Evaluation of Training with Elastic Bands on Strength and Fatigue Indicators in Paralympic Powerlifting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Procedures
2.4. Force Measurements
2.5. Elastic Bands
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and hypertrophy adaptations between low-vs. high-load re-sistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 2017, 3112, 3508–3523. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1689–1697. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Schoenfeld, B.J.; Davies, T.B.; Lazinica, B.; Krieger, J.W.; Pedisic, Z. Effect of Resistance Training Frequency on Gains in Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sports Sci. 2016, 35, 1073–1082. [Google Scholar] [CrossRef]
- Fleck, S.J.; Kraemer, W.J. Designing Resistance Training Programs, 4th ed.; Human Kinetics: Champaign, IL, USA, 2014; ISBN 0-7360-8170-4. [Google Scholar]
- Lawrence, M.A.; Leib, D.J.; Ostrowski, S.J.; Carlson, L.A. Nonlinear Analysis of an Unstable Bench Press Bar Path and Muscle Activation. J. Strength Cond. Res. 2017, 31, 1206–1211. [Google Scholar] [CrossRef]
- Willick, S.E.; Cushman, D.; Blauwet, C.A.; Emery, C.; Webborn, N.; Derman, W.; Schwellnus, M.; Stomphorst, J.; Van De Vliet, P. The epidemiology of injuries in powerlifting at the London 2012 Paralympic Games: An analysis of 1411 athlete-days. Scand. J. Med. Sci. Sports 2015, 26, 1233–1238. [Google Scholar] [CrossRef] [Green Version]
- International Paralympic Committee (IPC). World Para Powerlifiting. Rules & Regulations. Available online: https://www.paralympic.org/sites/default/files/document/180215210800620_World%2BPara%2BPowerlifting%2BRules%2Band%2BRegulations_Feb%2B2018_0.pdf (accessed on 13 October 2020).
- García-López, D.; Hernández-Sánchez, S.; Martín, E.; Marín, P.J.; Zarzosa, F.; Herrero, A.J. Free-Weight Augmentation With Elastic Bands Improves Bench Press Kinematics in Professional Rugby Players. J. Strength Cond. Res. 2016, 30, 2493–2499. [Google Scholar] [CrossRef] [PubMed]
- Bellar, D.M.; Muller, M.D.; Barkley, J.; Kim, C.-H.; Ida, K.; Ryan, E.J.; Bliss, M.V.; Glickman, E.L. The Effects of Combined Elastic- and Free-Weight Tension vs. Free-Weight Tension on One-Repetition Maximum Strength in the Bench Press. J. Strength Cond. Res. 2011, 25, 459–463. [Google Scholar] [CrossRef]
- Dunnick, D.D.; Brown, L.E.; Coburn, J.W.; Lynn, S.K.; Barillas, S.R. Bench Press Upper-Body Muscle Activation Between Stable and Unstable Loads. J. Strength Cond. Res. 2015, 29, 3279–3283. [Google Scholar] [CrossRef]
- Galpin, A.J.; Malyszek, K.K.; Davis, K.A.; Record, S.M.; Brown, L.E.; Coburn, J.W.; Harmon, R.A.; Steele, J.M.; Manolovitz, A.D. Acute Effects of Elastic Bands on Kinetic Characteristics During the Deadlift at Moderate and Heavy Loads. J. Strength Cond. Res. 2015, 29, 3271–3278. [Google Scholar] [CrossRef]
- Aloui, G.; Hermassi, S.; Hammami, M.; Gaamouri, N.; Bouhafs, E.G.; Comfort, P.; Shephard, R.J.; Schwesig, R.; Chelly, M.S. Effects of an 8-Week In-Season Upper Limb Elastic Band Training Programme on the Peak Power, Strength, and Throwing Velocity of Junior Handball Players. Sportverletz. Sportschaden 2019, 33, 133–141. [Google Scholar] [CrossRef]
- Joy, J.M.; Lowery, R.P.; de Souza, E.O.; Wilson, J.M. Elastic Bands as a Component of Periodized Resistance Training. J. Strength Cond. Res. 2016, 30, 2100–2106. [Google Scholar] [CrossRef]
- Calatayud, J.; Borreani, S.; Colado, J.C.; Martin, F.; Tella, V.; Andersen, L.L. Bench Press and Push-up at Comparable Levels of Muscle Activity Results in Similar Strength Gains. J. Strength Cond. Res. 2015, 29, 246–253. [Google Scholar] [CrossRef]
