Aspects, Including Pitfalls, of Temporal Sampling of Flying Insects, with Special Reference to Aphids
Abstract
:1. Introduction
2. Background
2.1. Categories of Traps
2.2. Categories of Topics
2.2.1. Climate and Climate Change
2.2.2. Changes in Ecological Niches Due to Changes in Available Hosts
2.2.3. Hybridization Influencing Behaviour–Host Shifts
2.2.4. Infection by Pathogens and Parasites/Parasitoids
2.2.5. Habituation to Light, Sound and Sex Pheromone Lures
2.2.6. Chromosomal/Genetic Changes Affecting Physiology, Behaviour and Pre- and Post-Zygotic Effects
2.2.7. Insecticide Resistance
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Harrington, R. The Rothamsted Insect Survey strikes gold. Antenna 2014, 38, 159–166. [Google Scholar]
- Loxdale, H.D.; Lushai, G. Molecular markers in entomology (Review). Bull. Entomol. Res. 1998, 88, 577–600. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Lushai, G. Use of genetic diversity in movement studies of flying insects. In Insect Movement: Mechanisms and Consequences, Proceedings of the Royal Entomological Society 20th international symposium volume, Imperial College, London, UK, 13–14 September 1999; Woiwod, I.P., Reynolds, D.R., Thomas, C.D., Eds.; CABI: Wallingford/Oxford, UK, 2001; pp. 361–386. [Google Scholar]
- Claridge, M.F.; Dawah, H.A.; Wilson, M.R. Species in insect herbivores and parasitoids—Sibling species, host races and biotypes. In Species: The Units of Biodiversity; Claridge, M.F., Dawah, H.A., Wilson, M.R., Eds.; Chapman & Hall: London, UK, 1997; pp. 247–272, 439. [Google Scholar]
- Rothenberg, D. Bug Music: How Insects Gave Us Rhythm and Noise; Picador, St. Martin’s Press: New York, NY, USA, 2013; Chapter 1; pp. 5–53. [Google Scholar]
- Loxdale, H.D.; Davis, B.J.; Davis, R.A. Known knowns and unknowns in biology. Biol. J. Linnean Soc. 2016, 117, 386–398. [Google Scholar] [CrossRef]
- Feder, J.L.; Berlocher, S.H.; Opp, S.B. Sympatric host race formation and speciation in Rhagoletis (Diptera: Tephritidae): A tale of two species for Charles D. In Genetic Structure and Local Adaptation in Natural Insect Populations; Mopper, S., Strauss, S.Y., Eds.; Chapman & Hall: New York, NY, USA, 1998; pp. 408–441. [Google Scholar]
- Feder, J.L.; Forbes, A. Sequential speciation and the diversity of parasitic insects. Ecol. Entomol. 2010, 35 (Suppl. 1), 67–76. [Google Scholar] [CrossRef] [Green Version]
- Via, S. Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 1999, 53, 1446–1457. [Google Scholar] [PubMed]
- Via, S.; Bouck, A.C.; Skillman, S. Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evolution 2000, 54, 1626–1637. [Google Scholar] [PubMed]
- Via, S.; Hawthorne, D.J. The genetic architecture of ecological specialization: Correlated gene effects on host use and habitat choice in pea aphids. Am. Nat. 2002, 159, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Hille Ris Lambers, D. Contribution to a monograph of the Aphididae of Europe. Temminckia 1939, 4, 1–134. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000. [Google Scholar]
- Loxdale, H.D.; Brookes, C.P. Genetic stability within and restricted migration (gene flow) between local populations of the blackberry-grain aphid Sitobion fragariae in south-east England. J. Anim. Ecol. 1990, 59, 495–512. [Google Scholar] [CrossRef]
- De Barro, P.J.; Sherratt, T.N.; Brookes, C.P.; David, O.; Maclean, N. Spatial and temporal variation in British field populations of the grain aphid Sitobion avenae (F.) (Hemiptera: Aphididae) studied using RAPD-PCR. Proc. R. Soc. Lond. B 1995, 262, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Sunnucks, P.; De Barro, P.J.; Lushai, G.; Maclean, N.; Hales, D. Genetic structure of an aphid studied using microsatellites: Cyclic parthenogenesis, differentiated lineages, and host specialisation. Mol. Ecol. 1997, 6, 1059–1073. [Google Scholar] [CrossRef] [PubMed]
- Loxdale, H.D.; Brookes, C.P. Prevalence of Sitobion fragariae (Walker) over S. avenae (Fabricius) (Hemiptera: Aphididae) on wild cocksfoot grass (Dactylis glomerata) in south-east England. Bull. Entomol. Res. 1990, 80, 27–29. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Tarr, I.J.; Weber, C.P.; Brookes, C.P.; Digby, P.G.N.; Castañera, P. Electrophoretic study of enzymes from cereal aphid populations. III. Spatial and temporal genetic variation of populations of Sitobion avenae (F.) (Hemiptera: Aphididae). Bull. Entomol. Res. 1985, 75, 121–141. [Google Scholar] [CrossRef]
- Hand, S.C. The overwintering of cereal aphids on Gramineae in southern England, 1977–1980. Ann. Appl. Biol. 1989, 115, 17–29. [Google Scholar] [CrossRef]
- Helden, A.J.; Dixon, A.F.G. Life-cycle variation in the aphid Sitobion avenae: Costs and benefits of male production. Ecol. Entomol. 2002, 27, 692–701. [Google Scholar] [CrossRef]
- Lushai, G.; Markovitch, O.; Loxdale, H.D. Host-based genotype variation in insects revisited. Bull. Entomol. Res. 2002, 92, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Loxdale, H.D. The nature and reality of the aphid clone: Genetic variation, adaptation and evolution. Agric. For. Entomol. 2008, 10, 81–90. [Google Scholar] [CrossRef]
