Intensity vs. Volume in Professional Soccer: Comparing Congested and Non-Congested Periods in Competitive and Training Contexts Using Worst-Case Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Design
2.2. Testing Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Douchet, T.; Paizis, C.; Roche, H.; Babault, N. Positional Differences in Absolute vs. Relative Training Loads in Elite Academy Soccer Players. J. Sports Sci. Med. 2023, 22, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Simpson, B.M.; Hader, K.; Lacome, M. Occurrences of Near-to-Maximal Speed-Running Bouts in Elite Soccer: Insights for Training Prescription and Injury Mitigation. Sci. Med. Footb. 2021, 5, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Riboli, A.; Coratella, G.; Rampichini, S.; Cé, E.; Esposito, F. Area per Player in Small-Sided Games to Replicate the External Load and Estimated Physiological Match Demands in Elite Soccer Players. PLoS ONE 2020, 15, e0229194. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Farrally, M. Recording Soccer Players’ Heart Rates during Matches. J. Sports Sci. 1991, 9, 183–189. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and External Training Load: 15 Years On. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef]
- Silva, H.; Nakamura, F.Y.; Loturco, I.; Ribeiro, J.; Marcelino, R. Analyzing Soccer Match Sprint Distances: A Comparisonof GPS-Based Absolute and Relative Thresholds. Biol. Sport 2024, 41, 223–230. [Google Scholar] [CrossRef]
- Cunningham, D.J.; Shearer, D.A.; Carter, N.; Drawer, S.; Pollard, B.; Bennett, M.; Eager, R.; Cook, C.J.; Farrell, J.; Russell, M.; et al. Assessing Worst Case Scenarios in Movement Demands Derived from Global Positioning Systems during International Rugby Union Matches: Rolling Averages versus Fixed Length Epochs. PLoS ONE 2018, 13, e0195197. [Google Scholar] [CrossRef]
- Fereday, K.; Hills, S.P.; Russell, M.; Smith, J.; Cunningham, D.J.; Shearer, D.; McNarry, M.; Kilduff, L.P. A Comparison of Rolling Averages versus Discrete Time Epochs for Assessing the Worst-Case Scenario Locomotor Demands of Professional Soccer Match-Play. J. Sci. Med. Sport 2020, 23, 764–769. [Google Scholar] [CrossRef]
- Novak, A.R.; Impellizzeri, F.M.; Trivedi, A.; Coutts, A.J.; McCall, A. Analysis of the Worst-Case Scenarios in an Elite Football Team: Towards a Better Understanding and Application. J. Sports Sci. 2021, 39, 1850–1859. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; Fortes, V.; Pino-Ortega, J. Worst Case Scenario Match Analysis and Contextual Variables in Professional Soccer Players: A Longitudinal Study. Biol. Sport 2020, 37, 429–436. [Google Scholar] [CrossRef]
- Mandorino, M.; Lacome, M. Defining Worst-Case-Scenario Thresholds in Soccer: Intensity Versus Volume. Int. J. Sports Physiol. Perform. 2024, 19, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.R.; Gonçalves, L.G.C.; Clemente, F.M.; Nakamura, F.Y.; Nobari, H.; Bedo, B.L.S.; Azevedo, A.M.; Guerra, M.A.; Aquino, R. Effects of Congested Fixture and Matches’ Participation on Internal and External Workload Indices in Professional Soccer Players. Sci. Rep. 2022, 12, 1864. [Google Scholar] [CrossRef] [PubMed]
