Hematological Adaptations to Altitude Training in Female Water Polo Players: A Case Report of a World Championships Medal-Winning Team
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Procedures
2.3.1. Total Hemoglobin Mass
2.3.2. Blood Analyses
2.3.3. Daily Assessments
2.4. Statistical Analysis
3. Results
3.1. Hematological Adaptations
3.2. Daily Assessments of Players’ Adaptations
4. Discussion
4.1. Hematological Adaptations
4.2. Daily Markers of Adaptation
4.3. Limitations
4.4. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedmann-Bette, B. Classical altitude training. Scand. J. Med. Sci. Sports 2008, 18, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, D.L.; Hopkins, W.G. Sea-level exercise performance following adaptation to hypoxia. Sports Med. 2009, 39, 107–127. [Google Scholar] [CrossRef] [PubMed]
- Saunders, P.U.; Pyne, D.B.; Gore, C.J. Endurance training at altitude. High Alt. Med. Biol. 2009, 10, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Sharma, A.P.; Stellingwerff, T. Contemporary periodization of altitude training for elite endurance athletes: A narrative review. Sports Med. 2019, 49, 1651–1669. [Google Scholar] [CrossRef]
- Millet, G.P.; Brocherie, F. Hypoxic training is beneficial in elite athletes. Med. Sci. Sports Exerc. 2020, 52, 515–518. [Google Scholar] [CrossRef]
- Semenza, G.L. HIF-1: Mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 2000, 88, 1474–1480. [Google Scholar] [CrossRef]
- Gore, C.J.; Sharpe, K.; Garvican-Lewis, L.A.; Saunders, P.U.; Humberstone, C.E.; Robertson, E.Y.; Wachsmuth, N.B.; Clark, S.A.; McLean, B.D.; Friedmann-Bette, B.; et al. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br. J. Sports Med. 2013, 47, 31–39. [Google Scholar] [CrossRef]
- Garvican-Lewis, L.A.; Sharpe, K.; Gore, C.J. Time for a new metric for hypoxic dose? J. Appl. Physiol. 2016, 121, 352–355. [Google Scholar] [CrossRef]
- Gore, C.J.; Clark, S.A.; Saunders, P.U. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med. Sci. Sports Exerc. 2007, 39, 1600–1609. [Google Scholar] [CrossRef]
- Aughey, R.J.; Buchheit, M.; Garvican-Lewis, L.A.; Roach, G.D.; Sargent, C.; Billaut, F.; Varley, M.C.; Bourdon, P.C.; Gore, C.J. Yin and yang, or peas in a pod? Individual-sport versus team-sport athletes and altitude training. Br. J. Sports Med. 2013, 47, 1150–1154. [Google Scholar] [CrossRef]
- Girard, O.; Amann, M.; Aughey, R.; Billaut, F.; Bishop, D.J.; Bourdon, P.; Buchheit, M.; Chapman, R.; D’Hooghe, M.; Garvican-Lewis, L.A.; et al. Position statement-Altitude training for improving team-sport players’ performance: Current knowledge and unresolved issues. Br. J. Sports Med. 2013, 47, i8–i16. [Google Scholar] [CrossRef]
- Mujika, I. Challenges of team-sport research. Int. J. Sports Physiol. Perform. 2007, 2, 221–222. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.K. Applied physiology of water polo. Sports Med. 1998, 26, 317–334. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, S.; Gabbett, T. A time-motion analysis of international women’s water polo match play. Int. J. Sports Physiol. Perform. 2008, 3, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Tumilty, D.; Logan, P.; Clews, W.; Cameron, D. Protocols for the physiological assessment of elite water polo players. In Physiological Tests for Elite Athletes; Gore, C.J., Ed.; Human Kinetics: Champaign, IL, USA, 2000; pp. 411–421. [Google Scholar]
