Whole Body Vibration Training Improves Maximal Strength of the Knee Extensors, Time-to-Exhaustion and Attenuates Neuromuscular Fatigue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Fatiguing Exercise
2.4. Neuromuscular Function Evaluation
2.5. Percutaneous Nerve Stimulation
2.6. sEMG Recordings
2.7. WBV and SHAM Training
2.8. Statistical Analysis
3. Results
3.1. Effects of the Training Period on Neuromuscular Function
3.2. Effects of the Fatiguing Exercise on Neuromuscular Function
3.3. Effects of the Training Period on the Fatiguing Exercise
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delecluse, C.; Roelants, M.; Verschueren, S. Strength increase after whole-body vibration compared with resistance training. Med. Sci. Sports Exerc. 2003, 35, 1033–1041. [Google Scholar] [CrossRef]
- de Ruiter, C.J.; van Raak, S.M.; Schilperoort, J.V.; Hollander, A.P.; de Haan, A. The effects of 11 weeks whole body vibration training on jump height, contractile properties and activation of human knee extensors. Eur. J. Appl. Physiol. 2003, 90, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Kvorning, T.; Bagger, M.; Caserotti, P.; Madsen, K. Effects of vibration and resistance training on neuromuscular and hormonal measures. Eur. J. Appl. Physiol. 2006, 96, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Petit, P.D.; Pensini, M.; Tessaro, J.; Desnuelle, C.; Legros, P.; Colson, S.S. Optimal whole-body vibration settings for muscle strength and power enhancement in human knee extensors. J. Electromyogr. Kinesiol. 2010, 20, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Osawa, Y.; Oguma, Y. Effects of whole-body vibration on resistance training for untrained adults. J. Sports Sci. Med. 2011, 10, 328–337. [Google Scholar]
- Esmaeilzadeh, S.; Akpinar, M.; Polat, S.; Yildiz, A.; Oral, A. The effects of two different frequencies of whole-body vibration on knee extensors strength in healthy young volunteers: A randomized trial. J. Musculoskelet. Neuronal Interact. 2015, 15, 333–340. [Google Scholar]
- Osawa, Y.; Oguma, Y.; Ishii, N. The effects of whole-body vibration on muscle strength and power: A meta-analysis. J. Musculoskelet. Neuronal Interact. 2013, 13, 380–390. [Google Scholar]
- Hortobágyi, T.; Lesinski, M.; Fernandez-Del-Olmo, M.; Granacher, U. Small and inconsistent effects of whole body vibration on athletic performance: A systematic review and meta-analysis. Eur. J. Appl. Physiol. 2015, 115, 1605–1625. [Google Scholar] [CrossRef]
- Goodwill, A.M.; Kidgell, D.J. The effects of whole-body vibration on the cross-transfer of strength. Sci. World J. 2012, 2012, 504837. [Google Scholar] [CrossRef]
- Cochrane, D.J. The potential neural mechanisms of acute indirect vibration. J. Sports Sci. Med. 2011, 10, 19–30. [Google Scholar]
- de Ruiter, C.J.; van der Linden, R.M.; van der Zijden, M.J.A.; Hollander, A.P.; de Haan, A. Short-term effects of whole-body vibration on maximal voluntary isometric knee extensor force and rate of force rise. Eur. J. Appl. Physiol. 2003, 88, 472–475. [Google Scholar] [CrossRef]
- Weier, A.T.; Kidgell, D.J. Strength training with superimposed whole body vibration does not preferentially modulate cortical plasticity. Sci. World J. 2012, 2012, 876328. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.; Yeung, E.W. A 5-week whole body vibration training improves peak torque performance but has no effect on stretch reflex in healthy adults: A randomized controlled trial. J. Sports Med. Phys. Fitness 2015, 55, 397–404. [Google Scholar] [PubMed]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef] [PubMed]
- Place, N.; Maffiuletti, N.A.; Martin, A.; Lepers, R. Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve. 2007, 35, 486–495. [Google Scholar] [CrossRef]