- Lushai, G.; Loxdale, H.D.; Brookes, C.P.; von Mende, N.; Harrington, R.; Hardie, J. Genotypic variation among different phenotypes within aphid clones. Proc. R. Soc. Lond. B 1997, 264, 725–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loxdale, H.D.; Lushai, G.; Harvey, J.A. The evolutionary improbability of ‘generalism’ in nature, with special reference to insects. Biol. J. Linnean Soc. 2011, 103, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Loxdale, H.D.; Harvey, J.A. The ‘generalism’ debate: Misinterpreting the term in the empirical literature focusing on dietary breadth in insects. Biol. J. Linnean Soc. 2016, 119, 265–282. [Google Scholar] [CrossRef]
- Dixon, A.F.G. Aphid Ecology, 2nd ed.; Springer: London, UK, 1998; p. 316. [Google Scholar]
- Loxdale, H.D. Rapid genetic changes in natural insect populations. Ecol. Entomol. 2010, 35, 155–164. [Google Scholar] [CrossRef] [Green Version]
- White, M.J.D. Modes of Speciation; W.H. Freeman Company: San Francisco, CA, USA, 1978; p. 455. [Google Scholar]
- Blackman, R.L. Chromosome numbers in the Aphididae and their taxonomic significance. Syst. Entomol. 1980, 5, 7–25. [Google Scholar] [CrossRef]
- Blackman, R.L. Chromosomes and parthenogenesis in aphids. In Insect Cytogenetics, 10th Symposium of the Royal Entomological Society; Blackman, R.L., Hewitt, G.M., Ashburner, M., Eds.; Blackwell Scientific Publications: Oxford, UK, 1980; pp. 133–148. [Google Scholar]
- Monti, V.; Lombardo, G.; Loxdale, H.D.; Manicardi, G.C.; Mandrioli, M. Continuous occurrence of intra-individual chromosome rearrangements in the peach potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Genetica 2012, 140, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Monti, V.; Mandrioli, M.; Rivi, M.; Manicardi, G.C. The vanishing clone: Karyotypic evidence for extensive intraclonal genetic variation in the peach potato aphid, Myzus persicae (Hemiptera: Aphididae). Biol. J. Linnean Soc. 2012, 105, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Manicardi, G.C.; Mandrioli, M.; Blackman, R.L. The cytogenetic architecture of the aphid genome. Biol. Rev. 2015, 90, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.B. An improved light trap for insects. Bull. Entomol. Res. 1924, 15, 57–60. [Google Scholar] [CrossRef]
- Williams, C.B. The Rothamsted light trap. Proc. R. Entomol. Soc. Lond. A 1948, 23, 80–85. [Google Scholar] [CrossRef]
- Robinson, H.S.; Robinson, P.J.M. Some notes on the observed behaviour of Lepidoptera in the vicinity of light sources together with a description of a light trap designed to take entomological samples. Entomologist’s Gazette 1950, 1, 3–20. [Google Scholar]
- Fry, R.; Waring, P. A Guide to Moth Traps and Their Use, 2nd ed.; Amateur Entomologists’ Society: London, UK, 2001; p. 68. [Google Scholar]
- Macaulay, E.D.M.; Tatchell, G.M.; Taylor, L.R. The Rothamsted Insect Survey ‘12-metre’ suction trap. Bull. Entomol. Res. 1988, 78, 121–129. [Google Scholar] [CrossRef]
- Johnson, C.G. The comparison of suction trap, sticky trap and tow-net for the quantitative sampling of small airborne insects. Ann. Appl. Biol. 1950, 37, 268–285. [Google Scholar] [CrossRef]
- Matthews, R.W.; Matthews, J.R. The Malaise Trap: Its utility and potential for sampling insect populations. Great Lakes Entomol. 1971, 4, 117–122. [Google Scholar]
- Boiteau, G. Effect of trap colour and size on relative efficiency of water-pan traps for sampling alate aphids (Homoptera: Aphididae) on Potato. J. Econ. Entomol. 1990, 83, 937–942. [Google Scholar] [CrossRef]
- Lewis, T. A comparison of water traps, cylindrical sticky traps and suction traps for sampling thysanopteran populations at different levels. Entomologia Experimentalis et Applicata 1959, 2, 204–215. [Google Scholar] [CrossRef]
- Harrington, R.; Hullé, M.; Plantegenest, M. Monitoring and forecasting. In Aphids as Crop Pests, 1st ed.; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford/Oxford, UK, 2007; Chapter 19; pp. 515–536. [Google Scholar]
- Harrington, R.; Hullé, M. forecasting. In Aphids as Crop Pests, 2nd ed.; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford/Oxford, UK, 2017; Chapter 16; pp. 362–381. [Google Scholar]
- Saint-Germain, M.; Buddle, C.M.; Drapeau, P. Sampling saproxylic Coleoptera: Scale issues and the importance of behaviour. Environ. Entomol. 2006, 35, 478–487. [Google Scholar] [CrossRef]
- Hall, D.G.; Hentz, M.G.; Ciomperlik, M.A. A comparison of traps and stem tap sampling for monitoring adult Asian citrus psyllid (Hemiptera: Psyllidae) in citrus. Fla. Entomol. 2007, 90, 327–334. [Google Scholar] [CrossRef]
- Malo, E.A.; Cruz-Lopez, L.; Valle-Mora, J.; Virgen, A.; Sanchez, J.A.; Rojas, J.C. Evaluation of commercial pheromone lures and traps for monitoring male Fall Armyworm (Lepidoptera: Noctuidae) in the coastal region of Chiapas, Mexico. Fla. Entomol. 2001, 84, 659–664. [Google Scholar] [CrossRef]
- Spence, J.R.; Niemelä, J.K. Sampling carabid assemblages with pitfall traps: The madness and the method. Can. Entomol. 1994, 126, 881–894. [Google Scholar] [CrossRef]
- Berlese, A. Apparecchio per raccogliere presto ed in gran numero piccoli Artropodi. Redia 1905, 2, 85–90. [Google Scholar]
- Tullgren, A. Ein sehr einfacher Ausleseapparat für terricole Tierfaunen. Zeitschrift für angewandte Entomologie 1918, 4, 149–150. [Google Scholar]
- Canopy Fogging in Forest Insect Studies. Available online: http://www.ymparisto.fi/enUS/Nature/Species/Threatened_species/Research_Programme_PUTTE_20092016/PUTTE_Projects/More_information_on_PUTTE_projects/Canopy_fogging_in_forest_insect_studies (16682) (accessed on 29 October 2018).