- Tan, F.; Polglaze, T.; Dawson, B. Activity profiles and physical demands of elite women’s water polo match play. J. Sports Sci. 2009, 27, 1095–1104. [Google Scholar] [CrossRef]
- Cox, G.R.; Mujika, I.; van den Hoogenband, C.-R. Nutritional recommendations for water polo. Int. J. Sports Nutr. Exerc. Metab. 2014, 24, 382–391. [Google Scholar] [CrossRef]
- Millet, G.P.; Brocherie, F.; Girard, O.; Wehrlin, J.P.; Troesch, S.; Hauser, A.; Steiner, T.; Peltonen, J.E.; Rusko, H.K.; Constantini, K.; et al. Commentaries on Viewpoint: Time for a new metric for hypoxic dose? J. Appl. Physiol. 2016, 121, 356–358. [Google Scholar] [CrossRef]
- Garvican-Lewis, L.A.; Clark, S.A.; Polglaze, T.; McFadden, G.; Gore, C.J. Ten days of simulated live high:train low altitude training increases Hbmass in elite water polo players. Br. J. Sports Med. 2013, 47, i70–i73. [Google Scholar] [CrossRef]
- Płoszczyca, K.; Langfort, J.; Czuba, M. The effects of altitude training on erythropoietic response and hematological variables in adult athletes: A narrative review. Front. Physiol. 2018, 9, 375. [Google Scholar] [CrossRef]
- Sharma, A.P. Factors affecting sea-level performance following altitude training in elite athletes. J. Sci. Sport Exerc. 2022, 4, 315–330. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Schmidt, W.; Prommer, N. The optimised CO-rebreathing method: A new tool to determine total haemoglobin mass routinely. Eur. J. Appl. Physiol. 2005, 95, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Micklewright, D.; St Clair Gibson, A.; Gladwell, V.; Al Salman, A. Development and validity of the Rating-of-Fatigue scale. Sports Med. 2017, 47, 2375–2393. [Google Scholar] [CrossRef]
- Saw, A.E.; Halson, S.L.; Mujika, I. Monitoring athletes during training camps: Observations and translatable strategies from elite road cyclists and swimmers. Sports 2018, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 13 May 2024).
- Cohen, J. The effect size index: D. In Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1998; Volume 2, pp. 284–288. [Google Scholar]
- Simpson, G.L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 2018, 6, 149. [Google Scholar] [CrossRef]
- Schmidt, W.; Prommer, N. Impact of alterations in total hemoglobin mass on VO2max. Exerc. Sport Sci. Rev. 2010, 38, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Skattebo, Ø.; Hallén, J. Individual variations in pre-altitude hemoglobin mass influence hemoglobin mass responses to repeated altitude sojourns. Scand. J. Med. Sci. Sports 2022, 32, 1493–1501. [Google Scholar] [CrossRef]
- Westmacott, A.; Sanal-Hayes, N.E.M.; McLaughlin, M.; Mair, J.L.; Hayes, L.D. High-Intensity Interval Training (HIIT) in hypoxia improves maximal aerobic capacity more than HIIT in normoxia: A systematic review, meta-analysis, and meta-regression. Int. J. Environ. Res. Public Health 2022, 19, 14261. [Google Scholar] [CrossRef]
- Bouten, J.; Brick, M.; Saboua, A.; Hadjadj, J.L.; Piscione, J.; Margot, C.; Doucende, G.; Bourrel, N.; Millet, G.P.; Brocherie, F. Effects of 2 different protocols of repeated-sprint training in hypoxia in elite female rugby sevens players during an altitude training camp. Int. J. Sports Physiol. Perform. 2023, 18, 953–959. [Google Scholar] [CrossRef]
- Feriche, B.; García-Ramos, A.; Morales-Artacho, A.J.; Padial, P. Resistance training using different hypoxic training strategies: A basis for hypertrophy and muscle power development. Sports Med. Open 2017, 3, 12. [Google Scholar] [CrossRef]