- Dellal, A.; Lago-Peñas, C.; Rey, E.; Chamari, K.; Orhant, E. The Effects of a Congested Fixture Period on Physical Performance, Technical Activity and Injury Rate during Matches in a Professional Soccer Team. Br. J. Sports Med. 2015, 49, 390. [Google Scholar] [CrossRef] [PubMed]
- Carling, C.; Le Gall, F.; Dupont, G. Are Physical Performance and Injury Risk in a Professional Soccer Team in Match-Play Affected Over a Prolonged Period of Fixture Congestion? Int. J. Sports Med. 2012, 33, 36–42. [Google Scholar] [CrossRef]
- Douchet, T.; Paizis, C.; Babault, N. Physical Impact of A Typical Training Session With Different Volumes On The Day Preceding A Soccer Match. Int. J. Environ. Res. Public Health 2022, 19, 13828. [Google Scholar] [CrossRef]
- Scott, M.T.U.; Scott, T.J.; Kelly, V.G. The Validity and Reliability of Global Positioning Systems in Team Sport: A Brief Review. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef]
- Makar, P.; Silva, A.F.; Oliveira, R.; Janusiak, M.; Parus, P.; Smoter, M.; Clemente, F.M. Assessing the Agreement between a Global Navigation Satellite System and an Optical-Tracking System for Measuring Total, High-Speed Running, and Sprint Distances in Official Soccer Matches. Sci. Prog. 2023, 106, 00368504231187501. [Google Scholar] [CrossRef]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. Int. J. Sports Physiol. Perform. 2017, 12, S2-18–S2-26. [Google Scholar] [CrossRef]
- Peeters, A.; Piscione, J.; Lacome, M.; Carling, C.; Babault, N. A Comparison of Running and Contact Loads in U18 and U20 International Rugby Union Competition. Biol. Sport 2023, 40, 149–160. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Delaval, B.; Abaïdia, A.-E.; Delecroix, B.; Le Gall, F.; McCall, A.; Ahmaidi, S.; Dupont, G. Recovery During a Congested Schedule and Injury in Professional Football. Int. J. Sports Physiol. Perform. 2022, 17, 1399–1406. [Google Scholar] [CrossRef]
- Julian, R.; Page, R.M.; Harper, L.D. The Effect of Fixture Congestion on Performance During Professional Male Soccer Match-Play: A Systematic Critical Review with Meta-Analysis. Sports Med. 2021, 51, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Settembre, M.; Hader, K.; Mchugh, D. Planning the Microcycle in Elite Football: To Rest or Not to Rest? Int. J. Sports Physiol. Perform. 2023, 18, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Douchet, T.; Settembre, M.; Mchugh, D.; Hader, K.; Verheijen, R. The 11 Evidence-Informed and Inferred Principles of Microcycle Periodization in Elite Football. Sport. Perform. Sci. Rep. 2024, 218, 1–23. [Google Scholar]
- Douchet, T.; Paizis, C.; Carling, C.; Cometti, C.; Babault, N. Typical Weekly Physical Periodization in French Academy Soccer Teams: A Survey. Biol. Sport 2023, 40, 731–740. [Google Scholar] [CrossRef]
- Douchet, T.; Paizis, C.; Carling, C.; Babault, N. Influence of a Modified versus a Typical Microcycle Periodization on the Weekly External Loads and Match Day Readiness in Elite Academy Soccer Players. J. Hum. Kinet. 2024, 93, 133–144. [Google Scholar] [CrossRef]