- Leather, S.R. (Ed.) Insect Sampling in Forest Ecosystems; Wiley-Blackwell: Hoboken, NJ, USA, 2005; p. 320. [Google Scholar]
- Clark, G.G.; Seda, H.; Gubler., D.J. Use of the “CDC backpack aspirator” for surveillance of Aedes aegypti in San Juan, Puerto Rico. J. Am. Mosq. Control Assoc. 1994, 10, 119–124. [Google Scholar] [PubMed]
- Johnson, C.G. Migration and Dispersal of Insects by Flight; Methuen: London, UK, 1969; p. 763. [Google Scholar]
- Williams, C.B. Insect Migration; New Naturalist Series, No. 36; Collins: London, UK, 1958; p. 250. [Google Scholar]
- French, R.A. Migration of Laphygma exigua Hübner (Lepidoptera: Noctuidae) to the British Isles in relation to large-scale weather systems. J. Anim. Ecol. 1969, 38, 199–210. [Google Scholar] [CrossRef]
- Pedgley, D.E.; Reynolds, D.R.; Tatchell, G.M. Long-range insect migration in relation to climate and weather: Africa and Europe. In Insect Migration: Tracking Resources Through Space and Time; Drake, V.A., Gatehouse, A.G., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 3–29. [Google Scholar]
- Braendle, C.; Davis, G.K.; Brisson, J.A.; Stern, D.L. Wing dimorphism in aphids. Heredity 2006, 97, 192–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, D.G.; Brisson, J.A. Aphids: A model for polyphenism and epigenetics. Genet. Res. Int. 2012. [Google Scholar] [CrossRef] [PubMed]
- Van Emden, H.F.; Harrington, R. (Eds.) Aphids as Crop Pests, 1st ed.; CABI: Wallingford/Oxford, UK, 2007; p. 717. [Google Scholar]
- Van Emden, H.F.; Harrington, R. (Eds.) Aphids as Crop Pests, 2nd ed.; CABI: Wallingford, Oxford, UK, 2017; p. 686. [Google Scholar]
- Loxdale, H.D.; Balog, A. Aphid specialism as an example of ecological-evolutionary divergence. Biol. Rev. 2018, 93, 642–657. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.R.; Alderson, L.; Izera, D.; Kruger, T.; Parker, S.; Pickup, J.; Shortall, C.R.; Taylor, M.S.; Verrier, P.; Harrington, R. Long-term phenological trends, species accumulation rates, aphid traits and climate: Five decades of change in migrating aphids. J. Anim. Ecol. 2015, 84, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Leather, S.R. IN FOCUS: Onwards and upwards—Aphid flight trends follow climate change. J. Anim. Ecol. 2015, 84, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Cammell, M.E.; Tatchell, G.M.; Woiwod, I.P. Spatial pattern of abundance of the black bean aphid, Aphis fabae, in Britain. J. Appl. Ecol. 1989, 26, 463–472. [Google Scholar] [CrossRef]
- Harrington, R.; Bale, J.S.; Tatchell, G.M. Aphids in a changing climate. In Insects in a Changing Environment; Harrington, R., Stork, N.E., Eds.; Academic Press: London, UK, 1995; pp. 125–155. [Google Scholar]
- Irwin, M.E.; Kampmeier, G.E.; Weisser, W.W. Aphid movement: Process and consequences. In Aphids as Crop Pests, 1st ed.; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford/Oxford, UK, 2007; Chapter 7; pp. 153–186. [Google Scholar]
- Fereres, A.; Irwin, M.E.; Kampmeier, G.E. Aphid movement: Process and consequences. In Aphids as Crop Pests, 2nd ed.; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford/Oxford, UK, 2017; Chapter 10; pp. 196–224. [Google Scholar]
- Lees, A.D. The production of the apterous and alate forms in the aphid Megoura viciae Buckton, with special reference to the role of crowding. J. Insect Physiol. 1967, 13, 289–318. [Google Scholar] [CrossRef]
- Simpson, S.J.; Despland, E.; Hägele, B.F.; Dodgson, T. Gregarious behavior in desert locusts is evoked by touching their back legs. Proc. Natl. Acad. Sci. USA 2001, 98, 3895–3897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anstey, M.L.; Rogers, S.M.; Ott, S.R.; Burrows, M.; Simpson, S.J. Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 2009, 323, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Tang, J.; Dalwadi, S.; Staley, G.; Deniega, J.; Unnasch, T.R. Genetic evidence for assortative mating between 13-year cicadas and sympatric “17-year cicadas with 13-year life cycles” provides support for allochronic speciation. Evolution 2000, 54, 1326–1336. [Google Scholar] [PubMed]
- Tanaka, T.; Yoshimura, J.; Simon, C.; Cooley, J.R.; Tainaka, K. Allee effect in the selection for prime-numbered cycles in periodical cicadas. Proc. Natl. Acad. Sci. USA 2009, 106, 8975–8979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmesan, C.; Ryrholm, N.; Stefanescu, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T.; et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999, 399, 579–583. [Google Scholar] [CrossRef]
- Hill, J.K.; Thomas, C.D.; Fox, R.; Telfer, M.G.; Willis, S.G.; Asher, J.; Huntley, B. Responses of butterflies to twentieth century climate warming: Implications for future ranges. Proc. R. Soc. Ser. B 2002, 269, 2163–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, P.M.; Smith, K.G.V.; Else, G.R.; Allen, G.W. Some recent additions to the British insect fauna. Entomol. Mon. Mag. 1989, 125, 95–102. [Google Scholar]
- Brown, P.M.J.; Roy, H.E.; Rothery, P.; Roy, D.B.; Ware, R.L.; Majerus, M.E.N. Harmonia axyridis in Great Britain: Analysis of the spread and distribution of a non-native coccinellid. In From Biological Control to Invasion: The Ladybird Harmonia axyridis as a Model Species; Roy, H.E., Wajnberg, E., Eds.; Springer-Nature: Basingstoke, UK, 2007; pp. 55–67. [Google Scholar]
- Feltwell, J. The arrival of the Asian hornet, Vespa velutina Lepeletier, 1836 into the UK in 2016. Antenna 2017, 41, 59–64. [Google Scholar]
