guérin-Méneville, Coleoptera: Scolytidae) using Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes). J. Appl. Microbiol. 2007, 103, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Inglis, G.D.; Jaronski, S.T.; Wraight, S.P. Use of spray oils with entomopathogens. In Spray Oils beyond 2000; Beattie, G.A.C., Watson, D.M., Eds.; Sustainable Pest and Disease Management; University of Western Sydney: Hawkesbury, Australia, 2002; pp. 302–312. [Google Scholar]
- Woods, S.P.; Grula, E.A. Utilizable surface nutrients on Heliothis zea available for growth of Beauveria bassiana. J. Invertebr. Pathol. 1984, 43, 259–269. [Google Scholar] [CrossRef]
- Sosa-Gomez, D.R.; Boucias, D.G.; Nation, J.L. Attachment of Metarhizium anisopliae to the southern green stink bug Nezara viridula cuticle and fungistatic effect of cuticular lipids and aldehydes. J. Invertebr. Pathol. 1997, 69, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hunt, D.W.A.; Borden, J.H.; Rahe, J.E.; Whitney, H.S. Nutrient-mediated germination of Beauveria bassiana conidia on the integument of the bark beetle Dendroctonus ponderosae (Coleoptera: Scolytidae). J. Invertebr. Pathol. 1984, 44, 304–314. [Google Scholar] [CrossRef]
- Oritz-Urquiza, A.; Keyhani, N.O. Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Brar, G.S.; Capinera, J.L.; McLean, S.; Peña, J.E. Life cycle, development and culture of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Fla. Entomol. 2013, 96, 1158–1167. [Google Scholar] [CrossRef]
- Kendra, P.E.; Montgomery, W.S.; Niogret, J.; Peña, J.E.; Capinera, J.L.; Brar, G.; Epsky, N.D.; Heath, R.R. Attraction of the redbay ambrosia beetle, Xyleborus glabratus, to avocado, lychee, and essential oil lures. J. Chem. Ecol. 2011, 37, 932–942. [Google Scholar] [CrossRef] [PubMed]
Treatment a | Spores/mL (×106) | Germination (%) | Viable Spores/mL (×106) |
---|---|---|---|
I. fumosorosea | 2.9 ± 0.42 | 85 | 2.4 ± 0.36 |
M. brunneum | 2.8 ± 0.27 | 85 | 2.4 ± 0.23 |
B. bassiana | 2.7 ± 0.37 | 89 | 2.4 ± 0.33 |
No. of Spores (x 105)/beetle c,d | |||
---|---|---|---|
Treatment b | X. crassiusculus | X. volvulus | X. bispinatus |
I. fumosorosea | 4.5 ± 0.4 a | 4.5 ± 0.4 c | 0.9 ± 1.0 a |
M. brunneum | 4.0 ± 0.4 a | 2.9 ± 0.3 b | 3.8 ± 1.2 a |
B. bassiana | 8.2 ± 0.4 b | 1.1 ± 0.2 a | 2.4 ± 0.4 a |
Statistical Analysis | F = 11.3; df = 2.8; p = 0.0018 | F = 26.2; df = 2.8; p < 0.0001 | F = 3.35; df = 2.8; p = 0.0878 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avery, P.B.; Bojorque, V.; Gámez, C.; Duncan, R.E.; Carrillo, D.; Cave, R.D. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi. Insects 2018, 9, 49. https://doi.org/10.3390/insects9020049
Avery PB, Bojorque V, Gámez C, Duncan RE, Carrillo D, Cave RD. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi. Insects. 2018; 9(2):49. https://doi.org/10.3390/insects9020049
Chicago/Turabian StyleAvery, Pasco B., Verónica Bojorque, Cecilia Gámez, Rita E. Duncan, Daniel Carrillo, and Ronald D. Cave. 2018. "Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi" Insects 9, no. 2: 49. https://doi.org/10.3390/insects9020049
APA StyleAvery, P. B., Bojorque, V., Gámez, C., Duncan, R. E., Carrillo, D., & Cave, R. D. (2018). Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi. Insects, 9(2), 49. https://doi.org/10.3390/insects9020049