Intra- and Inter-Day Reliability of Inertial Loads with Cluster Sets When Performed during a Quarter Squat on a Flywheel Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Famialirisation Protocol
2.4. Mechanical Range of Motion
2.5. kMeter Application
2.6. Coaching Instructions
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berg, H.E.; Tesch, P.A. Force and power characteristics of a resistive exercise device for use in space. Acta Astronaut. 1998, 42, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Norrbrand, L.; Pozzo, M.; Tesch, P.A. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur. J. Appl. Phys. 2010, 110, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Wonders, J. Flywheel training in musculoskeletal rehabilitation: A clinical commentary. Int. J. Sport. Phys. Ther. 2019, 14, 994. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing eccentric resistance training—Part 1: A brief review of existing methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Raya-González, J.; Prat-Luri, A.; López-Valenciano, A.; Sabido, R.; Hernández-Davó, J.L. Effects of flywheel resistance training on sport actions. A systematic review and meta-analysis. J. Hum. Kinet. 2021, 77, 191–204. [Google Scholar] [CrossRef]
- De Hoyo, M.; Sañudo, B.; Carrasco, L.; Mateo-Cortes, J.; Domínguez-Cobo, S.; Fernandes, O.; Del Ojo, J.J.; Gonzalo-Skok, O. Effects of 10-week eccentric overload training on kinetic parameters during change of direction in football players. J. Sport. Sci. 2016, 34, 1380–1387. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of Different Inertial Loads on Basic Training Variables during the Flywheel Squat Exercise. Int. J. Sport. Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical applications of iso- inertial, eccentric-overload (YoYo™) resistance exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Tous-Fajardo, J.; Gonzalo-Skok, O.; Arjol-Serrano, J.L.; Test, P. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int. J. Sport. Physiol. Perform. 2016, 11, 66–73. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Devo, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of adding a weekly eccentric-overload training session on strength and athletic performance in team-handball players. Eur. J. Sport Sci. 2017, 17, 530–538. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Valero-Campo, C.; Berzosa, C.; Bataller, A.V.; Arjol-Serrano, J.L.; Moras, G.; Mendez-Villanueva, A. Eccentric-Overload Training in Team-Sport Functional Performance: Constant Bilateral Vertical Versus Variable Unilateral Multidirectional Movements. J. Sport. Physiol. Perform. 2017, 12, 951–958. [Google Scholar] [CrossRef]