- Woiwod, I.P. The ecological importance of long-term synoptic monitoring. In The Ecology of Temperate Cereal Fields; Firbank, L.G., Carter, N., Darbyshire, J.F., Potts, G.R., Eds.; Blackwell Publishing: Oxford, UK, 1991; pp. 275–304. [Google Scholar]
- Woiwod, I.P.; Harrington, R. Flying in the face of change: The Rothamsted Insect Survey. In Long-term Experiments in Agricultural and Ecological Sciences; Leigh, R., Johnston, A., Eds.; CAB International: Wallingford, UK, 1994; pp. 321–342. [Google Scholar]
- Conrad, K.F.; Warren, M.S.; Fox, R.; Parson, M.S.; Woiwod, I.P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 2006, 132, 279–291. [Google Scholar] [CrossRef]
- Conrad, K.F.; Woiwod, I.P.; Parson, M.S.; Fox, R.; Warren, M.S. Long-term population trends in widespread British moths. J. Insect Conserv. 2004, 8, 119–136. [Google Scholar] [CrossRef]
- Thomas, J.A.; Telfer, M.G.; Roy, D.B.; Preston, C.; Greenwood, J.J.D.; Asher, J.; Fox, R.; Clarke, R.T.; Lawton, J.H. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 2004, 303, 1879–1881. [Google Scholar] [CrossRef] [PubMed]
- Hawes, C.; Haughton, A.J.; Osborne, J.L.; Roy, D.B.; Clark, S.J.; Perry, J.N.; Rothery, P.; Bohan, D.A.; Brooks, D.R.; Champion, G.T.; et al. Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide–tolerant crops. Philos. Trans. R. Soci. B Biol. Sci. 2003, 358, 1899–1913. [Google Scholar] [Green Version]
- Fox, R.; Conrad, K.F.; Parsons, M.S.; Warren, M.S.; Woiwod, I.P. The State of Britain’s Larger Moths; Butterfly Conservation and Rothamsted Research; Wareham: Dorset, UK, 2006; p. 33. [Google Scholar]
- Shortall, C.R.; Moore, A.; Smith, E.; Hall, M.J.; Woiwod, I.P.; Harrington, R. Long-term changes in the abundance of flying insects. Insect Conserv. Diver. 2009, 2, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Henry, M.; Béguin, M.; Requier, F.; Rollin, O.; Odoux, J.-F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A common pesticide decreases foraging success and survival in honey bees. Science 2012, 336, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.; Woiwod, I.; Sparks, T. Climate change and trophic interactions. Trends Ecol. Evol. 1999, 14, 146–150. [Google Scholar] [CrossRef]
- Dewar, A.M.; Woiwod, I.; Choppin de Janvry, E. Aerial migrations of the rose-grain aphid, Metopolophium dirhodum (Wlk.), over Europe in 1979. Plant Pathol. 1980, 29, 101–109. [Google Scholar] [CrossRef]
- Halbert, S.; Connelly, J.; Sandvol, L. Suction trapping in western North America (emphasis on Idaho). Acta Phytopathologica et Entomologica Hungarica 1990, 25, 411–422. [Google Scholar]
- Quinn, M.A.; Halbert, S.E.; Williams III, L. Spatial and temporal changes in aphid (Homoptera: Aphididae) species assemblages collected with suction traps in Idaho. J. Econ. Entomol. 1991, 84, 1710–1716. [Google Scholar] [CrossRef]
- Halbert, S.E.; Elberson, L.R.; Feng, M.-g.; Poprawski, T.J.; Wraight, S.; Johnson, J.B.; Quissenberry, S.S. Suction Trap data: Implications for crop protection forecasting. In Response Model for an Introduced Pest-The Russian Wheat Aphid; Quisenberry, S., Peairs, F.B., Eds.; Thomas Say Publications: Lanham, MD, USA, 1998; pp. 412–428, ESA. [Google Scholar]
- Van Nieukerken, E.J.; Lees, D.C.; Doorenweerd, C.; Koster, S.J.C.; Bryner, R.; Schreurs, A.; Timmermans, M.J.T.N.; Sattler, K. Two European Cornus L. feeding leafmining moths, Antispila petryi Martini, 1899, sp. rev. and A. treitschkiella (Fischer von Röslerstamm, 1843) (Lepidoptera, Heliozelidae): An unjustified synonymy and overlooked range expansion. Nota Lepidopterologica 2018, 41, 39–86. [Google Scholar] [CrossRef]
- Scientist Turns Detective to Identify Mysterious Moth. Available online: http://www.nhm.ac.uk/discover/news/2018/march/scientist-turns-detective-to-identify-mysterious-moth.html (accessed on 25 October 2018).
- Irwin, M.E.; Thresh, J.M. Long-range aerial dispersal of cereal aphids as virus vectors in North America. Philos. Trans. R. Soc. Lond. Ser. B 1988, 321, 421–446. [Google Scholar] [CrossRef]
- Osborne, J.L.; Loxdale, H.D.; Woiwod, I.P. Monitoring insect dispersal: Methods and approaches. In Dispersal Ecology, Proceedings of the British Ecological Symposium, Reading, UK, 3–5 April 2001; Bullock, J.M., Kenward, R.E., Hails, R.S., Eds.; Blackwell Publishing: Oxford, UK, 2002; pp. 24–49. [Google Scholar]
- Chapman, J.W.; Reynolds, D.R.; Smith, A.D.; Woiwod, I.P.; Riley, J.R.; Pedgley, D.E.; Woiwod, I.P. High-altitude migration of the diamondback moth Plutella xylostella to the U.K.: A study using radar, aerial netting, and ground trapping. Ecol. Entomol. 2002, 27, 641–650. [Google Scholar] [CrossRef]
- Chapman, J.W.; Smith, A.D.; Woiwod, I.P.; Reynolds, D.R.; Riley, J.R. Development of vertical-looking radar technology for monitoring insect migration. Comput. Electron. Agric. 2002, 35, 95–110. [Google Scholar] [CrossRef]
- Chapman, J.W.; Nesbit, R.L.; Burgin, L.E.; Reynolds, D.R.; Smith, A.D.; Middleton, D.R.; Hill, J.K. Flight orientation behaviours promote optimal migration trajectories in high-flying insects. Science 2010, 327, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Mabey, R. Flora Britannica, 1st ed.; Chatto & Windus/Sinclair Stevenson: London, UK, 1996; p. 480. [Google Scholar]
- Buczacki, S. Fauna Britannica, 1st ed.; Hamlyn: London, UK, 2002; p. 528. [Google Scholar]
- Cocker, M.; Mabey, R. Birds Britannica, 1st ed.; Chatto & Windus: London, UK, 2005; p. 528. [Google Scholar]
- Dobson, M.J. History of malaria in England. J. R. Soc. Med. 1989, 82, 3–7. [Google Scholar] [PubMed]