- Hills, S.P.; Barrett, S.; Busby, M.; Kilduff, L.P.; Barwood, M.J.; Radcliffe, J.N.; Cooke, C.B.; Russell, M. Profiling the Post-Match Top-up Conditioning Practices of Professional Soccer Substitutes: An Analysis of Contextual Influences. J. Strength Cond. Res. 2020, 34, 2805–2814. [Google Scholar] [CrossRef]
- Martín-García, A.; Gómez Díaz, A.; Bradley, P.S.; Morera, F.; Casamichana, D. Quantification of a Professional Football Team’s External Load Using a Microcycle Structure. J. Strength Cond. Res. 2018, 32, 3511–3518. [Google Scholar] [CrossRef]
- Sarmento, H.; Clemente, F.M.; Harper, L.D.; Costa, I.T.D.; Owen, A.; Figueiredo, A.J. Small Sided Games in Soccer—A Systematic Review. Int. J. Perform. Anal. Sport 2018, 18, 693–749. [Google Scholar] [CrossRef]
- Sangnier, S.; Cotte, T.; Brachet, O.; Coquart, J.; Tourny, C. Planning Training Workload in Football Using Small-Sided Games’ Density. J. Strength Cond. Res. 2019, 33, 2801–2811. [Google Scholar] [CrossRef]
- Hill-Haas, S.V.; Dawson, B.; Impellizzeri, F.M.; Coutts, A.J. Physiology of Small-Sided Games Training in Football: A Systematic Review. Sports Med. 2011, 41, 199–220. [Google Scholar] [CrossRef]
TD | D20 | ||||||
---|---|---|---|---|---|---|---|
F | p | ηp2 | F | p | ηp2 | ||
Threshold | Effect | Training Sessions | |||||
50–60% | Period | 143.365 | <0.001 *** | 0.827 | 24.579 | <0.001 *** | 0.390 |
Playing Time | 1.214 | 0.299 | 0.010 | 2.571 | 0.143 | 0.055 | |
Period x Playing Time | 1.177 | 0.306 | 0.004 | 0.226 | 0.646 | 0.005 | |
60–70% | Period | 94.936 | <0.001 *** | 0.792 | 19.485 | 0.002 ** | 0.299 |
Playing Time | 2.388 | 0.157 | 0.012 | 2.301 | 0.164 | 0.064 | |
Period x Playing Time | 0.959 | 0.353 | 0.007 | 0.001 | 0.999 | 0.001 | |
70–80% | Period | 28.120 | <0.001 *** | 0.459 | 6.578 | 0.030 * | 0.176 |
Playing Time | 0.760 | 0.406 | 0.014 | 4.615 | 0.060 | 0.145 | |
Period x Playing Time | 2.521 | 0.147 | 0.048 | 1.145 | 0.312 | 0.018 | |
80–90% | Period | 14.578 | 0.004 ** | 0.267 | 5.789 | 0.040 * | 0.164 |
Playing Time | 0.033 | 0.860 | 0.001 | 7.470 | 0.023 * | 0.074 | |
Period x Playing Time | 0.947 | 0.356 | 0.035 | 0.001 | 0.990 | 0.001 | |
90–100% | Period | 3.204 | 0.107 | 0.041 | 0.023 | 0.883 | 0.01 |
Playing Time | 0.066 | 0.803 | 0.002 | 5.579 | 0.042 * | 0.118 | |
Period x Playing Time | 1.465 | 0.257 | 0.075 | 0.641 | 0.444 | 0.031 | |
>100% | Period | 0.176 | 0.685 | 0.005 | 0.490 | 0.502 | 0.017 |
Playing Time | 0.106 | 0.752 | 0.003 | 1.677 | 0.228 | 0.053 | |
Period x Playing Time | 4.343 | 0.067 | 0.153 | 0.716 | 0.419 | 0.025 | |
Threshold | Effect | Competitive Games | |||||
50–60% | Period | 0.285 | 0.606 | 0.004 | 2.565 | 0.144 | 0.037 |
Playing Time | 3.095 | 0.112 | 0.198 | 18.778 | 0.002 * | 0.453 | |
Period x Playing Time | 0.003 | 0.960 | 0.001 | 20.823 | 0.078 | 0.093 | |
60–70% | Period | 0.060 | 0.812 | 0.001 | 0.780 | 0.400 | 0.029 |
Playing Time | 2.656 | 0.138 | 0.166 | 5.238 | 0.048 * | 0.179 | |
Period x Playing Time | 0.379 | 0.553 | 0.005 | 0.780 | 0.400 | 0.012 | |
70–80% | Period | 0.001 | 0.992 | 0.001 | 0.597 | 0.459 | 0.025 |
Playing Time | 1.859 | 0.206 | 0.109 | 6.718 | 0.029 * | 0.156 | |
Period x Playing Time | 1.393 | 0.268 | 0.030 | 0.013 | 0.911 | 0.001 | |
80–90% | Period | 0.011 | 0.919 | 0.001 | 0.837 | 0.384 | 0.039 |