- Bergquist, R.; Iversen, V.M.; Mork, P.J.; Fimland, M.S. Muscle Activity in Upper-Body Single-Joint Resistance Exercises with Elastic Resistance Bands vs. Free Weights. J. Hum. Kinet. 2018, 61, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, C.-J.; Kim, Y.L.; Lee, S.M. Effects of elastic-band resistance exercise on balance, mobility and gait function, flexibility and fall efficacy in elderly people. J. Phys. Ther. Sci. 2016, 28, 3189–3196. [Google Scholar] [CrossRef] [Green Version]
- Ahn, N.; Kim, K. Effects of an elastic band resistance exercise program on lower extremity muscle strength and gait ability in patients with Alzheimer’s disease. J. Phys. Ther. Sci. 2015, 27, 1953–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-Y.; Kim, J.-K.; Lee, S.-A. The effects of a community-centered muscle strengthening exercise program using an elastic band on the physical abilities and quality of life of the rural elderly. J. Phys. Ther. Sci. 2015, 27, 2061–2063. [Google Scholar] [CrossRef] [Green Version]
- Rathleff, M.S.; Thorborg, K.; Bandholm, T. Concentric and Eccentric Time-Under-Tension during Strengthening Exercises: Validity and Reliability of Stretch-Sensor Recordings from an Elastic Exercise-Band. PLoS ONE 2013, 8, e68172. [Google Scholar] [CrossRef] [Green Version]
- Borghi-Silva, A.; Peixoto, G. Autonomic control of heart rate during non-linear incremental upper-limb resistance exercise with elastic bands in young healthy female subjects. J. Sports Med. Phys. Fit. 2016, 56, 1410–1416. [Google Scholar]
- Shaw, M.P.; Andersen, V.; Sæterbakken, A.H.; Paulsen, G.; Samnøy, L.E.; Solstad, T.E.J. Contemporary Training Practices of Norwegian Powerlifters. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Rivière, M.; Louit, L.; Strokosch, A.; Seitz, L.B. Variable Resistance Training Promotes Greater Strength and Power Adaptations Than Traditional Resistance Training in Elite Youth Rugby League Players. J. Strength Cond. Res. 2017, 31, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Gene-Morales, J.; Gené-Sampedro, A.; Salvador, R.; Colado, J.C. Adding the Load Just Above Sticking Point Using Elastic Bands Optimizes Squat Performance, Perceived Effort Rate, and Cardiovascular Responses. J. Sports Sci. Med 2020, 19, 735–744. [Google Scholar] [PubMed]
- Ball, R.; Weidman, D. Analysis of USA Powerlifting Federation Data From January 1, 2012–June 11, 2016. J. Strength Cond. Res. 2018, 32, 1843–1851. [Google Scholar] [CrossRef]
- LaMotte, R.H.; Campbell, J.N. Comparison of responses of warm and nociceptive C-fiber afferents in monkey with human judgments of thermal pain. J. Neurophysiol. 1978, 41, 509–528. [Google Scholar] [CrossRef]
- Fraga, G.S.; Aidar, F.J.; Matos, D.G.; Marçal, A.C.; Santos, J.L.; Souza, R.F.; Carneiro, A.L.; Vasconcelos, A.B.; Da Silva-Grigoletto, M.E.; Tillaar, R.V.D.; et al. Effects of Ibuprofen Intake in Muscle Damage, Body Temperature and Muscle Power in Paralympic Powerlifting Athletes. Int. J. Environ. Res. Public Health 2020, 17, 5157. [Google Scholar] [CrossRef]
- Souza, R.D.; de Matos, D.G.; Nogueira, A.C.; Ferreira, A.R.P.; de Freitas Zanona, A. Analysis of muscle recovery time after acute stretching at peak torque of the hamstring muscles. Med. Dello Sport 2019, 72, 171–180. [Google Scholar] [CrossRef]
- Sampaio, C.R.S.F.; Aidar, F.J.; Ferreira, A.R.P.; Dos Santos, J.L.; Marçal, A.C.; De Matos, D.G.; De Souza, R.F.; Moreira, O.C.; Guerra, I.; Filho, J.F.; et al. Can Creatine Supplementation Interfere with Muscle Strength and Fatigue in Brazilian National Level Paralympic Powerlifting? Nutrients 2020, 12, 2492. [Google Scholar] [CrossRef]
- Milner-Brown, H.S.; Mellenthin, M.; Miller, R.G. Quantifying human muscle strength, endurance and fatigue. Arch. Phys. Med. Rehabil. 1986, 67, 530–535. [Google Scholar]