- Benton, T.G. The ecology of the scorpion Euscorpius flavicaudis in England. J. Zool. 1992, 226, 351–368. [Google Scholar] [CrossRef]
- Baker, R.; Cannon, R.; Bartlett, P.; Barker, I. Novel strategies for assessing and managing the risks posed by invasive alien species to global crop production and biodiversity. Ann. Appl. Biol. 2005, 146, 177–191. [Google Scholar] [CrossRef]
- Kenis, M.; Auger-Rozenberg, M.-A.; Roques, A.; Timms, L.; Péré, C.; Cock, M.J.W.; Settele, J.; Augustin, S.; Lopez-Vaamonde, C. Ecological effects of invasive alien insects. Biol. Invasions 2009, 11, 21–45. [Google Scholar] [CrossRef]
- Crowther, L.P.; Hein, P.-L.; Bourke, A.F.G. Habitat and forage associations of a naturally colonising insect pollinator, the Tree Bumblebee Bombus hypnorum. PLoS ONE 2014, 9, E107568. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, S.; Armitage, J.; Bostock, H.; Perry, J.; Tatchell, M.; Thompson, K. Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): Should we plant native or exotic species? J. Appl. Ecol. 2015, 52, 1156–1164. [Google Scholar] [CrossRef]
- Djeddour, D.H.; Shaw, R. The biological control of Fallopia japonica in Great Britain: Review and current status. Outlooks Pest Manag. 2010, 21, 15–18. [Google Scholar] [CrossRef]
- Shaw, R.H.; Ellison, C.A.; Marchante, H.; Pratt, C.F.; Schaffner, U.; Sforza, R.F.H.; Deltoro, V. Weed biological control in the European Union: From serendipity to strategy. BioControl 2018, 63, 333–347. [Google Scholar] [CrossRef]
- Shaw, R.H.; Tanner, R.; Djeddour, D.; Cortat, G. Classical biological control of Fallopia japonica in the United Kingdom—Lessons for Europe. Weed Res. 2011, 51, 552–558. [Google Scholar] [CrossRef]
- Stoetzel, M.B. Information on and identification of Diuraphis noxia (Homoptera: Aphididae) and other aphid species colonizing leaves of wheat and barley in the United States. J. Econ. Entomol. 1987, 80, 696–704. [Google Scholar] [CrossRef]
- Brewer, M.J.; Elliott, N.C. Biological control of cereal aphids in North America and mediating effects of host plant and habitat manipulations. Annu. Rev. Entomol. 2004, 49, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Hopper, K.R.; Coutinot, D.; Chen, K.; Kazmer, D.J.; Mercadier, G.; Halbert, S.E.; Miller, R.H.; Pike, K.S.; Tanigoshi, L.R. Exploration for natural enemies to control Diuraphis noxia (Homoptera: Aphididae) in the United States. In Response Model for an Introduced Pest-The Russian Wheat Aphid; Quisenberry, S., Peairs, F.B., Eds.; Thomas Say Publications: Lanham, MD, USA, 1998; pp. 166–182, ESA. [Google Scholar]
- Prokrym, D.R.; Pike, K.S.; Nelson, D.J. Biological control of Diuraphis noxia (Homoptera: Aphididae): Implementation and evaluation of natural enemies. In Response Model for an Introduced Pest-The Russian Wheat Aphid; Quisenberry, S., Peairs, F.B., Eds.; Thomas Say Publications: Lanham, MD, USA, 1998; pp. 183–208, ESA. [Google Scholar]
- Brewer, M.J.; Nelson, D.J.; Ahern, R.G.; Donahue, J.D.; Prokrym, D.R. Recovery and range expansion of parasitoids (Hymenoptera: Aphelinidae and Braconidae) released for biological control of Diuraphis noxia (Homoptera: Aphididae) in Wyoming. Environ. Entomol. 2001, 30, 578–588. [Google Scholar] [CrossRef]
- Uvarov, B.P. Prof. A. K. Mordvilko. Nature 1938, 142, 1027–1028. [Google Scholar] [CrossRef]
- Blackman, R.L. Aphids-Aphidinae (Macrosiphini); Handbooks for the Identification of British Insects; Royal Entomological Society, Field Studies Council: Shrewsbury, UK, 2010; Volume 2, Part 7. [Google Scholar]
- Basky, Z. The appearance and history of Diuraphis noxia in Hungary. In Critical Issues in Aphid Biology; Kindelmann, P., Dixon, A.F.G., Eds.; Faculty of Biological Sciences, University of South Bohemia: České Budějovice, Czech Republic, 1993; pp. 29–33. [Google Scholar]
- Basky, Z. Incidence and population fluctuation of Diuraphis noxia in Hungary. Crop Prot. 1993, 12, 605–609. [Google Scholar] [CrossRef]
- Lukasova, H.; Basky, Z.; Starý, P. Flight patterns of Russian wheat aphid, Diuraphis noxia (Kurdj.) during its expansion to Central Europe (Hom.; Aphididae). Anzeiger für Schadlingskunde—J. Pest Sci. 1999, 72, 41–44. [Google Scholar]
- Starý, P. Distribution and ecology of the Russian Wheat Aphid, Diuraphis noxia (Kurdj.), expanded to Central Europe (Hom.: Aphididae). Anzeiger für Schadlingskunde—J. Pest Sci. 1999, 72, 25–30. [Google Scholar]
- Starý, P.; Basky, Z.; Tanigoshi, L.K.; Tomanovicć, Z. Distribution and history of Russian wheat aphid, Diuraphis noxia (Kurdj.) in the Carpathian Basin (Hom.; Aphididae). Anzeiger für Schadlingskunde—J. Pest Sci. 2003, 76, 17–21. [Google Scholar] [CrossRef]
- Pollard, E.; Moss, D.; Yates, T. J Population trends of common British butterflies at monitored sites. J. Appl. Ecol. 1995, 32, 9–16. [Google Scholar] [CrossRef]
- Hill, J.K.; Collingham, Y.C.; Thomas, C.D.; Blakeley, D.S.; Fox, R.; Moss, D.; Huntley, B. Impacts of landscape structure on butterfly range expansion. Ecol. Lett. 2001, 4, 313–321. [Google Scholar] [CrossRef]
- Van Dyck, H.; Bonte, D.; Puls, R.; Gotthard, K.; Maes, D. The lost generation hypothesis: Could climate change drive ectotherms into a developmental trap? Oikos 2015, 124, 54–61. [Google Scholar] [CrossRef]
- Wall Brown Butterfly ‘may be a Victim of Climate Change’. Available online: https://www.theguardian.com/environment/2014/dec/24/wall-brown-butterfly-may-be-a-victim-of-climate-change (accessed on 25 October 2018).