- Sanchez, F.J.N.; de Villarreal, E.S. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J. Strength Cond. Res. 2017, 31, 3177–3186. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Browne, D.; Earls, D. The effects of different types of eccentric overload training on strength, speed, power and change of direction in female basketball players. J. Funct. Morphol. Kinesiol. 2020, 5, 50. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; McBride, J.M.; Gonzalez-Diez, N.; García-López, D.; González-Gallego, J.; de Paz, J.A. Comparison of Flywheel and Pneumatic Training on Hypertrophy, Strength, and Power in Professional Handball Players. Res. Quart. Exerc. Sport 2020, 93, 1–15. [Google Scholar] [CrossRef]
- Beato, M.; Fleming, A.; Coates, A.; Dello Iacono, A. Validity and reliability of a flywheel squat test in sport. J. Sport. Sci. 2021, 39, 482–488. [Google Scholar] [CrossRef]
- De Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int. J. Sport. Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beato, M.; Dello Iacono, A. Implementing Flywheel (Isoinertial) Exercise in Strength Training: Current Evidence, Practical Recommendations, and Future Directions. Front. Physiol. 2020, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Whitley, A.; McCoy, L.B.; O’Bryant, H.S.; Kilgore, J.L.; Haff, E.E.; Pierce, K.; Stone, M.H. Effects of different set configurations on barbell velocity and displacement during a clean pull. J. Strength Cond. Res. 2003, 17, 95–103. [Google Scholar]
- Fry, A.C.; Kraemer, W.J. Resistance exercise overtraining and overreaching: Neuroendocrine responses. J. Sport. Med. 1997, 23, 106–129. [Google Scholar] [CrossRef]
- Davies, T.B.; Tran, D.L.; Hogan, C.M.; Haff, G.G.; Latella, C. Chronic effects of altering resistance training set configurations using cluster sets: A systematic review and meta-analysis. J. Sport. Med. 2021, 51, 707–736. [Google Scholar] [CrossRef] [PubMed]
- Roll, F.; Omer, J. Football: Tulane football winter program. Strength Cond. J. 1987, 9, 34–38. [Google Scholar] [CrossRef]
- Siff, M.; Verkhoshansky, Y. Supertraining, 4th ed.; Supertraining International: Denver, CO, USA, 1999. [Google Scholar]
- Haff, G.G.; Hobbs, R.T.; Haff, E.E.; Sands, W.A.; Pierce, K.C.; Stone, M.H. Cluster training: A novel method for introducing training program variation. J. Strength Cond. Res. 2008, 30, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Hardee, J.P.; Lawrence, M.M.; Zwetsloot, K.A.; Triplett, N.T.; Utter, A.C.; McBride, J.M. Effect of cluster set configurations on power clean technique. J. Sport. Sci. 2013, 31, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Aburto, J.; Jukic, I.; González-Hernández, J.M.; Janicijevic, D.; Barboza-González, P.; Chirosa-Ríos, L.J.; García-Ramos, A. Effect of resistance-training programs differing in set configuration on maximal strength and explosive-action performance. Int. J. Sport. Physiol. Perform. 2020, 16, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Sabido, R.; Piqueras-Sanchiz, F.; Raya-González, J.; Madruga-Parera, M.; Romero-Rodríguez, D.; Beato, M.; de Hoyo, M.; Nakamura, F.Y.; Hernández-Davó, J.L. Effects of different inertial load settings on power output using a flywheel leg curl exercise and its inter-session reliability. J. Hum. Kinet. 2020, 74, 215–226. [Google Scholar]
