Training Load Monitoring Considerations for Female Gaelic Team Sports: From Theory to Practice
Abstract
1. Introduction
2. Materials and Methods
3. Training Load
3.1. Internal Training Load
3.2. External Training Load
4. Global Positioning Systems
Accelerations and Decelerations
5. Internal Training Load: Heart Rate
6. Training Session-Based Ratings of Perceived Exertion
7. Athlete Self-Reported Measures
8. Training Considerations
Interpretation the Data
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef]
- Borresen, J.; Lambert, M.I. Measuring training load in sport. Int. J. Sports Physiol. Perform. 2011, 5, 406–411. [Google Scholar]
- Clubb, J.; McGuigan, M. Developing Cost-Effective, Evidence-based load monitoring systems in strength and conditioning practice. Strength Cond. J. 2018, 40, 76–81. [Google Scholar] [CrossRef]
- Thornton, H.R.; Delaney, J.A.; Duthie, G.M.; Dascombe, B.J. Developing athlete monitoring systems in team sports: Data Analysis and Visualization. Int. J. Sports Physiol. Perform. 2019, 14, 698–705. [Google Scholar] [CrossRef]
- Heyward, O.; Nicholson, B.; Emmonds, S.; Roe, G.; Jones, B. Physical preparation in female rugby codes: An investigation of current practices. Front. Sports Act. Living 2020, 2. [Google Scholar] [CrossRef]
- Nimphius, S. Exercise and Sport Science Failing by Design in Understanding Female Athletes. Int. J. Sports Physiol. Perform. 2019. [Google Scholar] [CrossRef] [PubMed]
- Emmonds, S.; Heyward, O.; Jones, B. The challenge of applying and undertaking research in female sport. Sports Med. Open 2019, 5, 1–4. [Google Scholar] [CrossRef]
- O’Connor, S.; Leahy, R.; Whyte, E.; O’Donovan, P.; Fortington, L. Understanding injuries in the Gaelic sport of camogie: The first national survey of self-reported worst injuries. Int. J. Athl. Ther. Train. 2019. [Google Scholar] [CrossRef]
- O’Connor, S.; Lacey, P. Can we improve coaches’ injury prevention views and implementation practices in the community female Gaelic sport of Camogie? BMJ Open Sport Sci. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Collins, K. Science and the Gaelic sports: Gaelic Football and Hurling. Eur. J. Sport Sci. 2008, 8, 231–240. [Google Scholar] [CrossRef]
- Beasley, K. Nutrition and Gaelic Football: Review, recommendations, and future considerations. Int. J. Sport Nut. Met. 2017, 25, 1–13. [Google Scholar] [CrossRef]
- Duggan, J.D.; Moody, J.A.; Byrne, P.; Ryan, L. Strength & Conditioning recommendations for female GAA athletes: The Camogie player. Strength Cond. J. 2020, 42, 105–124. [Google Scholar]
- Duggan, J.D.; Moody, J.A.; Byrne, P.; McGahan, J.; Kirszenstein, L. Considerations and guidelines on athletic development for youth Gaelic Athletic players. Strength Cond. J. 2021. [Google Scholar] [CrossRef]
- Mangan, S.; Malone, S.; Ryan, M.; McGahan, J.M.; Warne, J.; Martin, D.; Collins, K. The influence of team rating on running performance in elite Gaelic Football. J. Strength Cond. Res. 2018, 32, 2584–2591. [Google Scholar] [CrossRef] [PubMed]
- Mangan, S.; Ryan, M.; Shovlin, A.; McGahan, J.M.; Malone, S.; O’Neill, C.; Collins, K. Seasonal changes in Gaelic Football match-play running performance. J. Strength Cond. Res. 2019, 33, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Rampinini, E.; Coutts, A.J.; Sassi, A.; Marcora, S.M. Use Of RPE-based training load in soccer. Med. Sci. Sports Exerc. 2004, 36, 1042–1047. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Marcora, S.M. Physiological assessment of aerobic training in soccer. J. Sports Sci. 2005, 23, 583–592. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and external load: 15 years on. Int. J. Sports Physiol. Perform. 2018, 14, 270–273. [Google Scholar] [CrossRef]
- Coutts, A.J.; Crowscoft, S.; Kempton, T. Developing athlete monitoring systems: Theoretical basis and practical applications. In Sport, Recovery and Performance: Interdisciplinary Insights; Kellmann, M., Beckmann, J., Eds.; Routledge: London, UK, 2018; pp. 19–32. [Google Scholar]
- Schneider, C.; Hanakam, F.; Wiewelhove, T.; Döweling, A.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Heart Rate monitoring in team sports-A conceptual framework for contextualizing heart rate measures for training and recovery prescription. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef]