- Tomazin, K.; Strojnik, V.; Feriche, B.; Garcia Ramos, A.; Štrumbelj, B.; Stirn, I. Neuromuscular adaptations in elite swimmers during concurrent strength and endurance training at low and moderate altitudes. J. Strength Cond. Res. 2022, 36, 1111–1119. [Google Scholar] [CrossRef]
- Benavente, C.; Schoenfeld, B.J.; Padial, P.; Feriche, B. Efficacy of resistance training in hypoxia on muscle hypertrophy and strength development: A systematic review with meta-analysis. Sci. Rep. 2023, 13, 3676, Erratum in Sci. Rep. 2023, 13, 15619. [Google Scholar]
- Walsh, N.P.; Halson, S.L.; Sargent, C.; Roach, G.D.; Nédélec, M.; Gupta, L.; Leeder, J.; Fullagar, H.H.; Coutts, A.J.; Edwards, B.J.; et al. Sleep and the athlete: Narrative review and 2021 expert consensus recommendations. Br. J. Sports Med. 2021, 55, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Hrozanova, M.; Talsnes, R.; Karlsson, Ø.; McGawley, K.; Moen, F. An observational study of sleep characteristics in elite endurance athletes during an altitude training camp at 1800 m. Sleep Health 2021, 7, 691–698. [Google Scholar] [CrossRef]
- Van Cutsem, J.; Pattyn, N. Primum non nocere; It’s time to consider altitude training as the medical intervention it actually is! Front. Psychol. 2022, 13, 1028294. [Google Scholar] [CrossRef] [PubMed]
- Astridge, D.J.; McKenna, M.; Campbell, A.; Turner, A.P. Haemoglobin mass responses and performance outcomes among high-performance swimmers following a 3-weel live-high, train-high camp at 2320 m. Eur. J. Appl. Physiol. 2024, 124, 2389–2399. [Google Scholar] [CrossRef] [PubMed]
- Krumm, B.; Vallance, B.; Burke, L.; Garcia, J.; Bouten, J.; Brocherie, F.; Saugy, J.J.; Botrè, F.; Faiss, R. High-level performances following low altitude training and tapering in warm environments in elite racewalkers. Eur. J. Sport Sci. 2024, 24, 1120–1129. [Google Scholar] [CrossRef]
- Raberin, A.; Burtscher, J.; Citherlet, T.; Manferdelli, G.; Krumm, B.; Bourdillon, N.; Antero, J.; Rasica, L.; Malatesta, D.; Brocherie, F.; et al. Women at altitude: Sex-related physiological responses to exercise in hypoxia. Sports Med. 2024, 54, 271–287. [Google Scholar] [CrossRef]
- Keller, M.F.; Harrison, M.L.; Lalande, S. Impact of menstrual blood loss and oral contraceptive use on oxygen-carrying capacity. Med. Sci. Sports Exerc. 2020, 52, 1414–1419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mujika, I.; Mara, J.; Zelenkova, I.; Zacca, R.; Pyne, D.B. Hematological Adaptations to Altitude Training in Female Water Polo Players: A Case Report of a World Championships Medal-Winning Team. Sports 2025, 13, 86. https://doi.org/10.3390/sports13030086
Mujika I, Mara J, Zelenkova I, Zacca R, Pyne DB. Hematological Adaptations to Altitude Training in Female Water Polo Players: A Case Report of a World Championships Medal-Winning Team. Sports. 2025; 13(3):86. https://doi.org/10.3390/sports13030086
Chicago/Turabian StyleMujika, Iñigo, Jocelyn Mara, Irina Zelenkova, Rodrigo Zacca, and David B. Pyne. 2025. "Hematological Adaptations to Altitude Training in Female Water Polo Players: A Case Report of a World Championships Medal-Winning Team" Sports 13, no. 3: 86. https://doi.org/10.3390/sports13030086
APA StyleMujika, I., Mara, J., Zelenkova, I., Zacca, R., & Pyne, D. B. (2025). Hematological Adaptations to Altitude Training in Female Water Polo Players: A Case Report of a World Championships Medal-Winning Team. Sports, 13(3), 86. https://doi.org/10.3390/sports13030086