- Spudić, D.; Smajla, D.; Šarabon, N. Validity and reliability of force–velocity outcome parameters in flywheel squats. J. Biom. 2020, 107, 109824. [Google Scholar] [CrossRef] [PubMed]
- Branscheidt, M.; Kassavetis, P.; Anaya, M.; Rogers, D.; Huang, H.D.; Lindquist, M.A.; Celnik, P. Fatigue induces long-lasting detrimental changes in motor-skill learning. J. eLife 2019, 8, e40578. [Google Scholar] [CrossRef]
- Russell, R.; McCabe, P.; Heard, R.; Hodges, N.J.; Nguyen, D.D.; Madill, C. Identifying Clinical Behaviours Using the Motor Learning Classification Framework: A Pilot Study. J. Voice 2023, 37, 270. [Google Scholar] [CrossRef]
- Ellis, M.V. Repeated measures designs. Couns. Psychol. 1999, 27, 552–578. [Google Scholar] [CrossRef]
- Turki, O.; Chaouachi, A.; Behm, D.G.; Chtara, H.; Chtara, M.; Bishop, D.; Chamari, K.; Amri, M. The effect of warm-ups incorporating different volumes of dynamic stretching on 10- and 20-m sprint performance in highly trained male athletes. J. Strength Cond. Res. 2012, 26, 63–72. [Google Scholar] [CrossRef]
- Weakley, J.; Fernández-Valdés, B.; Thomas, L.; Ramirez-Lopez, C.; Jones, B. Criterion validity of force and power outputs for a commonly used flywheel resistance training device and bluetooth app. J. Strength Cond. Res. 2019, 33, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Measures of reliability in sports medicine and science. J. Sport. Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, T.A.; Jackson, A.S.; Mahar, M.T.; Rowe, D.A. Measurement for Evaluation in Physical Education and Exercise Science, 8th ed.; McGraw-Hill: Boston, MA, USA, 2007. [Google Scholar]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing error (reliability) in variables relevant to sports medicine. Sport. Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Cohen, J. The Concepts of Power Analysis: The Effect Size. In Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum Associates: Hillside, NJ, USA, 1988; pp. 8–14. [Google Scholar]
- Comyns, T.M.; Flanagan, E.P.; Fleming, S.; Fitzgerald, E.; Harper, D.J. Interday reliability and usefulness of a reactive strength index derived from 2 maximal rebound jump tests. Int. J. Sport. Physiol. Perform. 2019, 14, 1200–1204. [Google Scholar] [CrossRef]
- Beato, M.; De Keijzer, K.L.; Gonzalez, J.R. The effect of flywheel training on strength and physical capacities in sporting and healthy populations: An umbrella review. PLoS ONE 2022, 17, e0264375. [Google Scholar]
- Petré, H.; Wernstål, F.; Mattsson, C.M. Effects of flywheel training on strength-related variables: A meta-analysis. J. Sport. Med. 2018, 4, 55. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power. J. Sport. Med. 2011, 41, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Tufano, J.J.; Rial-Vázquez, J.; Mayo, X.; Fariñas, J.; Rúa-Alonso, M.; Iglesias-Soler, E. Cluster vs. traditional training programmes: Changes in the force–velocity relationship. J. Sport. Bio. 2022, 21, 85–103. [Google Scholar]