- Colson, S.S.; Petit, P.D.; Hébreard, L.; Tessaro, J.; Pensini, M. Whole body vibration does not enhance muscle activation. Int. J. Sports Med. 2009, 30, 841–844. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Saugy, J.; Cardinale, M.; Micallef, J.P.; Place, N. Neuromuscular fatigue induced by whole-body vibration exercise. Eur. J. Appl. Physiol. 2013, 113, 1625–1634. [Google Scholar] [CrossRef]
- Zory, R.F.; Aulbrook, W.; Keir, D.A.; Serresse, O. Occurrence of fatigue induced by a whole-body vibration session is not frequency dependent. J. Strength Cond. Res. 2013, 27, 2552–2561. [Google Scholar]
- Kalc, M.; Ritzmann, R.; Strojnik, V. Effects of whole-body vibrations on neuromuscular fatigue: A study with sets of different durations. PeerJ 2020, 8, e10388. [Google Scholar] [CrossRef]
- Ritzmann, R.; Kramer, A.; Bernhardt, S.; Gollhofer, A. Whole body vibration training-improving balance control and muscle endurance. PLoS ONE 2014, 9, e89905. [Google Scholar] [CrossRef]
- Łochyński, D.; Kaczmarek, D.; Rędowicz, M.J.; Celichowski, J.; Krutki, P. Long-term effects of whole-body vibration on motor unit contractile function and myosin heavy chain composition in the rat medial gastrocnemius. J. Musculoskelet. Neuronal Interact. 2013, 13, 430–441. [Google Scholar] [PubMed]
- Lévénez, M.; Garland, S.J.; Klass, M.; Duchateau, J. Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans. J. Neurophysiol. 2008, 99, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.Y.; Martin, V.; Martin, A.; Vergès, S. Electrical stimulation for testing neuromuscular function: From sport to pathology. Eur. J. Appl. Physiol. 2011, 111, 2489–2500. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Barr, D.J.; Levy, R.; Scheepers, C.; Tily, H.J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 2013, 68, 255–278. [Google Scholar] [CrossRef]
- Lorenzen, C.; Maschette, W.; Koh, M.; Wilson, C. Inconsistent use of terminology in whole body vibration exercise research. J. Sci. Med. Sport 2009, 12, 676–678. [Google Scholar] [CrossRef] [PubMed]
- Rauch, F.; Sievanen, H.; Boonen, S.; Cardinale, M.; Degens, H.; Felsenberg, D.; Roth, J.; Schoenau, E.; Verschueren, S.; Rittweger, J.; et al. Reporting whole-body vibration intervention studies: Recommendations of the International Society of Musculoskeletal and Neuronal Interactions. J. Musculoskelet. Neuronal Interact. 2010, 10, 193–198. [Google Scholar] [PubMed]
- Wuestefeld, A.; Fuermaier, A.B.M.; Bernardo-Filho, M.; da Cunha de Sá-Caputo, D.; Rittweger, J.; Schoenau, E.; Stark, C.; Marin, P.J.; Seixas, A.; Judex, S.; et al. Towards reporting guidelines of research using whole-body vibration as training or treatment regimen in human subjects-A Delphi consensus study. PLoS ONE 2020, 15, e0235905. [Google Scholar] [CrossRef]
- van Heuvelen, M.J.G.; Rittweger, J.; Judex, S.; Sañudo, B.; Seixas, A.; Fuermaier, A.B.M.; Tucha, O.; Nyakas, C.; Marín, P.J.; Taiar, R.; et al. Reporting guidelines for whole-body vibration studies in humans, animals and cell cultures: A consensus statement from an international group of experts. Biology 2021, 10, 965. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Masedu, F.; Padulo, J.; Tihanyi, J.; Valenti, M. The EMG activity-acceleration relationship to quantify the optimal vibration load when applying synchronous whole-body vibration. J. Electromyogr. Kinesiol. 2015, 25, 853–859. [Google Scholar] [CrossRef]
- Karatrantou, K.; Gerodimos, V.; Dipla, K.; Zafeiridis, A. Whole body vibration training improves flexibility, strength profile of knee flexors, and hamstrings-to-quadriceps strength ratio in females. J. Sci. Med. Sport 2013, 16, 477–481. [Google Scholar] [CrossRef]