Playing Time | 2.422 | 0.154 | 0.114 | 0.171 | 0.689 | 0.006 | |
Period x Playing Time | 0.888 | 0.371 | 0.031 | 0.618 | 0.452 | 0.016 | |
90–100% | Period | 0.419 | 0.534 | 0.015 | 1.556 | 0.244 | 0.064 |
Playing Time | 5.053 | 0.051 | 0.168 | 2.194 | 0.173 | 0.037 | |
Period x Playing Time | 2.023 | 0.189 | 0.035 | 0.672 | 0.433 | 0.026 |
TD | ||||
---|---|---|---|---|
C | NC | d | 95% CI | |
Threshold | Training Sessions | |||
50–60% | 26.9 ± 10.3 | 85.1 ± 18.3 | −2.978 | −4.007 to −1.934 |
60–70% | 28.3 ± 9.0 | 75.0 ± 19.9 | −2.226 | −3.045 to −1.390 |
70–80% | 16.1 ± 10.1 | 39.8 ± 22.3 | −1.089 | −1.637 to −0.523 |
80–90% | 5.1 ± 5.7 | 12.2 ± 10.0 | −0.688 | −1.170 to −0.192 |
90–100% | 1.4 ± 2.3 | 2.1 ± 2.2 | −0.245 | −0.687 to 0.203 |
>100% | 0.4 ± 0.9 | 0.3 ± 0.6 | 0.081 | −0.359 to 0.519 |
Threshold | Competitive Games | |||
50–60% | 41.5 ± 29.5 | 44.7 ± 30.1 | −0.129 | −0.568 to 0.313 |
60–70% | 35.6 ± 25.0 | 36.9 ± 22.0 | −0.058 | −0.496 to 0.381 |
70–80% | 19.5 ± 13.9 | 19.5 ± 11.9 | 0.002 | −0.436 to 0.440 |
80–90% | 6.8 ± 4.6 | 6.7 ± 4.5 | 0.017 | −0.422 to 0.455 |
90–100% | 1.2 ± 0.7 | 1.3 ± 0.7 | −0.167 | −0.607 to 0.276 |
D20 | ||||
C | NC | d | 95% CI | |
Threshold | Training Sessions | |||
50–60% | 1.2 ± 1.3 | 5.4 ± 4.1 | −1.086 | −1.634 to −0.521 |
60–70% | 0.8 ± 1.1 | 3.4 ± 3.2 | −0.887 | −1.398 to −0.358 |
70–80% | 0.6 ± 0.9 | 1.5 ± 1.4 | −0.522 | −0.984 to −0.048 |
80–90% | 0.4 ± 0.9 | 1.1 ± 1.3 | −0.547 | −1.011 to −0.069 |
90–100% | 0.3 ± 1.0 | 0.3 ± 0.4 | 0.032 | −0.406 to 0.470 |
>100% | 1.7 ± 6.6 | 0.6 ± 1.2 | 0.158 | −0.285 to 0.597 |
Threshold | Competitive Games | |||
50–60% | 3.8 ± 2.6 | 4.9 ± 3.7 | −0.258 | −0.701 to 0.191 |
60–70% | 2.4 ± 1.7 | 2.8 ± 1.7 | −0.291 | −0.735 to 0.160 |
70–80% | 1.3 ± 1.5 | 1.7 ± 1.3 | −0.265 | −0.708 to 0.184 |
80–90% | 0.7 ± 0.6 | 0.9 ± 0.9 | −0.241 | −0.683 to 0.207 |
90–100% | 0.4 ± 0.5 | 0.6 ± 0.6 | −0.288 | −0.732 to 0.163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douchet, T.; Michel, A.; Verdier, J.; Babault, N.; Gosset, M.; Delaval, B. Intensity vs. Volume in Professional Soccer: Comparing Congested and Non-Congested Periods in Competitive and Training Contexts Using Worst-Case Scenarios. Sports 2025, 13, 70. https://doi.org/10.3390/sports13030070
Douchet T, Michel A, Verdier J, Babault N, Gosset M, Delaval B. Intensity vs. Volume in Professional Soccer: Comparing Congested and Non-Congested Periods in Competitive and Training Contexts Using Worst-Case Scenarios. Sports. 2025; 13(3):70. https://doi.org/10.3390/sports13030070
Chicago/Turabian StyleDouchet, Tom, Antoine Michel, Julien Verdier, Nicolas Babault, Marius Gosset, and Benoit Delaval. 2025. "Intensity vs. Volume in Professional Soccer: Comparing Congested and Non-Congested Periods in Competitive and Training Contexts Using Worst-Case Scenarios" Sports 13, no. 3: 70. https://doi.org/10.3390/sports13030070
APA StyleDouchet, T., Michel, A., Verdier, J., Babault, N., Gosset, M., & Delaval, B. (2025). Intensity vs. Volume in Professional Soccer: Comparing Congested and Non-Congested Periods in Competitive and Training Contexts Using Worst-Case Scenarios. Sports, 13(3), 70. https://doi.org/10.3390/sports13030070