- Tufano, J.J.; Conlon, J.A.; Nimphius, S.; Brown, L.E.; Seitz, L.B.; Williamson, B.D.; Haff, G.G. Maintenance of velocity and power with cluster sets during high-volume back squats. Int. J. Sport. Physiol. Perform. 2016, 11, 885–892. [Google Scholar] [CrossRef]
- Ritti-Dias, R.M.; Avelar, A.; Salvador, E.P.; Cyrino, E.S. Influence of previous experience on resistance training on reliability of one-repetition maximum test. J. Strength Cond. Res. 2011, 25, 1418–1422. [Google Scholar] [CrossRef]
- Lakens, D. Sample size justification. Collabra Psychol. 2022, 8, 33267. [Google Scholar] [CrossRef]
Internal Group | ||||
---|---|---|---|---|
Inertial Load | Day 1 | Day 2 | Day 3 | Day 4 |
0.025 kg·m2 | 533 ± 209 | 673 ± 135 | 762 ± 164 | 797 ± 165 |
0.050 kg·m2 | 536 ± 107 | 622 ± 83 | 780 ± 164 | 762 ± 193 |
0.075 kg·m2 | 486 ± 100 | 565 ± 87 | 707 ± 135 | 685 ± 159 |
0.10 kg·m2 | 443 ± 90 | 527 ± 110 | 610 ± 139 | 610 ± 133 |
External Group | ||||
Inertial Load | Day 1 | Day 2 | Day 3 | Day 4 |
0.025 kg·m2 | 524 ± 139 | 746 ± 211 | 728 ± 133 | 801 ± 154 |
0.050 kg·m2 | 533 ± 107 | 710 ± 176 | 734 ± 147 | 731 ± 161 |
0.075 kg·m2 | 495 ± 145 | 667 ± 149 | 672 ± 135 | 659 ± 167 |
0.10 kg·m2 | 469 ± 141 | 598 ± 128 | 613 ± 142 | 620 ± 129 |
Internal Group | |||||
---|---|---|---|---|---|
Inertial Load | Cronbach’s α | Single Measure | 95% CI | Average Measure | 95% CI |
0.025 kg·m2 (Day 1) | 0.93 | 0.81 | 0.42–0.97 | 0.93 | 0.68–0.99 |
0.025 kg·m2 (Day 2) | 0.93 | 0.81 | 0.42–0.97 | 0.93 | 0.69–0.99 |
0.025 kg·m2 (Day 3) | 0.88 | 0.70 | 0.24–0.95 | 0.88 | 0.48–0.98 |
0.025 kg·m2 (Day 4) | 0.95 | 0.86 | 0.55–0.98 | 0.95 | 0.79–0.99 |
0.050 kg·m2 (Day 1) | 0.91 | 0.77 | 0.36–0.96 | 0.91 | 0.62–0.99 |
0.050 kg·m2 (Day 2) | 0.91 | 0.77 | 0.35–0.96 | 0.91 | 0.62–0.99 |
0.050 kg·m2 (Day 3) | 0.98 | 0.95 | 0.80–0.99 | 0.98 | 0.92–1.00 |
0.050 kg·m2 (Day 4) | 0.99 | 0.97 | 0.87–1.00 | 0.99 | 0.95–1.00 |
0.075 kg·m2 (Day 1) | 0.97 | 0.92 | 0.72–0.99 | 0.97 | 0.88–1.00 |
0.075 kg·m2 (Day 2) | 0.94 | 0.84 | 0.49–0.97 | 0.94 | 0.74–0.99 |
0.075 kg·m2 (Day 3) | 0.96 | 0.90 | 0.65–0.98 | 0.96 | 0.85–1.00 |
0.075 kg·m2 (Day 4) | 0.98 | 0.93 | 0.74–0.99 | 0.98 | 0.90–0.99 |
0.100 kg·m2 (Day 1) | 0.88 | 0.72 | 0.26–0.95 | 0.88 | 0.51–0.98 |
0.100 kg·m2 (Day 2) | 0.98 | 0.95 | 0.82–0.99 | 0.98 | 0.93–1.00 |
0.100 kg·m2 (Day 3) | 0.92 | 0.80 | 0.40–0.97 | 0.92 | 0.67–0.99 |
0.100 kg·m2 (Day 4) | 0.96 | 0.89 | 0.61–0.98 | 0.96 | 0.83–0.99 |
External Group | |||||
Measures | Cronbach’s α | Single Measure | 95% CI | Average Measure | 95% CI |
0.025 kg·m2 (Day 1) | 0.93 | 0.82 | 0.48–0.97 | 0.93 | 0.71–0.99 |
0.025 kg·m2 (Day 2) | 0.96 | 0.90 | 0.65–0.98 | 0.96 | 0.85–1.00 |
0.025 kg·m2 (Day 3) | 0.96 | 0.89 | 0.61–0.98 | 0.96 | 0.82–0.99 |