- Drew, M.K.; Finch, C.F. The relationship between training load and injury, illness and soreness: A systematic and literature review. Sports Med. 2016, 46, 861–883. [Google Scholar] [CrossRef]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sport Physiol. Perform. 2017, 12, 161–170. [Google Scholar] [CrossRef] [PubMed]
- McCall, A.; Fanchini, M.; Coutts, A.J. Prediction: The modern-day sport-science and sports-medicine “Quest for the holy grail”. Int. J. Sport Physiol. Perform. 2017, 12, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. The training-injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Nassis, G.P.; Oetter, E.; Pretorius, J.; Johnston, N.; Medina, D. The Athlete Monitoring Cycle. A practical guide to interpreting and applying training monitoring data. Br. J. Sports Med. 2017, 51, 1451–1452. [Google Scholar] [CrossRef]
- Malone, S.; Solan, B.; Collins, K. The Running Performance Profile of elite Gaelic Football match-play. J. Strength Cond. Res. 2017, 31, 30–36. [Google Scholar] [CrossRef]
- Malone, S.; Hughes, B.; Roe, M.; Collins, K.; Buchheit, M. Monitoring Player Fitness, Fatigue Status and Running Performance During an In-Season Training Camp in elite Gaelic Football. Sci. Med. Football 2017, 3, 229–236. [Google Scholar] [CrossRef]
- McGahan, J.H.; Mangan, S.; Collins, K.; Burns, C.; Gabbett, T.J.; O’Neill, C. Match-play running demands and technical performance among elite Gaelic Footballers: Does divisional status count? J. Strength Cond. Res. 2021, 35, 169–175. [Google Scholar] [CrossRef]
- Young, D.; Mourot, L.; Beato, M.; Coratella, G. The match heart rate and running profile of elite under-21 Hurlers during competitive match-play. J. Strength Cond. Res. 2018, 32, 2925–2933. [Google Scholar] [CrossRef]
- Young, D.; Malone, S.; Beato, M.; Mourot, L.; Coratella, G. Identification of maximal running intensities during elite Hurling match-play. J. Strength Cond. Res. 2020, 34, 2608–2617. [Google Scholar] [CrossRef]
- Cardinale, M.; Varley, M. Wearable training-monitoring technology: Applications, challenges, and opportunities. Int. J. Sport Physiol. Perform. 2017, 12, 55–62. [Google Scholar] [CrossRef]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: Applications and considerations for using GPS devices in sport. Int. J. Sports Physiol. Perform. 2017, 12, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Curtis, R.M.; Fitzpatrick, J.F.; McLaren, S.J.; Vescovi, J.D. Workload monitoring. In Elite Soccer Players: Maximizing Performance and Safety; Curtis, R.M., Benjamin, C.L., Huggins, R.A., Casa, D.J., Eds.; Routledge: London, UK, 2020; pp. 53–78. [Google Scholar]
- McGuigan, M. Monitoring Training and Performance in Athletes; Human Kinetics: Leeds, UK, 2017; pp. 1–220. [Google Scholar]
- Impellizzeri, F.M.; Menaspà, P.; Coutts, A.J.; Kalkhoven, J.; Menaspà, M.J. Training load and its role in injury prevention, part i: Back to the future. J. Athl. Train. 2020, 55, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Vanrenterghem, J.; Nedergaard, N.J.; Robinson, M.A.; Drust, B. Training load monitoring in team sports: A novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017, 47, 2135–2142. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, R.T.; Atkinson, G.; Drust, B.; Gregson, W. Monitoring fatigue status in elite team-sport athletes: Implications for practice. Int. J. Sport Physiol. Perform. 2017, 12, 27–34. [Google Scholar] [CrossRef]
- Larsson, P. Global positioning systems and sports-specific testing. Sports Med. 2003, 33, 1093–1101. [Google Scholar] [CrossRef]
- Cummins, C.; Orr, R.; O’Connor, H. Global positioning systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Med. 2013, 43, 1025–1042. [Google Scholar] [CrossRef]
- Akenhead, R.; Nassis, G.P. Training load and player monitoring in high-level football: Current practice and perceptions. Int. J. Sports Physiol. Perform. 2016, 115, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Portillo, J.; Gonzalez-Rave, J.; Juarez, D.; Garcıa, J.M.; Suarez-Arrones, L.; Newton, R.U. Comparison of running characteristics and heart rate response of international and national female rugby sevens’ players during competitive matches. J. Strength Cond. Res. 2014, 28, 2281–2289. [Google Scholar] [CrossRef]