- Tankisheva, E.; Jonkers, I.; Boonen, S.; Delecluse, C.; van Lenthe, G.H.; Druyts, H.L.J.; Spaepen, P.; Verschueren, S.M.P. Transmission of whole-body vibration and its effect on muscle activation. J. Strength Cond. Res. 2013, 27, 2533–2541. [Google Scholar] [CrossRef]
- Abercromby, A.F.J.; Amonette, W.E.; Layne, C.S.; McFarlin, B.K.; Hinman, M.R.; Paloski, W.H. Variation in neuromuscular responses during acute whole-body vibration exercise. Med. Sci. Sports Exerc. 2007, 39, 1642–1650. [Google Scholar] [CrossRef]
- Lienhard, K.; Vienneau, J.; Friesenbichler, B.; Nigg, S.; Meste, O.; Nigg, B.M.; Colson, S.S. The effect of whole-body vibration on muscle activity in active and inactive subjects. Int. J. Sports Med. 2015, 36, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.E.; Fernandez, J.M.; Castillo, E.; Nuñez, V.M.; Vaamonde, D.M.; Poblador, M.S.; Lancho, J.L. Influence of vibration training on energy expenditure in active men. J. Strength Cond. Res. 2007, 21, 470–475. [Google Scholar] [PubMed]
- Milleliri, E.; Colson, S.; Brisswlater, J. Comparing energy expenditure during dynamic training with or without whole-body vibration in regularly trained women. Sci. Sports 2012, 27, 184–187. [Google Scholar] [CrossRef]
- Lohman, E.B., 3rd; Petrofsky, J.S.; Maloney-Hinds, C.; Betts-Schwab, H.; Thorpe, D. The effect of whole body vibration on lower extremity skin blood flow in normal subjects. Med. Sci. Monit. 2007, 13, CR71–CR76. [Google Scholar] [PubMed]
- Robbins, D.; Yoganathan, P.; Goss-Sampson, M. The influence of whole body vibration on the central and peripheral cardiovascular system. Clin. Physiol. Funct. Imaging 2014, 34, 364–369. [Google Scholar] [CrossRef]
- Otsuki, T.; Takanami, Y.; Aoi, W.; Kawai, Y.; Ichikawa, H.; Yoshikawa, T. Arterial stiffness acutely decreases after whole-body vibration in humans. Acta Physiol. 2008, 194, 189–194. [Google Scholar] [CrossRef]
- Weber, T.; Beijer, Å.; Rosenberger, A.; Mulder, E.; Yang, P.; Schönau, E.; Bloch, W.; Rittweger, J. Vascular adaptations induced by 6 weeks WBV resistance exercise training. Clin. Physiol. Funct. Imaging 2013, 33, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Colli, R.; Bonomi, R.; Von Duvillard, S.P.; Viru, A. Monitoring strength training: Neuromuscular and hormonal profile. Med. Sci. Sports Exerc. 2000, 32, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Dent, J.; Fletcher, D.; McGuigan, M. Evidence for a non-genomic action of testosterone in skeletal muscle which may improve athletic performance: Implications for the female athlete. J. Sports Sci. Med. 2012, 11, 363–370. [Google Scholar] [PubMed]
- Jones, D. Changes in the force-velocity relationship of fatigued muscle: Implications for power production and possible causes. J. Physiol. 2010, 588, 2977–2986. [Google Scholar] [CrossRef] [PubMed]
- Di Giminiani, R.; Fabiani, L.; Baldini, G.; Cardelli, G.; Giovannelli, A.; Tihanyi, J. Hormonal and neuromuscular responses to mechanical vibration applied to upper extremity muscles. PLoS ONE 2014, 9, e111521. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Rucci, N.; Capuano, L.; Ponzetti, M.; Aielli, F.; Tihanyi, J. Individualized whole-body vibration: Neuromuscular, biochemical, muscle damage and inflammatory acute responses. Dose Response 2020, 18, 1559325820931262. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, H.L.; Bowman, B.F.; Stull, J.T. Myosin light chain phosphorylation in vertebrate striated muscle: Regulation and function. Am. J. Physiol. 1993, 264, C1085–C1095. [Google Scholar] [CrossRef] [PubMed]