- Resende, M.; Resende, R.V.; Reis, G.; Barros, L.; Bezerra, M.; Matos, D.; Marçal, A.; Almeida-Neto, P.; Cabral, B.; Neiva, H.; et al. The Influence of Warm-Up on Body Temperature and Strength Performance in Brazilian National-Level Paralympic Powerlifting Athletes. Medicina 2020, 56, 538. [Google Scholar] [CrossRef]
- Picerno, P. Good practice rules for the assessment of the force-velocity relationship in isoinertial resistance exercises. Asian J. Sports Med. 2017, 8, e15590. [Google Scholar]
- Austin, D.; Mann, B. Powerlifting: The Complete Guide to Technique, Training, and Competition; Human Kinetics: Champaign, IL, USA, 2012; ISBN 9781492598800. [Google Scholar]
- Cohen, J. Statistics a power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Paz, A.A.; Aidar, F.J.; De Matos, D.G.; De Souza, R.F.; Da Silva-Grigoletto, M.E.; Tillaar, R.V.D.; Ramirez-Campillo, R.; Nakamura, F.Y.; Costa, M.D.C.; Nunes-Silva, A.; et al. Comparison of Post-Exercise Hypotension Responses in Paralympic Powerlifting Athletes after Completing Two Bench Press Training Intensities. Medicina 2020, 56, 156. [Google Scholar] [CrossRef] [Green Version]
- Guzun, R.; Aguilaniu, B.; Wuyam, B.; Mezin, P.; Koechlin-Ramonatxo, C.; Auffray, C.; Saks, V.; Pison, C. Effects of training at mild exercise intensities on quadriceps muscle energy metabolism in patients with chronic obstructive pulmonary disease. Acta Physiol. 2012, 205, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Soria-Gila, M.A.; Chirosa, I.J.; Bautista, I.J.; Baena, S.; Chirosa, L.J. Effects of Variable Resistance Training on Maximal Strength. J. Strength Cond. Res. 2015, 29, 3260–3270. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Jensen, R.L. Electromyography and Kinetic Analysis of Traditional, Chain, and Elastic Band Squats. J. Strength Cond. Res. 2002, 16, 547–550. [Google Scholar]
- Shoepe, T.C.; Ramirez, D.A.; Almstedt, H.C. Elastic Band Prediction Equations for Combined Free-Weight and Elastic Band Bench Presses and Squats. J. Strength Cond. Res. 2010, 24, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Hintermeister, R.A.; Lange, G.W.; Schultheis, J.M.; Bey, M.J.; Hawkins, R.J. Electromyographic Activity and Applied Load During Shoulder Rehabilitation Exercises Using Elastic Resistance. Am. J. Sports Med. 1998, 26, 210–220. [Google Scholar] [CrossRef]
- Wallace, B.J.; Winchester, J.B.; Mcguigan, M.R. Effects of Elastic Bands on Force and Power Characteristics during the Back Squat Exercise. J. Strength Cond. Res. 2006, 20, 268–272. [Google Scholar] [CrossRef]
- Lorenz, D.S. Variable Resistance Training Using Elastic Bands to Enhance Lower Extremity Strengthening. Int. J. Sports Phys. Ther. 2014, 9, 410–414. [Google Scholar]
- Stevenson, M.W.; Warpeha, J.M.; Dietz, C.C.; Giveans, R.M.; Erdman, A.G. Acute Effects of Elastic Bands During the Free-weight Barbell Back Squat Exercise on Velocity, Power, and Force Production. J. Strength Cond. Res. 2010, 24, 2944–2954. [Google Scholar] [CrossRef]
- Israetel, M.A.; McBride, J.M.; Nuzzo, J.L.; Skinner, J.W.; Dayne, A.M. Kinetic and Kinematic Differences Between Squats Performed With and Without Elastic Bands. J. Strength Cond. Res. 2010, 24, 190–194. [Google Scholar] [CrossRef]
- Byrnes, W.C.; Clarkson, P.M.; White, J.S.; Hsieh, S.S.; Frykman, P.N.; Maughan, R.J. Delayed onset muscle soreness following repeated bouts of downhill running. J. Appl. Physiol. 1985, 59, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Aboodarda, S.J.; George, J.; Mokhtar, A.H.; Thompson, M. Muscle Strength and Damage Following Two Modes of Variable Resistance Training. J. Sports Sci. Med. 2011, 10, 635–642. [Google Scholar] [PubMed]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Corvino, R.B.; Caputo, F.; Oliveira, A.C.; Greco, C.C.; Denadai, B.S. Rate of strength development at different speeds of muscle contractions. Braz. J. Sports Med. 2009, 15, 428–431. [Google Scholar]