- Vescovi, J. Impact of Maximum Speed on Sprint Performance during High-Level Youth Female Field Hockey Matches: Female athletes in motion (FAiM) Study. Int. J. Sports Physiol. Perform. 2014, 9, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Trewin, J.; Meylan, C.; Varley, M.C.; Cronin, J.; Ling, D. Effect of match factors on the running performance of elite female soccer players. J. Strength Cond. Res. 2018, 32, 2002–2009. [Google Scholar] [CrossRef]
- Clarke, A.; Ryan, S.; Couvalias, G.; Dascombe, B.J.; Coutts, A.J.; Kempton, T. Physical demands and technical performance in australian football league women’s (AFLW) competition match-play. J. Sci. Med. Sport 2018, 21, 748–752. [Google Scholar] [CrossRef]
- Young, D.; O’Grady, M.; Coratella, G. The match-play running performance of elite Camogie players across halves of play. Sports Sci. Health 2020. [Google Scholar] [CrossRef]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and metabolic demand of training and match-play in the elite footballer. J. Sports Sci. 2006, 24, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Datson, N.; Drust, B.; Weston, M.; Jarman, I.H.; Lisboa, P.; Gregson, W. Match physical performance of elite female soccer players during international competition. J. Strength Cond. Res. 2017, 31, 2379–2387. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Mohr, M.; Ellingsgaard, H.; Bangsbo, J. physical demands during an elite female soccer game: Importance of training status. Med. Sci. Sports Exerc. 2005, 37, 1242–1248. [Google Scholar] [CrossRef]
- Mohr, M.; Krustrup, P.; Andersson, H.; Kirkendal, D.; Bangsbo, J. Match activities of elite women soccer players at different performance levels. J. Strength Cond. Res. 2008, 22, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.S.; Vescovi, J.D. Velocity thresholds for women’s soccer matches: Sex specificity dictates high-speed running and sprinting thresholds—Female athlete in motion (FAiM). Int. J. Sports Physiol. Perform. 2015, 10, 112–116. [Google Scholar] [CrossRef]
- Andersson, H.; Andersson, H.Å.; Randers, M.B.; Heiner-Møller, A.; Krustrup, P.; Mohr, M. Elite female soccer players perform more high-intensity running when playing in international games compared with domestic games. J. Strength Cond. Res. 2010, 24, 912–919. [Google Scholar] [CrossRef]
- McGuinness, A.; Malone, S.; Hughes, B.; Collins, K. Physical activity and physiological profiles of elite international female field hockey players across the quarters of competitive match play. J. Strength Cond. Res. 2019, 33, 2513–2522. [Google Scholar] [CrossRef]
- Dellaserra, C.L.; Gao, Y.; Ransdell, L. Use of integrated technology in team sports: A review of opportunities, challenges, and future directions for athletes. J Strength Cond. Res. 2014, 28, 556–573. [Google Scholar] [CrossRef]
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2017, 4, 1065–1081. [Google Scholar] [CrossRef]
- Scott, M.T.U.; Scott, T.J.; Kelly, V.G. The Validity and reliability of global positioning systems in team sport: A brief review. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Koch, T.; Meyer, T. Straight line sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.; Owen, A.; Mendes, B.; Hughes, B.; Collins, K.; Gabbett, T.J. High-speed running and sprinting as an injury risk factor in soccer: Can well-developed physical qualities reduce the risk? J. Sci. Med. Sport 2018, 21, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Park, L.; Scott, D.; Lovell, R. Velocity zone classification in elite women’s football: Where do we draw the lines? Sci. Med. Football 2019, 3, 21–28. [Google Scholar] [CrossRef]
- Young, D.; Beato, M.; Mourot, L.; Coratella, G. Match-play temporal and position-specific physical and physiological demands of senior Hurlers. J. Strength Cond. Res. 2020, 34, 1759–1768. [Google Scholar] [CrossRef]
- McFadden, B.A.; Walker, A.J.; Bozzini, B.N.; Sanders, D.J.; Arent, S.M. Comparison of internal and external training loads in male and female collegiate soccer players during practices vs. games. J. Strength Cond. Res. 2020, 34, 969–974. [Google Scholar] [CrossRef]