- Mallet, J. Hybrid speciation. Nature 2007, 446, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, D.; Engel, M.S. Evolution of the Insects; Cambridge University Press: Cambridge, UK, 2005; p. 772. [Google Scholar]
- Gompert, Z.; Forister, M.L.; Fordyce, J.A.; Nice, C.C. Widespread mito-nuclear discordance with evidence for introgressive hybridization and selective sweeps in Lycaeides. Mol. Ecol. 2008, 17, 5231–5244. [Google Scholar] [CrossRef] [PubMed]
- Gompert, Z.; Lucas, L.K.; Fordyce, J.A.; Forister, M.L.; Nice, C.C. Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: Extensive introgression and a patchy hybrid zone. Mol. Ecol. 2010, 19, 3171–3192. [Google Scholar]
- Gompert, Z.; Lucas, L.K.; Nice, C.C.; Fordyce, J.A.; Forister, M.L.; Buerkle, C.A. Genomic regions with a history of divergent selection affect fitness of hybrids between two butterfly species. Evolution 2012, 66, 2167–2181. [Google Scholar] [CrossRef] [PubMed]
- Nice, C.C.; Gompert, Z.; Fordyce, J.A.; Forister, M.L.; Lucas, L.K.; Buerkle, C.A. Hybrid speciation and independent evolution in lineages of alpine butterflies. Evolution 2013, 67, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Schwander, T.; Crespi, B.J. Multiple direct transitions from sexual reproduction to apomictic parthenogenesis in Timema stick insects. Evolution 2009, 63, 84–103. [Google Scholar] [CrossRef] [PubMed]
- Myers, E.M.; Harwell, T.I.; Yale, E.L.; Lamb, A.M.; Frankino, W.A. Multifaceted, cross-generational costs of hybridization in sibling Drosophila species. PLoS ONE 2013, 8, e80331. [Google Scholar] [CrossRef] [PubMed]
- Kaneshiro, K.Y.; Val, F.C. Natural hybridization between a sympatric pair of Hawaiian Drosophila. Am. Nat. 1977, 111, 897–902. [Google Scholar] [CrossRef]
- Berlocher, S.H.; Feder, J.L. Sympatric speciation in phytophagous insects: Moving beyond controversy? Annu. Rev. Entomol. 2002, 47, 773–815. [Google Scholar] [CrossRef] [PubMed]
- Jiggins, C.D.; Bridle, J.R. Speciation in the apple maggot fly: A blend of vintages? Trends Ecol. Evol. 2004, 19, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Frey, J.E.; Feder, J.L.; Palma, J.; Bush, J.L. Differences in the electroantennal responses of apple- and hawthorn infesting races of Rhagoletis pomonella to host fruit volatile compounds. Chemoecology 1998, 8, 175–186. [Google Scholar] [CrossRef]
- Linn, C.E.; Dambroski, H.R.; Feder, J.L.; Berlocher, S.H.; Nojima, S.; Roelofs, W.L. Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: Reduced response of hybrids to parental host-fruit odors. Proc. Natl. Acad. Sci. USA 2004, 10, 17753–17758. [Google Scholar] [CrossRef] [PubMed]
- Linn, C.E.; Feder, J.L.; Nojima, S.; Dambroski, H.R.; Berlocher, S.H.; Roelofs, W.L. Fruit odor discrimination and sympatric host race formation in Rhagoletis. Proc. Natl. Acad. Sci. USA 2003, 100, 11490–11493. [Google Scholar] [CrossRef] [PubMed]
- Fordyce, J.A.; Nice, C.C. Variation in butterfly egg adhesion: Adaptation to local host plant senescence characteristics? Ecol. Lett. 2003, 6, 23–27. [Google Scholar] [CrossRef]
- Lucas, L.K.; Fordyce, J.A.; Nice, C.C. Patterns of genitalic morphology around suture zones in North American Lycaeides (Lepidoptera: Lycaenidae): Implications for taxonomy and historical biogeography. Ann. Entomol. Soc. Am. 2008, 101, 172–180. [Google Scholar] [CrossRef]
- Atanassova, P.; Brookes, C.P.; Loxdale, H.D.; Powell, W. Electrophoretic study of five aphid parasitoid species of the genus Aphidius Nees (Hymenoptera: Braconidae), including evidence for reproductively isolated sympatric populations and a cryptic species. Bull. Entomol. Res. 1998, 88, 3–13. [Google Scholar] [CrossRef]
- Smith, M.A.; Rodriguez, J.J.; Whitfield, J.B.; Deans, A.R.; Janzen, D.H.; Hallwachs, W.; Hebert, P.D.N. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc. Natl. Acad. Sci. USA 2008, 105, 12359–12364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heraty, J. Parasitoid biodiversity and insect pest management. In Insect Biodiversity: Science and Society, 2nd ed.; Foottit, R.G., Adler, P.H., Eds.; Wiley-Blackwell: Chichester, UK, 2017; Chapter 19; Volume 1, pp. 603–626. [Google Scholar]
- Mullen, G.R.; Durden, L.A. (Eds.) Medical and Veterinary Entomology, 3rd ed.; Academic Press: London, UK; New York, NY, USA, 2018; p. 806. [Google Scholar]
- Kaya, H.K.; Gaugler, R. Entomopathogenic nematodes. Annu. Rev. Entomol. 1993, 38, 181–206. [Google Scholar] [CrossRef]
- Cuthbertson, A.G.S.; Audsley, N. Further screening of entomopathogenic fungi and nematodes as control agents for Drosophila suzukii. Insects 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F. Ecology and Evolution of Parasitism: Hosts to Ecosystems; Oxford Biology; Oxford University Press: Cary, NC, USA, 2009; p. 238. [Google Scholar]
- Chesnais, Q.; Couty, A.; Uzest, M.; Brault, V.; Ameline, A. Plant infection by two different viruses induce contrasting changes of vectors fitness and behaviour. Insect Sci. 2017, 2017. [Google Scholar] [CrossRef]
- Roy, H.H.; Steinkraus, D.C.; Eilenberg, J.; Hajek, A.E.; Pell, J.K. Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annu. Rev. Entomol. 2006, 51, 331–357. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, J.; Hajek, A.E.; Heimpel, G.E.; Sloggett, J.J.; Mackauer, M.; Pell, J.K.; Völkl, W. Predators, parasitoids and pathogens. In Aphids as Crop Pests, 2nd ed.; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017; pp. 225–261. [Google Scholar]
- Ramirez, J.L.; Dunlap, C.A.; Muturi, E.J.; Barletta, A.B.F.; Rooney, A.P. Entomopathogenic fungal infection leads to temporo-spatial modulation of the mosquito immune system. PLoS Negl. Trop. Dis. 2018, 12, e0006433. [Google Scholar] [CrossRef] [PubMed]
- Biron, D.G.; Marché, L.; Ponton, F.; Loxdale, H.D.; Galéotti, N.; Renault, L.; Joly, C.; Thomas, F. Behavioural manipulation in a grasshopper harbouring hairworm: A proteomics approach. Proc. R. Soc. Biol. Sci. 2005, 272, 2117–2126. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, J.; Mcneil, J.N. Host behaviour-modification by the endoparasitoid Aphidius nigripes—A strategy to reduce hyperparasitism. Ecol. Entomol. 1992, 17, 97–104. [Google Scholar] [CrossRef]
- Khudr, M.S.; Oldekop, J.A.; Shuker, D.M.; Preziosi, R.F. Parasitoid wasps influence where aphids die via an interspecific indirect genetic effect. Biol. Lett. 2013, 9, 1151. [Google Scholar] [CrossRef] [PubMed]
- Walton, M.P.; Loxdale, H.D.; Allen-Williams, L.J. Flying with a ‘death sentence’ on board: Electrophoretic detection of braconid parasitoid larvae in migrating winged grain aphids, Sitobion avenae (F.). Bull. Entomol. Res. 2011, 101, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Stoltz, D.B. Interactions between parasitoid-derived products and host insects: An overview. J. Insect Physiol. 1986, 32, 347–350. [Google Scholar] [CrossRef]
- Vinson, S.B. Physiological interactions between the host genus Heliothis and its guild of parasitoids. Arch. Insect Biochem. Physiol. 1990, 13, 63–81. [Google Scholar] [CrossRef]
- Strand, M.R. Teratocytes and their functions in parasitoids. Curr. Opin. Insect Sci. 2014, 6, 68–73. [Google Scholar] [CrossRef]
- Walton, M.P.; Powell, W.; Loxdale, H.D.; Allen-Williams, L. Electrophoresis as a tool for estimating levels of hymenopterous parasitism in field populations of the cereal aphid, Sitobion avenae. Entomologia Experimentalis et Applicata 1990, 54, 271–279. [Google Scholar] [CrossRef]