0.025 kg·m2 (Day 4) | 0.88 | 0.70 | 0.23–0.95 | 0.88 | 0.47–0.98 |
0.050 kg·m2 (Day 1) | 0.94 | 0.84 | 0.49–0.97 | 0.94 | 0.74–0.99 |
0.050 kg·m2 (Day 2) | 0.99 | 0.97 | 0.88–1.00 | 0.99 | 0.96–1.00 |
0.050 kg·m2 (Day 3) | 0.97 | 0.92 | 0.72–0.99 | 0.97 | 0.89–1.00 |
0.050 kg·m2 (Day 4) | 0.99 | 0.98 | 0.93–1.00 | 0.99 | 0.98–1.00 |
0.075 kg·m2 (Day 1) | 0.87 | 0.70 | 0.22–0.94 | 0.87 | 0.46–0.98 |
0.075 kg·m2 (Day 2) | 0.97 | 0.92 | 0.71–0.99 | 0.97 | 0.88–1.00 |
0.075 kg·m2 (Day 3) | 0.98 | 0.96 | 0.83–0.99 | 0.98 | 0.93–1.00 |
0.075 kg·m2 (Day 4) | 0.98 | 0.94 | 0.78–0.99 | 0.98 | 0.91–1.00 |
0.100 kg·m2 (Day 1) | 0.98 | 0.95 | 0.82–0.99 | 0.98 | 0.93–1.00 |
0.100 kg·m2 (Day 2) | 0.94 | 0.85 | 0.51–0.98 | 0.94 | 0.76–0.99 |
0.100 kg·m2 (Day 3) | 0.99 | 0.97 | 0.88–100 | 0.99 | 0.96–1.00 |
0.100 kg·m2 (Day 4) | 0.98 | 0.95 | 0.82–0.99 | 0.98 | 0.93–1.00 |
Intraclass Correlation Coefficient (ICC) Internal Group | |||||
---|---|---|---|---|---|
Measures | Cronbach’s α | Single Measure | 95% CI | Average Measure | 95% CI |
0.025 kg·m2 (Day 1–2) | 0.30 | 0.18 | −0.30–0.59 | 0.30 | −0.86–0.74 |
0.025 kg·m2 (Day 2–3) | 0.85 | 0.73 | 0.42–0.89 | 0.85 | 0.59–0.94 |
0.025 kg·m2 (Day 3–4) | 0.79 | 0.65 | 0.28–0.85 | 0.79 | 0.43–0.92 |
0.050 kg·m2 (Day 1–2) | 0.32 | 0.19 | −0.29–0.59 | 0.32 | −0.83–0.74 |
0.050 kg·m2 (Day 2–3) | 0.95 | 0.91 | 0.78–0.97 | 0.95 | 0.88–0.98 |
0.050 kg·m2 (Day 3–4) | 0.95 | 0.91 | 0.77–0.96 | 0.95 | 0.87–0.96 |
0.075 kg·m2 (Day 1–2) | 0.61 | 0.44 | −0.03–0.74 | 0.61 | −0.53–0.85 |
0.075 kg·m2 (Day 2–3) | 0.93 | 0.87 | 0.69–0.95 | 0.93 | 0.82–0.98 |
0.075 kg·m2 (Day 3–4) | 0.97 | 0.95 | 0.87–0.98 | 0.97 | 0.93–0.99 |
0.100 kg·m2 (Day 1–2) | 0.78 | 0.64 | 0.25–0.85 | 0.78 | 0.40–0.92 |
0.100 kg·m2 (Day 2–3) | 0.89 | 0.80 | 0.53–0.92 | 0.89 | 0.70–0.96 |
0.100 kg·m2 (Day 3–4) | 0.95 | 0.91 | 0.77–0.96 | 0.95 | 0.87–0.98 |
External Group | |||||
Measures | Cronbach’s α | Single Measure | 95% CI | Average Measure | 95% CI |
0.025 kg·m2 (Day 1–2) | 0.79 | 0.66 | 0.28–0.86 | 0.79 | 0.44–0.92 |
0.025 kg·m2 (Day 2–3) | 0.80 | 0.67 | 0.30–0.86 | 0.80 | 0.46–0.93 |
0.025 kg·m2 (Day 3–4) | 0.83 | 0.70 | 0.36–0.88 | 0.83 | 0.53–0.94 |
0.050 kg·m2 (Day 1–2) | 0.59 | 0.42 | −0.05–0.73 | 0.59 | −0.10–0.85 |
0.050 kg·m2 (Day 2–3) | 0.78 | 0.64 | 0.25–0.85 | 0.78 | 0.40–0.92 |
0.050 kg·m2 (Day 3–4) | 0.95 | 0.90 | 0.75–0.96 | 0.95 | 0.86–0.98 |
0.075 kg·m2 (Day 1–2) | 0.87 | 0.77 | 0.48–0.91 | 0.87 | 0.65–0.95 |
0.075 kg·m2 (Day 2–3) | 0.70 | 0.54 | 0.11–0.80 | 0.70 | 0.20–0.89 |
0.075 kg·m2 (Day 3–4) | 0.94 | 0.88 | 0.72–0.96 | 0.94 | 0.83–0.98 |
0.100 kg·m2 (Day 1–2) | 0.68 | 0.51 | 0.08–0.79 | 0.68 | 0.14–0.88 |
0.100 kg·m2 (Day 2–3) | 0.59 | 0.42 | −0.05–0.73 | 0.59 | −0.11–0.85 |
0.100 kg·m2 (Day 3–4) | 0.95 | 0.91 | 0.78–0.97 | 0.95 | 0.87–0.98 |
Internal Group | ||||||
---|---|---|---|---|---|---|
Measures | (ES) | CV (%) | TE | SWC0.5 (Watts) | SEM | Interpretation |
