Acute Effects of New Zealand Blackcurrant Extract on Cycling Time-Trial Are Performance Dependent in Endurance-Trained Cyclists: A Home-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Online Software and Data Extraction
2.4. Menstrual Cycle Monitoring
2.5. Diet Standardization and Supplementation
2.6. Statistical Analysis
3. Results
3.1. Diet and Menstrual Cycle Symptoms
3.2. 16.1 km Performance—Cohort Observations
3.3. 16.1 km Performance—Slow and Fast Cyclists
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowtell, J.; Kelly, V. Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sports Med. 2019, 49 (Suppl. S1), 3–23. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.A.; Keane, K.M.; Quinlan, R.; Howatson, G. Tart Cherry Supplementation and Recovery from Strenuous Exercise: A Systematic Review and Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Sójka, M.; Król, B. Composition of industrial seedless black currant pomace. Eur. Food Res. Technol. 2009, 228, 597–605. [Google Scholar] [CrossRef]
- Matsumoto, H.; Takenami, E.; Iwasaki-Kurashige, K.; Osada, T.; Katsumura, T.; Hamaoka, T. Effects of blackcurrant anthocyanin intake on peripheral muscle circulation during typing work in humans. Eur. J. Appl. Physiol. 2005, 94, 36–45. [Google Scholar] [CrossRef]
- Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The Case for Anthocyanin Consumption to Promote Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 483–508. [Google Scholar] [CrossRef]
- Xu, J.W.; Ikeda, K.; Yamori, Y. Upregulation of Endothelial Nitric Oxide Synthase by Cyanidin-3-Glucoside, A Typical Anthocyanin Pigment. Hypertension 2004, 44, 217–222. [Google Scholar] [CrossRef]
- Willems, M.E.T.; Myers, S.D.; Gault, M.L.; Cook, M.D. Beneficial Physiological Effects with Blackcurrant Intake in Endurance Athletes. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 367–374. [Google Scholar] [CrossRef]
- Cook, M.D.; Myers, S.D.; Blacker, S.D.; Willems, M.E.T. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur. J. Appl. Physiol. 2015, 115, 2357–2365. [Google Scholar] [CrossRef]
- Perkins, I.C.; Vine, S.A.; Blacker, S.D.; Willems, M.E.T. New Zealand Blackcurrant Extract Improves High-Intensity Intermittent Running. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 487–493. [Google Scholar] [CrossRef]
- Czank, C.; Cassidy, A.; Zhang, Q.; Morrison, D.J.; Preston, T.; Kroon, P.A.; Botting, N.P.; Kay, C.D. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A 13C-tracer study. Am. J. Clin. Nutr. 2013, 97, 995–1003. [Google Scholar] [CrossRef]
- Costello, R.; Keane, K.M.; Lee, B.J.; Willems, M.E.T.; Myers, S.D.; Myers, F.; Lewis, N.A.; Blacker, S.D. Plasma uptake of selected phenolic acids following New Zealand blackcurrant extract supplementation in humans. J. Diet Suppl. 2022, 19, 672–688. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K.A.; Hurst, S.M.; Cooney, J.; Jensen, D.; Lo, K.; Hurst, R.D.; Stevenson, L.M. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am. J. Physiol. Regul. Integr. Compr. Physiol. 2009, 297, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Montanari, S.; Şahin, M.A.; Lee, B.J.; Blacker, S.D.; Willems, M.E.T. No Effects of New Zealand Blackcurrant Extract on Physiological and Performance Responses in Trained Male Cyclists Undertaking Repeated Testing across a Week Period. Sports 2020, 8, 114. [Google Scholar] [CrossRef]