- Traugott, M.; Bell, J.R.; Broad, G.R.; Powell, W.; Van Veen, F.J.F.; Vollhardt, I.M.G.; Symondson, W.O.C. Endoparasitism in cereal aphids: Molecular analysis of a whole parasitoid community. Mol. Ecol. 2008, 17, 3928–3938. [Google Scholar] [CrossRef] [PubMed]
- Eisenbeis, G. Artificial night lighting and insects: Attraction of insects to streetlights in a rural setting in Germany. In Ecological Consequences of Artificial Night Lighting; Rich, C., Longcore, T., Eds.; Island Press: Washington, DC, USA, 2005; Chapter 12; pp. 281–304, 480. [Google Scholar]
- Frank, K.D. Effects of artificial night lighting on moths. In Ecological Consequences of Artificial Night Lighting; Rich, C., Longcore, T., Eds.; Island Press: Washington DC, USA, 2005; Chapter 13; pp. 305–344, 480. [Google Scholar]
- Rich, C.; Longcore, T. (Eds.) Ecological Consequences of Artificial Night Lighting; Island Press: Washington, DC, USA, 2005; p. 480. [Google Scholar]
- Da Silva, A.; Valcu, M.; Kempenaers, B. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B 2015, 370, 20140126. [Google Scholar] [CrossRef] [PubMed]
- Ortega, C.P. Effects of noise pollution on birds: A brief review of our knowledge. Ornithol. Monogr. 2012, 74, 6–22. [Google Scholar]
- Jensen, F.H.; Bejder, L.; Wahlberg, M.; Aguilar Soto, N.; Johnson, M.; Madsen, P.T. Vessel noise effects on delphinid communication. Mar. Ecol. Progress Ser. 2009, 395, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Ross, D. Mechanics of Underwater Noise; Pergamon Press: New York, NY, 1976; p. 390. [Google Scholar]
- MacGregor, C.J.; Pocock, M.J.O.; Fox, R.; Evans, D.M. Pollination by nocturnal Lepidoptera, and the effects of light pollution: A review. Ecol. Entomol. 2015, 40, 187–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morley, E.L.; Jones, G.; Radford, A.N. The importance of invertebrates when considering the impacts of anthropogenic noise. Proc. R. Soc. B 2014, 281, 2013–2683. [Google Scholar] [CrossRef] [PubMed]
- Balmori, A. Possible effects of electromagnetic fields from phone masts on a population of White Stork (Ciconia ciconia). Electromagn. Biol. Med. 2005, 24, 109–111. [Google Scholar] [CrossRef]
- Nicholls, B.; Racey, P.A. The aversive effect of electromagnetic radiation on foraging bats—A possible means of discouraging bats from approaching wind turbines. PLoS ONE 2009, 4, e6246. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.K. Effects of artificially produced atmospheric electrical fields upon the activity of some adult Diptera. Can. J. Zool. 1960, 38, 899–912. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed]
- Ollerton, J.; Erenler, H.; Edwards, M.; Crockett, R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 2014, 346, 1360–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trombulak, S.C.; Frissell, C.A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 2000, 14, 18–30. [Google Scholar] [CrossRef]
- Dhindsa, M.S.; Sandhu, J.S.; Sandhu, P.S.; Toor, H.S. Roadside birds in Punjab (India): Relation to mortality from vehicles. Environ. Conserv. 1988, 15, 303–310. [Google Scholar] [CrossRef]
- Loxdale, H.D. Musings on the birds and bees...and flies and butterflies too. Antenna 2014, 38, 219–225. [Google Scholar]
- Linn, C.E.; Young, M.S.; Gendle, M.; Glover, T.J.; Roelofs, W.L. Sex pheromone blend discrimination in two races and hybrids of the European corn borer moth, Ostrinia nubilalis. Physiol. Entomol. 1997, 22, 212–223. [Google Scholar]
- Margaritopoulos, J.T.; Malarky, G.; Tsitsipis, J.A.; Blackman, R.L. Microsatellite DNA and behavioural studies provide evidence of host-mediated speciation in Myzus persicae (Hemiptera: Aphididae). Biol. J. Linnean Soc. 2007, 91, 687–702. [Google Scholar] [CrossRef]
- Foottit, R.G. Recognition of parthenogenetic insect species. In Species: The Units of Biodiversity; Claridge, M.F., Dawah, H.A., Wilson, M.R., Eds.; Chapman and Hall: London, UK, 1997; pp. 291–307. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Taxonomic issues. In Aphids as Crop Pests, 1st ed.; van Emden, H.F., Harrington, R., Eds.; CAB International: Wallingford, UK, 2007; Chapter 1; pp. 1–29. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Taxonomic issues. In Aphids as Crop Pests, 2nd ed.; van Emden, H.F., Harrington, R., Eds.; CAB International: Wallingford, UK, 2017; Chapter 1; pp. 1–36. [Google Scholar]
- Delmotte, F.; Leterme, N.; Bonhomme, J.; Rispe, C.; Simon, J.-C. Multiple routes to asexuality in an aphid. Proc. R. Soc. Lond. B 2001, 268, 2291–2299. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, K.S. Genetic Structure and Dispersal of Cereal Aphid Populations. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2000. [Google Scholar]
- Foster, S.P.; Paul, V.L.; Slater, R.; Warren, A.; Denholm, I.; Field, L.M.; Williamson, M.S. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, associated with resistance to pyrethroid insecticides. Pest Manag. Sci. 2014, 70, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.P.; Devine, G.; Devonshire, A.L. Insecticide Resistance. In Aphids as Crop Pests, 2nd ed.; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford/Oxfordshire, UK, 2017; Chapter 19; pp. 426–447. [Google Scholar]
- Anonymous. Developing alternatives to gamma irradiation for the sterile insect technique. Nuclear Technol. Rev. 2012, 2012, 81–91. [Google Scholar]
- Bush, G.L. Ecological genetics and quality control. In Genetics in Relation to Insect Management; Hoy, M., Kochler, C., McKelvey, J., Eds.; Rockefeller Foundation Special Report Series; New York, USA, 1979; pp. 145–152. [Google Scholar]
- Bush, G.L. Genetic changes occurring in flight muscle enzymes of the screwworm fly during mass-rearing. J. N. Y. Entomol. Soc. 1975, 83, 275–276. [Google Scholar]
- Bush, G.L. Genetic variation in natural insect populations and its bearing on mass-rearing programs. In Controlling Fruit Flies by the Sterile-Insect Technique; Proceeding Series; International Atomic Energy Agency: Vienna, Austria, 1975; STI/PUB/392. [Google Scholar]
- Bush, G.L.; Neck, R.W.; Kitto, G.B. Screwworm eradication: Inadvertent selection for non-competitive ecotypes during mass rearing. Science 1976, 193, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Suckling, D.M. Issues affecting the use of pheromones and other semiochemicals in orchards. Crop Prot. 2000, 19, 677–683. [Google Scholar] [CrossRef]
- Evenden, M.L.; Haynes, K.F. Potential for the evolution of resistance to pheromone-based mating disruption tested using two pheromone strains of the cabbage looper, Trichoplusia ni. Entomologia Experimentalis et Applicata 2001, 100, 131–134. [Google Scholar] [CrossRef]
- Bjostad, L.B.; Linn, C.E.; Du, J.-W.; Roelofs, W.L. Identification of new sex pheromone components in Trichoplusia ni, predicted from biosynthetic precursors. J. Chem. Ecol. 1984, 10, 1309–1323. [Google Scholar] [CrossRef] [PubMed]
- Haynes, K.F.; Hunt, R.E. A mutation in the pheromonal communication system of the cabbage looper moth, Trichoplusia ni. J. Chem. Ecol. 1990, 16, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-B.; Haynes, K.F. Evolution of behavioural responses to sex pheromone in mutant laboratory colonies of Trichoplusia ni. J. Chem. Ecol. 1994, 20, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Cabbage looper. Available online: https://en.wikipedia.org/wiki/Cabbage_looper (accessed on 25 October 2018).