0.025 kg·m2 (Day 1) | (D1–D2)–0.68 | 15.51 | 43.71 | 52.72 | 49.42 | Good |
0.025 kg·m2 (Day 2) | (D2–D3)–0.59 | 10.10 | 26.63 | 32.11 | 31.88 | Good |
0.025 kg·m2 (Day 3) | (D3–D4)–0.21 | 8.99 | 37.50 | 45.23 | 38.86 | Good |
0.025 kg·m2 (Day 4) | 7.81 | 23.22 | 28.00 | 39.03 | Good | |
0.050 kg·m2 (Day 1) | (D1–D2)–0.90 | 9.44 | 20.12 | 24.27 | 25.30 | Good |
0.050 kg·m2 (Day 2) | (D2–D3)–1.21 | 5.43 | 16.42 | 19.80 | 19.71 | Good |
0.050 kg·m2 (Day 3) | (D3–D4)–0.10 | 4.69 | 16.18 | 19.51 | 38.84 | Good |
0.050 kg·m2 (Day 4) | 3.56 | 11.20 | 13.50 | 45.70 | Good | |
0.075 kg·m2 (Day 1) | (D1–D2)–0.84 | 10.56 | 10.32 | 12.44 | 23.62 | Good |
0.075 kg·m2 (Day 2) | (D2–D3)–1.25 | 5.97 | 13.45 | 16.22 | 20.66 | Good |
0.075 kg·m2 (Day 3) | (D3–D4)–0.15 | 4.91 | 18.57 | 22.39 | 31.83 | Good |
0.075 kg·m2 (Day 4) | 5.49 | 14.11 | 17.02 | 37.67 | Good | |
0.100 kg·m2 (Day 1) | (D1–D2)–0.83 | 8.44 | 18.58 | 22.41 | 21.34 | Good |
0.100 kg·m2 (Day 2) | (D2–D3)–0.66 | 6.93 | 11.15 | 13.44 | 26.00 | Good |
0.100 kg·m2 (Day 3) | (D3–D4)–0.00 | 5.55 | 20.40 | 24.60 | 32.78 | Good |
0.100 kg·m2 (Day 4) | 5.47 | 15.09 | 18.20 | 31.43 | Good | |
External Group | ||||||
Measures | (ES) | CV (%) | TE | SWC0.5 (Watts) | SEM | Interpretation |
0.025 kg·m2 (Day 1) | (D1–D2)–1.24 | 12.65 | 26.00 | 31.36 | 32.86 | Good |
0.025 kg·m2 (Day 2) | (D2–D3)–0.14 | 11.26 | 36.72 | 44.28 | 49.91 | Good |
0.025 kg·m2 (Day 3) | (D3–D4)–0.51 | 6.60 | 20.17 | 24.32 | 31.49 | Good |
0.025 kg·m2 (Day 4) | 9.22 | 30.59 | 36.90 | 36.30 | Good | |
0.050 kg·m2 (Day 1) | (D1–D2)–1.21 | 9.63 | 20.06 | 24.20 | 25.42 | Good |
0.050 kg·m2 (Day 2) | (D2–D3)–0.15 | 4.61 | 12.46 | 15.03 | 41.57 | Good |
0.050 kg·m2 (Day 3) | (D3–D4)–0.02 | 4.49 | 14.45 | 17.42 | 34.71 | Good |
0.050 kg·m2 (Day 4) | 3.39 | 8.86 | 10.68 | 37.96 | Good | |
0.075 kg·m2 (Day 1) | (D1–D2)–1.17 | 16.14 | 29.58 | 35.67 | 34.21 | Good |
0.075 kg·m2 (Day 2) | (D2–D3)–0.03 | 6.25 | 15.97 | 19.26 | 35.21 | Good |
0.075 kg·m2 (Day 3) | (D3–D4)–0.08 | 3.71 | 10.48 | 12.63 | 31.83 | Good |
0.075 kg·m2 (Day 4) | 5.67 | 14.60 | 17.61 | 39.43 | Good | |
0.100 kg·m2 (Day 1) | (D1–D2)–0.96 | 7.37 | 13.61 | 16.42 | 33.25 | Good |
0.100 kg·m2 (Day 2) | (D2–D3)–0.12 | 8.87 | 21.15 | 25.51 | 30.18 | Good |
0.100 kg·m2 (Day 3) | (D3–D4)–0.05 | 3.51 | 9.07 | 10.94 | 33.55 | Good |
0.100 kg·m2 (Day 4) | 5.12 | 12.92 | 15.59 | 30.48 | Good |
Variable | Day 1 | Day 2 | Day 3 | Day 4 |
---|---|---|---|---|
Pcon 0.025 kg·m2 | 961.67 ± 227.76 | 1312.72 ± 299.86 * | 1313.71 ± 225.41 * | 1375.39 ± 217.51 * |
Pecc 0.025 kg·m2 | 942.28 ± 214.14 | 1224 ± 403.05 * | 1258.39 ± 296.34 * | 1377.17 ± 218.65 * |
Ratio 0.025 kg·m2 | 0.99 ± 0.11 | 0.92 ± 0.13 | 0.96 ± 0.14 | 1.01 ± 0.12 |
Pcon 0.050 kg·m2 | 942.50 ± 160.26 | 1256.61 ± 268.72 * | 1332.89 ± 270.81 * | 1282.67 ± 270.95 * |
Pecc 0.050 kg·m2 | 934.83 ± 182.25 | 1315.17 ± 401.52 * | 1468.11 ± 383.32 * | 1474.06 ± 390.82 * |