- Paton, C.D.; Morton, L.C.; Bomal, B.; Braakhuis, A.J. The Effects of Blackcurrant and Caffeine Combinations on Performance and Physiology During Repeated High-Intensity Cycling. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.J.; Perry, B.G.; Hurst, R.D.; Lomiwes, D. Anthocyanin-Rich New Zealand Blackcurrant Extract Supports the Maintenance of Forearm Blood-Flow During Prolonged Sedentary Sitting. Front. Nutr. 2020, 7, 74. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, A.; Rendeiro, C.; Bergillos-Meca, T.; Tabatabaee, S.; George, T.W.; Heiss, C.; Spencer, J.P.E. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: A randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am. J. Clin. Nutr. 2013, 98, 1179–1191. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Borg, G. Ratings of perceived exertion and heart rates during short-term cycle exercise and their use in a new cycling strength test. Int. J. Sports Med. 1982, 3, 153–158. [Google Scholar] [CrossRef]
- Martin, D.; Sale, C.; Cooper, S.B.; Elliott-Sale, K.J. Period Prevalence and Perceived Side Effects of Hormonal Contraceptive Use and the Menstrual Cycle in Elite Athletes. Int. J. Sports Physiol. Perform. 2018, 13, 926–932. [Google Scholar] [CrossRef]
- Paton, C.D.; Hopkins, W.G. Variation in performance of elite cyclists from race to race. Eur. J. Sport Sci. 2006, 6, 25–31. [Google Scholar] [CrossRef]
- Best, R.; Metekingi, C.; Longhurst, G.; Maulder, P.S. New Zealand Blackcurrant extract supplementation does not improve repeated sprint ability. J. Sport Exerc. Sci. 2022, 6, 1–8. [Google Scholar] [CrossRef]
- Keane, K.M.; Bailey, S.J.; Vanhatalo, A.; Jones, A.M.; Howatson, G. Effects of montmorency tart cherry (L. Prunus Cerasus) consumption on nitric oxide biomarkers and exercise performance. Scand. J. Med. Sci. Sports 2018, 28, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Maiorana, A.; O’Driscoll, G.; Taylor, R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 2004, 561, 68197. [Google Scholar] [CrossRef]
- Powers, S.K.; DeRuisseau, K.C.; Quindry, J.; Hamilton, K.L. Dietary antioxidants and exercise. J. Sports Sci. 2004, 22, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Islam, H.; Bonafiglia, J.T.; Turnbull, P.C.; Simpson, C.A.; Perry, C.G.R.; Gurd, B.J. The impact of acute and chronic exercise on Nrf2 expression in relation to markers of mitochondrial biogenesis in human skeletal muscle. Eur. J. Appl. Physiol. 2020, 120, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Peacock, O.; St Clair Gibson, A.; Tucker, R. Distribution of power output during cycling. Sports Med. 2007, 37, 647–667. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Davison, R.; Jeukendrup, A.; Passfield, L. Science and cycling: Current knowledge and future directions for research. J. Sports Sci. 2003, 21, 767–787. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S. Optimising distribution of power during a cycling time trial. Sports Eng. 2005, 8, 81–90. [Google Scholar] [CrossRef]
- Marcora, S.M.; Staiano, W. The limit to exercise tolerance in humans: Mind over muscle? Eur. J. Appl. Physiol. 2010, 109, 763–770. [Google Scholar] [CrossRef]
- Brick, N.; MacIntyre, T.; Campbell, M. Metacognitive processes in the self-regulation of performance in elite endurance runners. Psychol. Sport Exerc. 2015, 19, 1–9. [Google Scholar] [CrossRef]
- McNulty, K.L.; Elliott-Sale, K.J.; Dolan, E.; Swinton, P.A.; Ansdell, P.; Goodall, S.; Thomas, K.; Hicks, K.M. The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 1813–1827. [Google Scholar] [CrossRef] [PubMed]
- Elliott-Sale, K.J.; Minahan, C.L.; de Jonge, X.A.K.J.; Ackerman, K.E.; Sipilä, S.; Constantini, N.W.; Lebrun, C.M.; Hackney, A.C. Methodological Considerations for Studies in Sport and Exercise Science with Women as Participants: A Working Guide for Standards of Practice for Research on Women. Sports Med. 2021, 51, 843–861. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.S.; Dennis, S.C.; Noakes, T.D.; Hawley, J.A. Assessment of the reproducibility of performance testing on an air-braked cycle ergometer. Int. J. Sports Med. 1996, 17, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Hibbert, A.W.; Billaut, F.; Varley, M.C. Polman, R.C.J. Familiarization protocol influences reproducibility of 20-km cycling time-trial performance in novice participants. Front. Physiol. 2017, 8, 488. [Google Scholar] [CrossRef]