- Rodríguez-Rosell, D.; Blanco, F.P.; Aagaard, P.; González-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, K.; Alen, M.; Komi, P.V. Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol. Scand. 1985, 125, 573–585. [Google Scholar] [CrossRef]
- Teles, L.; Aidar, F.; Matos, D.; Marçal, A.; Almeida-Neto, P.; Neves, E.; Moreira, O.; Neto, F.R.; Garrido, N.; Vilaça-Alves, J.; et al. Static and Dynamic Strength Indicators in Paralympic Power-Lifters with and without Spinal Cord Injury. Int. J. Environ. Res. Public Health 2021, 18, 5907. [Google Scholar] [CrossRef]
- Aidar, F.; Clemente, F.; Matos, D.; Marçal, A.; de Souza, R.; Moreira, O.; Almeida-Neto, P.; Vilaça-Alves, J.; Garrido, N.; dos Santos, J.; et al. Evaluation of Strength and Muscle Activation Indicators in Sticking Point Region of National-Level Paralympic Powerlifting Athletes. J. Funct. Morphol. Kinesiol. 2021, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Lum, D.; Haff, G.G.; Barbosa, T.M. The Relationship between Isometric Force-Time Characteristics and Dynamic Performance: A Systematic Review. Sports 2020, 8, 63. [Google Scholar] [CrossRef]
- Mirkov, D.M.; Nedeljkovic, A.; Milanovic, S.; Jaric, S. Muscle strength testing: Evaluation of tests of explosive force production. Eur. J. Appl. Physiol. 2004, 91, 147–154. [Google Scholar] [CrossRef]
- Tillin, N.A.; Pain, M.T.G.; Folland, J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J. Sports Sci. 2013, 31, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Maffiuletti, N.A.N.; Aagaard, P.; Blazevich, A.; Folland, J.J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffiuletti, N.A.; Bizzini, M.; Widler, K.; Munzinger, U. Asymmetry in Quadriceps Rate of Force Development as a Functional Outcome Measure in TKA. Clin. Orthop. Relat. Res. 2010, 468, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelozzi, M.; Madama, M.; Corsica, C.; Calvisi, V.; Properzi, G.; McCaw, S.T.; Cacchio, A. Rate of Force Development as an Adjunctive Outcome Measure for Return-to-Sport Decisions After Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2012, 42, 772–780. [Google Scholar] [CrossRef]
- Jenkins, N.; Housh, T.J.; Traylor, D.A.; Cochrane, K.C.; Bergstrom, H.C.; Lewis, R.W.; Schmidt, R.J.; Johnson, G.O.; Cramer, J.T. The Rate of Torque Development: A Unique, Non-invasive Indicator of Eccentric-induced Muscle Damage? Int. J. Sports Med. 2014, 35, 1190–1195. [Google Scholar] [CrossRef]
- Peñailillo, L.; Blazevich, A.; Numazawa, H.; Nosaka, K. Rate of force development as a measure of muscle damage. Scand. J. Med. Sci. Sports 2015, 25, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, M.; Duchateau, J.; Hainaut, K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998, 513, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.L.; Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 2006, 96, 46–52. [Google Scholar] [CrossRef]
- Harridge, S.; Bottinelli, R.; Canepari, M.; Pellegrino, M.A.; Reggiani, C.; Esbjörnsson, M.; Saltin, B. Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflügers Arch. 1996, 432, 913–920. [Google Scholar] [CrossRef]
- Buchthal, F.; Schmalbruch, H. Contraction Times and Fibre Types in Intact Human Muscle. Acta Physiol. Scand. 1970, 79, 435–452. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, P. Training-Induced Changes in Neural Function. Exerc. Sport Sci. Rev. 2003, 31, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.L.; Andersen, J.L.; Suetta, C.; Kjær, M.; Søgaard, K.; Sjøgaard, G. Effect of contrasting physical exercise interventions on rapid force capacity of chronically painful muscles. J. Appl. Physiol. 2009, 107, 1413–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folland, J.P.; Buckthorpe, M.W.; Hannah, R. Human capacity for explosive force production: Neural and contractile determinants. Scand. J. Med. Sci. Sports 2014, 24, 894–906. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.M.; Gandevia, S.; McKenzie, D.K. Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 1995, 18, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Klass, M.; Baudry, S.; Duchateau, J. Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J. Appl. Physiol. 2008, 104, 739–746. [Google Scholar] [CrossRef]