Ratio 0.050 kg·m2 | 1.00 ± 0.11 | 1.04 ± 0.16 | 1.11 ± 0.20 | 1.16 ± 0.23 |
Pcon 0.075 kg·m2 | 894.83 ± 256.21 | 1194.94 ± 256.40 * | 1224.28 ± 251.58 * | 1159 ± 284.20 * |
Pecc 0.075 kg·m2 | 938.94 ± 308.49 | 1316.39 ± 351.16 * | 1399.06 ± 356.28 * | 1395.50 ± 465.56 * |
Ratio 0.075 kg·m2 | 1.05 ± 0.10 | 1.10 ± 0.16 | 1.15 ± 0.20 | 1.21 ± 0.28 |
Pcon 0.100 kg·m2 | 819.11 ± 223.28 | 1094.89 ± 226.84 * | 1106.33 ± 296.34 * | 1085.61 ± 217.42 * |
Pecc 0.100 kg·m2 | 886.17 ± 268.01 | 1248.94 ± 293.82 * | 1263.50 ± 343.13 * | 1335.94 ± 385.72 * |
Ratio 0.100 kg·m2 | 1.08 ± 0.12 | 1.15 ± 0.16 | 1.15 ± 0.23 | 1.24 ± 0.32 |
Variable | Day 1 | Day 2 | Day 3 | Day 4 |
---|---|---|---|---|
Pcon 0.025 kg·m2 | 986.06 ± 364.41 | 1196 ± 210.55 * | 1324.11 ± 287.02 * | 1392.67 ± 311.23 *# |
Pecc 0.025 kg·m2 | 1016.22 ± 334.95 | 1157.83 ± 233.66 | 1225.39 ± 250.41 * | 1287.33 ± 243.01 * |
Ratio 0.025 kg·m2 | 1.07 ± 0.15 | 0.97 ± 0.10 | 0.93 ± 0.10 | 0.94 ± 0.11 |
Pcon 0.050 kg·m2 | 945 ± 195.81 | 1109.83 ± 205.12 * | 1363.17 ± 320.75 *# | 1345.78 ± 372.30 *# |
Pecc 0.050 kg·m2 | 976.50 ± 251.64 | 1184.06 ± 246.66 * | 1372.11 ± 287.06 *# | 1338.22 ± 342.30 * |
Ratio 0.050 kg·m2 | 1.03 ± 0.12 | 1.07 ± 0.08 | 1.02 ± 0.10 | 1.00 ± 0.09 |
Pcon 0.075 kg·m2 | 870.28 ± 181.11 | 1021.83 ± 218.18 * | 1248.67 ± 257.66 *# | 1241.78 ± 331.41 *# |
Pecc 0.075 kg·m2 | 940.83 ± 198.55 | 1133.56 ± 329.41 * | 1318.28 ± 268.27 * | 1306.72 ± 4393.68 * |
Ratio 0.075 kg·m2 | 1.08 ± 0.10 | 1.10 ± 0.13 | 1.06 ± 0.08 | 1.05 ± 0.17 |
Pcon 0.100 kg·m2 | 824.17 ± 178.72 | 947.61 ± 245.07 | 1117.28 ± 302.25 * | 1107.94 ± 286.99 * |
Pecc 0.100 kg·m2 | 865.67 ± 205.75 | 1075.56 ± 294.79 * | 1194.89 ± 332.85 * | 1208.67 ± 352.85 * |
Ratio 0.100 kg·m2 | 1.05 ± 0.05 | 1.14 ± 0.11 | 1.07 ± 0.09 | 1.09 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, S.; Ramirez-Campillo, R.; Browne, D.; Moody, J.A.; Byrne, P.J. Intra- and Inter-Day Reliability of Inertial Loads with Cluster Sets When Performed during a Quarter Squat on a Flywheel Device. Sports 2023, 11, 121. https://doi.org/10.3390/sports11060121
Ryan S, Ramirez-Campillo R, Browne D, Moody JA, Byrne PJ. Intra- and Inter-Day Reliability of Inertial Loads with Cluster Sets When Performed during a Quarter Squat on a Flywheel Device. Sports. 2023; 11(6):121. https://doi.org/10.3390/sports11060121
Chicago/Turabian StyleRyan, Shane, Rodrigo Ramirez-Campillo, Declan Browne, Jeremy A. Moody, and Paul J. Byrne. 2023. "Intra- and Inter-Day Reliability of Inertial Loads with Cluster Sets When Performed during a Quarter Squat on a Flywheel Device" Sports 11, no. 6: 121. https://doi.org/10.3390/sports11060121
APA StyleRyan, S., Ramirez-Campillo, R., Browne, D., Moody, J. A., & Byrne, P. J. (2023). Intra- and Inter-Day Reliability of Inertial Loads with Cluster Sets When Performed during a Quarter Squat on a Flywheel Device. Sports, 11(6), 121. https://doi.org/10.3390/sports11060121