- Georghiou, G.P. Overview of insecticide resistance. In Managing Resistance to Agrochemicals; Green, M.B., Le Baron, H.M., Moberg, W.K., Eds.; American Chemical Society: Washington, DC, USA, 1990; pp. 18–41. [Google Scholar]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenton, B.; Woodford, J.A.T.; Malloch, G. Analysis of clonal diversity of the peach–potato aphid, Myzus persicae (Sulzer), in Scotland, UK and evidence for the existence of a predominant clone. Mol. Ecol. 1998, 7, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Fenton, B.; Margaritopoulos, J.T.; Malloch, G.L.; Foster, S.P. Micro-evolutionary change in relation to insecticide resistance in the peach–potato aphid, Myzus persicae. Ecol. Entomol. 2010, 35 (suppl. 1), 131–146. [Google Scholar] [CrossRef]
- Margaritopoulos, J.T.; Kasprowicz, L.; Malloch, G.L.; Fenton, B. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecol. 2009, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.P.; Denholm, I.; Devonshire, A.L. The ups and downs of insecticide resistance in peach potato aphids (Myzus persicae) in the UK. Crop Prot. 2000, 19, 873–879. [Google Scholar] [CrossRef]
- Foster, S.P.; Tomiczek, M.; Thompson, R.; Denholm, I.; Poppy, G.; Kraaijeveld, A.R.; Powell, W. Behavioural side-effects of insecticide resistance in aphids increase their vulnerability to parasitoid attack. Anim. Behav. 2007, 74, 621–632. [Google Scholar] [CrossRef]
- Foster, S.P.; Harrington, R.; Dewar, A.M.; Denholm, I.; Devonshire, A.L. Temporal and spatial dynamics of insecticide resistance in Myzus persicae (Sulzer). Pest Manag. Sci. 2002, 58, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Kasprowicz, L.; Malloch, G.; Foster, S.; Pickup, J.; Zhan, J.; Fenton, B. Clonal turnover of MACE carrying peach-potato aphids (Myzus persicae (Sulzer), Homoptera: Aphididae) colonising Scotland. Bull. Entomol. Res. 2008, 98, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Kasprowicz, L.; Malloch, G.; Pickup, J.; Fenton, B. Spatial and temporal dynamics of Myzus persicae clones in fields and suction traps. Agric. For. Entomol. 2008, 10, 91–100. [Google Scholar] [CrossRef]
- Arce, A.N.; Ramos Rodrigues, A.; Yu, J.; Colgan, T.J.; Wurm, Y.; Gill, R.J. Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proc. R. Soc. B 2018, 285, 20180655. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.J. Return of the Hopeful Monster, The Pace of Change. In The Panda’s Thumb; W. W. Norton & Co.: New York, NY, USA, 1980; Chapter 5; pp. 186–193. [Google Scholar]
- Hopeful Monster. Available online: https://rationalwiki.org/wiki/Hopeful_monster (accessed on 25 October 2018).
- Loxdale, H.D.; Claridge, M.F.; Mallet, J. (Eds.) Insect Evolutionary Divergence below the Species Level: Ecological Specialisation and the Origin of Species. Ecol. Entomol. 2010, 35, 164. [Google Scholar]
- Claridge, M.F. Insect species—Concepts and practice. In Insect Biodiversity: Science and Society, 2nd ed.; Foottit, R.G., Adler, P.H., Eds.; Wiley-Blackwell: Chichester, UK, 2017; Chapter 15; Volume 1, pp. 527–548, 904. [Google Scholar]
- Jablonka, E.; Lamb, M.J. Epigenetic Inheritance and Evolution: The Lamarckian Dimension; Oxford University Press: Oxford, UK, 1995; p. 360. [Google Scholar]
- Lushai, G.; Loxdale, H.D.; Allen, J.A. The dynamic clonal genome and its adaptive potential. Biol. J. Linnean Soc. 2003, 79, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Mehrparvar, M.; Zytynska, S.E.; Weisser, W.W. Multiple cues for winged morph production in an aphid metacommunity. PLoS ONE 2013, 8, e58323. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loxdale, H.D. Aspects, Including Pitfalls, of Temporal Sampling of Flying Insects, with Special Reference to Aphids. Insects 2018, 9, 153. https://doi.org/10.3390/insects9040153
Loxdale HD. Aspects, Including Pitfalls, of Temporal Sampling of Flying Insects, with Special Reference to Aphids. Insects. 2018; 9(4):153. https://doi.org/10.3390/insects9040153
Chicago/Turabian StyleLoxdale, Hugh D. 2018. "Aspects, Including Pitfalls, of Temporal Sampling of Flying Insects, with Special Reference to Aphids" Insects 9, no. 4: 153. https://doi.org/10.3390/insects9040153
APA StyleLoxdale, H. D. (2018). Aspects, Including Pitfalls, of Temporal Sampling of Flying Insects, with Special Reference to Aphids. Insects, 9(4), 153. https://doi.org/10.3390/insects9040153