- Place, N.; Matkowski, B.; Martin, A.; Lepers, R. Synergists activation pattern of the quadriceps muscle differs when performing sustained isometric contractions with different EMG biofeedback. Exp. Brain Res. 2006, 174, 595–603. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Padilla, J.; Moras, G.; Haro, C.L.; Fernández-Solà, J. Six weeks of whole-body vibration exercise improves pain and fatigue in women with fibromyalgia. J. Altern. Complement. Med. 2008, 14, 975–981. [Google Scholar] [CrossRef]
- Escudero-Uribe, S.; Hochsprung, A.; Heredia-Camacho, B.; Izquierdo-Ayuso, G. Effect of training exercises incorporating mechanical devices on fatigue and gait pattern in persons with relapsing-remitting multiple sclerosis. Physiother. Can. 2017, 69, 292–302. [Google Scholar] [CrossRef]
- Pahl, A.; Wehrle, A.; Kneis, S.; Gollhofer, A.; Bertz, H. Whole body vibration training during allogeneic hematopoietic cell transplantation—The effects on patients’ physical capacity. Ann. Hematol. 2020, 99, 635–648. [Google Scholar] [CrossRef]
Before the Fatiguing Exercise | After the Fatiguing Exercise | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
KE MVIC | VA | RMS/Mmax | KF MVIC | KE MVIC | VA | RMS/Mmax | KF MVIC | |||
N.m | % | a.u. | N.m | N.m | % | a.u. | N.m | |||
WBV | PRE | mean | 222.89 | 90.62 | 0.26 | 106.94 | 189.55 | 86.70 | 0.21 | 110.47 |
SD | 30.58 | 8.81 | 0.10 | 25.55 | 33.88 | 10.41 | 0.12 | 24.74 | ||
POST | mean | 235.17 | 95.17 | 0.25 | 130.05 | 222.45 | 91.89 | 0.21 | 130.54 | |
SD | 36.62 | 3.84 | 0.08 | 24.14 | 51.07 | 9.27 | 0.06 | 27.78 | ||
SHAM | PRE | mean | 208.35 | 89.63 | 0.22 | 90.42 | 192.23 | 89.51 | 0.24 | 89.29 |
SD | 32.09 | 8.50 | 0.04 | 17.01 | 39.85 | 11.46 | 0.04 | 18.98 | ||
POST | mean | 213.56 | 85.37 | 0.25 | 100.00 | 195.56 | 87.07 | 0.27 | 92.15 | |
SD | 37.16 | 9.77 | 0.07 | 18.19 | 36.33 | 10.09 | 0.08 | 13.46 |
Before the Fatiguing Exercise | After the Fatiguing Exercise | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PtS | PtD | PtDPot | PCP | PtS | PtD | PtDPot | PCP | |||
N.m | N.m | N.m | a.u. | N.m | N.m | N.m | a.u. | |||
WBV | PRE | mean | 31.39 | 72.10 | 99.32 | 1.32 | 45.52 | 89.48 | 96.68 | 1.12 |
SD | 8.99 | 6.80 | 9.56 | 0.13 | 15.65 | 8.93 | 13.84 | 0.13 | ||
POST | mean | 38.52 | 81.01 | 98.12 | 1.26 | 38.68 | 82.99 | 93.91 | 1.13 | |
SD | 10.94 | 11.63 | 20.26 | 0.09 | 14.39 | 19.09 | 22.07 | 0.12 | ||
SHAM | PRE | mean | 35.90 | 80.18 | 94.38 | 1.18 | 37.33 | 81.20 | 87.73 | 1.09 |
SD | 17.90 | 20.85 | 25.01 | 0.12 | 11.77 | 15.42 | 14.13 | 0.09 | ||
POST | mean | 46.05 | 88.66 | 99.35 | 1.13 | 42.53 | 88.84 | 97.68 | 1.11 | |
SD | 15.64 | 21.10 | 20.41 | 0.11 | 15.49 | 17.56 | 14.69 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colson, S.S.; Gioda, J.; Da Silva, F. Whole Body Vibration Training Improves Maximal Strength of the Knee Extensors, Time-to-Exhaustion and Attenuates Neuromuscular Fatigue. Sports 2023, 11, 94. https://doi.org/10.3390/sports11050094
Colson SS, Gioda J, Da Silva F. Whole Body Vibration Training Improves Maximal Strength of the Knee Extensors, Time-to-Exhaustion and Attenuates Neuromuscular Fatigue. Sports. 2023; 11(5):94. https://doi.org/10.3390/sports11050094
Chicago/Turabian StyleColson, Serge S., Jennifer Gioda, and Flavio Da Silva. 2023. "Whole Body Vibration Training Improves Maximal Strength of the Knee Extensors, Time-to-Exhaustion and Attenuates Neuromuscular Fatigue" Sports 11, no. 5: 94. https://doi.org/10.3390/sports11050094
APA StyleColson, S. S., Gioda, J., & Da Silva, F. (2023). Whole Body Vibration Training Improves Maximal Strength of the Knee Extensors, Time-to-Exhaustion and Attenuates Neuromuscular Fatigue. Sports, 11(5), 94. https://doi.org/10.3390/sports11050094