- Hinder, M.R.; Schmidt, M.W.; Garry, M.I.; Carroll, T.J.; Summers, J.J. Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. J. Appl. Physiol. 2011, 110, 166–175. [Google Scholar] [CrossRef]
- Rogasch, N.C.; Dartnall, T.J.; Cirillo, J.; Nordstrom, M.A.; Semmler, J.G. Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. J. Appl. Physiol. 2009, 107, 1874–1883. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Hinder, M.R.; Gandevia, S.C.; Carroll, T.J. The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice. J. Physiol. 2010, 588, 201–212. [Google Scholar] [CrossRef]
Variables | Mean ± SD |
---|---|
Age (years) | 28.60 ± 7.60 |
Body mass (kg) | 71.80 ± 17.90 |
Experience (years) | 2.57 ± 0.72 |
1RM test (bench press) (kg) | 102.33 ± 21.31 |
1RM test/body mass ratio | 1.43 ± 0.37 |
Variables | 1RM (Kg) X ± SD (IC 95%) | MIF (N) X ± SD (IC 95%) | PT (N.m) X ± SD (IC 95%) | RFD (N.s-1) X ± SD (IC 95%) |
---|---|---|---|---|
TRAD Before | 98.50 ± 21.37 * (84.92; 112.08) | 965.30 ± 209.42 * (832.24; 1098.36) | 434.39 ± 94.24 * (374.51; 494.26) | 675.28 ± 175.18 *,** (563.98; 786.59) |
EB Before | 98.92 ± 20.80 (85.70; 112.13) | 969.38 ± 203.88 (839.84; 1098.92) | 436.22 ± 91.75 (377.93; 494.52) | 677.21 ± 160.95 (574.94; 779.47) |
TRAD After | 102.33 ± 21.15 * (88.90; 115.77) | 1002.87 ± 207.23 * (871.20; 1134.53) | 451.29 ± 93.25 * (392.04; 510.54) | 1024.42 ± 305.97 * (830.01; 1218.82) |
EB After | 101.25 ± 20.09 (88.49; 114.01) | 992.25 ± 196.85 (867.18; 117.32) | 446.51 ± 88.58 (390.23; 502.80) | 895.33 ± 246.61 ** (738.64; 1052.02) |
p Value | 0.018 | 0.011 | 0.012 | * 0.002, ** 0.016 |
F | 3.337 | 7.703 | 7.703 | (*) 35.020; (**) 2.920 |
η2p | 0.412 # | 0.415 # | 0.413 # | 0.761 ## |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aidar, F.J.; Clemente, F.M.; de Lima, L.F.; de Matos, D.G.; Ferreira, A.R.P.; Marçal, A.C.; Moreira, O.C.; Bulhões-Correia, A.; de Almeida-Neto, P.F.; Díaz-de-Durana, A.L.; et al. Evaluation of Training with Elastic Bands on Strength and Fatigue Indicators in Paralympic Powerlifting. Sports 2021, 9, 142. https://doi.org/10.3390/sports9100142
Aidar FJ, Clemente FM, de Lima LF, de Matos DG, Ferreira ARP, Marçal AC, Moreira OC, Bulhões-Correia A, de Almeida-Neto PF, Díaz-de-Durana AL, et al. Evaluation of Training with Elastic Bands on Strength and Fatigue Indicators in Paralympic Powerlifting. Sports. 2021; 9(10):142. https://doi.org/10.3390/sports9100142
Chicago/Turabian StyleAidar, Felipe J., Filipe Manuel Clemente, Luiz Fernandes de Lima, Dihogo Gama de Matos, Alexandre Reis Pires Ferreira, Anderson Carlos Marçal, Osvaldo Costa Moreira, Alexandre Bulhões-Correia, Paulo Francisco de Almeida-Neto, Alfonso López Díaz-de-Durana, and et al. 2021. "Evaluation of Training with Elastic Bands on Strength and Fatigue Indicators in Paralympic Powerlifting" Sports 9, no. 10: 142. https://doi.org/10.3390/sports9100142
APA StyleAidar, F. J., Clemente, F. M., de Lima, L. F., de Matos, D. G., Ferreira, A. R. P., Marçal, A. C., Moreira, O. C., Bulhões-Correia, A., de Almeida-Neto, P. F., Díaz-de-Durana, A. L., Neves, E. B., Cabral, B. G. A. T., Reis, V. M., Garrido, N. D., Nikolaidis, P. T., & Knechtle, B. (2021). Evaluation of Training with Elastic Bands on Strength and Fatigue Indicators in Paralympic Powerlifting. Sports, 9(10), 142. https://doi.org/10.3390/sports9100142