- Zavorsky, G.S.; Murias, J.M.; Gow, J.; Kim, D.J.; Poulin-Harnois, C.; Kubow, S.; Lands, L.C. Laboratory 20-km cycle time trial reproducibility. Int. J. Sports Med. 2007, 28, 743–748. [Google Scholar] [CrossRef]
Symptoms | Placebo | NZBC Extract | p-Value | Effect Size Cohen’s d |
---|---|---|---|---|
Stomach pain | 1.1 ± 0.3 | 1.3 ± 0.7 | 0.35 | 0.37 |
Headache/migraine | 1.1 ± 0.3 | 1.1 ± 0.1 | 0.68 | 0.00 |
Bloating | 1.1 ± 0.4 | 1.6 ± 0.7 | 0.22 | 0.88 |
Nausea/vomiting | 1.1 ± 0.4 | 1.6 ± 0.7 | 0.17 | 0.88 |
Tiredness/fatigue | 1.4 ± 0.7 | 1.7 ± 0.4 | 0.55 | 0.53 |
Dizziness | 1.1 ± 0.1 | 1.1 ± 0.3 | 0.68 | 0.00 |
Irritability | 1.1 ± 0.1 | 1.4 ± 0.3 | 0.45 | 1.34 |
Hunger/appetite | 1.2 ± 0.3 | 1.3 ± 0.7 | 0.35 | 0.19 |
GI distress | 1.1 ± 0.3 | 1.6 ± 0.7 | 0.68 | 1.00 |
Heavy bleeding | 1.1 ± 0.4 | 1.5 ± 0.7 | 0.17 | 0.70 |
Muscle ache | 1.1 ± 0.5 | 1.5 ± 0.5 | 0.18 | 0.80 |
Weakness | 1.1 ± 0.3 | 1.5 ± 0.4 | 0.54 | 1.13 |
Mood swings | 1.1 ± 0.3 | 1.3 ± 0.5 | 0.35 | 0.49 |
Flustered | 1.1 ± 0.3 | 1.1 ± 0.3 | 0.35 | 0.00 |
Parameter | Placebo | NZBC Extract | MD | 95% CI for MD | p-Value | Effect Size Cohen’s d | |
---|---|---|---|---|---|---|---|
low | upper | ||||||
Time (s) | 1422 ± 104 | 1414 ± 93 | −8 ± 25 | −17 | 1 | 0.06 | −0.08 |
Power (W) | 275 ± 57 | 277 ± 55 | 2 ± 9 | −1 | 5 | 0.27 | 0.04 |
Speed (km·h−1) | 40.9 ± 2.8 | 41.1 ± 2.6 | 0.2 ± 0.7 | 0 | 0.4 | 0.10 | 0.07 |
Heart rate (bpm) | 166 ± 10 | 165 ± 10 | 1 ± 3 | 0 | 2 | 0.15 | −0.10 |
Cadence (rpm) | 87 ± 6 | 87 ± 6 | 0 ± 3 | −1 | 1 | 0.65 | 0.00 |
RPE | 17 ± 1 | 17 ± 1 | 0 ± 1 | 0 | 0 | 1.00 | 0.00 |
Parameter | Placebo | NZBC Extract | MD | 95% CI for MD | p-Value | Effect Size Cohen’s d | |
---|---|---|---|---|---|---|---|
Slow cyclists (>1400 s, n = 17) | lower | upper | |||||
Time (s) | 1499 ± 91 | 1479 ± 83 | −19 ± 30 | −35 | 4 | 0.02 | −0.23 |
Power (W) | 237 ± 55 | 242 ± 52 | 5 ± 9 | 0 | 9 | 0.04 | 0.09 |
Speed (km·h−1) | 38.7 ± 2.2 | 39.2 ± 2.0 | 0.4 ± 0.7 | 0.0 | 0.7 | 0.04 | 0.18 |
HR (bpm) | 160 ± 9 | 161 ± 9 | 1 ± 4 | −1 | 3 | 0.43 | 0.11 |
Cadence (rpm) | 85 ± 7 | 86 ± 7 | 1 ± 3 | −1 | 2 | 0.57 | 0.14 |
Fast cyclists (<1400 s, n = 17) | |||||||
Time (s) | 1345 ± 40 | 1349 ± 43 | 2 ± 14 | −5 | 9 | 0.34 | 0.10 |
Power (W) | 313 ± 26 | 312 ± 29 | −1 ± 9 | −6 | 3 | 0.51 | −0.04 |
Speed (km·h−1) | 43.0 ± 1.2 | 43.0 ± 1.4 | 0 ± 0 | 0 | 0 | 0.59 | 0.00 |
HR (bpm) | 169 ± 10 | 169 ± 10 | 0 ± 2 | −1 | 2 | 0.53 | 0.00 |
Cadence (rpm) | 88 ± 6 | 88 ± 6 | 0 ± 3 | −2 | 1 | 0.58 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montanari, S.; Blacker, S.D.; Willems, M.E.T. Acute Effects of New Zealand Blackcurrant Extract on Cycling Time-Trial Are Performance Dependent in Endurance-Trained Cyclists: A Home-Based Study. Sports 2023, 11, 93. https://doi.org/10.3390/sports11050093
Montanari S, Blacker SD, Willems MET. Acute Effects of New Zealand Blackcurrant Extract on Cycling Time-Trial Are Performance Dependent in Endurance-Trained Cyclists: A Home-Based Study. Sports. 2023; 11(5):93. https://doi.org/10.3390/sports11050093
Chicago/Turabian StyleMontanari, Stefano, Sam D. Blacker, and Mark E. T. Willems. 2023. "Acute Effects of New Zealand Blackcurrant Extract on Cycling Time-Trial Are Performance Dependent in Endurance-Trained Cyclists: A Home-Based Study" Sports 11, no. 5: 93. https://doi.org/10.3390/sports11050093
APA StyleMontanari, S., Blacker, S. D., & Willems, M. E. T. (2023). Acute Effects of New Zealand Blackcurrant Extract on Cycling Time-Trial Are Performance Dependent in Endurance-Trained Cyclists: A Home-Based Study. Sports, 11(5), 93. https://doi.org/10.3390/sports11050093