- Busbridge, A.R.; Hamlin, M.J.; Jowsey, J.A.; Vanner, M.H.; Olsen, P.D. Running demands of provincial women’s rugby union matches in New Zealand. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.B.; Gabbett, T.J. Global Positioning System Data Analysis: Velocity ranges and a new definition of sprinting for field sport athletes. J. Strength Cond. Res. 2012, 26, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Abt, G.; Lovell, R. The use of individualized speed and intensity thresholds for determining the distance run at high-intensity in professional soccer. J. Sport Sci. 2009, 27, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Hunter, F.; Bray, J.; Towlson, C.; Smith, M.; Barrett, S.; Madden, J. Individualisation of time-motion analysis: A method comparison and case report series. Int. J. Sports Med. 2015, 36, 41–48. [Google Scholar] [CrossRef]
- Weston, M. Difficulties in determining the dose-response nature of competitive soccer matches. J. Athl. Enhanc. 2014, 2, 1. [Google Scholar] [CrossRef]
- Rowan, A.; Atkins, S.; Comfort, P. A comparison of maximal aerobic speed and maximal sprint speed in elite youth soccer players. Prof. Strength Cond. J. 2019, 53, 24–29. [Google Scholar]
- Young, W.; Russell, A.; Burge, P.; Clarke, A.; Cormack, S.; Stewart, G. The use of sprint tests for assessment of speed qualities of elite australian rules footballers. Int. J. Sport Physiol. Perform. 2008, 3, 199–206. [Google Scholar] [CrossRef]
- Scott, D.; Lovell, R. Individualization of speed thresholds does not enhance the dose response determination in football training. J. Sport Sci. 2018, 36, 1523–1532. [Google Scholar] [CrossRef]
- Jaspers, A.; Kuyvenhoven, J.P.; Staes, F.; Frencken, W.G.P.; Helsen, W.F.; Brink, M.S. Examination of the external and internal load indicators’ association with overuse injuries in professional soccer players. J. Sci. Med. Sport 2018, 21, 579–585. [Google Scholar] [CrossRef]
- Harper, D.J.; Kiely, J. Damaging nature of decelerations: Do we adequately prepare players. BMJ Open 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Sparkes, W.; Northeast, J.; Cook, C.J.; Love, T.D.; Bracken, R.M.; Kilduff, L.P. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J. Strength Cond. Res. 2016, 30, 2839–2844. [Google Scholar] [CrossRef] [PubMed]
- Thornton, H.R.; Nelson, A.R.; Delaney, J.A.; Serpiello, F.R.; Duthie, G.M. Interunit reliability and effect of data-processing methods of global positioning systems. Int. J. Sports Physiol. Perform. 2019, 14, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, P.; Alberti, G.; Iaia, F.M. Estimated metabolic and mechanical demands during different small-sided games in elite soccer players. Hum. Mov. Sci. 2014, 36, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.; Brickley, G.; Smeeton, N.J.; Mills, S. Individualizing acceleration in English Premier League academy soccer players. J. Strength Cond. Res. 2018, 32, 3512–3519. [Google Scholar] [CrossRef] [PubMed]
- Sonderegger, K.; Tscopp, M.; Taube, W. The challenge of evaluating the intensity of short actions in soccer: A new methodological approach using percentage acceleration. PLoS ONE 2016, 11, e0166534. [Google Scholar] [CrossRef]
- Griffin, J.; Newans, T.; Horan, S.; Keogh, J.; Andreatta, M.; Minahan, C. Acceleration and High-Speed Running Profiles of Women’s International and Domestic Football Matches. Front. Sports Act. Living 2021, 3, 604605. [Google Scholar] [CrossRef]
- di Prampero, P.E.; Osgnach, C. Metabolic power in team sports—Part 1: An Update. Int. J. Sports Med. 2018, 39, 581–587. [Google Scholar] [CrossRef]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; di Prampero, P.E. Energy cost and metabolic power in elite soccer: A new match analysis approach. Med. Sci. Sports Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef]
- Buchheit, M.; Al Haddad, H.; Simpson, B.M.; Palazzi, D.; Bourdon, P.C.; Di Salvo, V.; Mendez-Villanueva, A. Monitoring accelerations with GPS in football: Time to slow down? Int. J. Sports Physiol. Perform. 2014, 9, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Dwyer, D.B.; Robertson, S.J.; Gastin, P.B. Metabolic power method: Underestimation of energy expenditure in field-sport movements using a Global Positioning System tracking system. Int. J. Sports Physiol. Perform. 2016, 11, 1067–1073. [Google Scholar] [CrossRef]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 73, 1–19. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P. Science and Application of High-Intensity Interval Training: Solutions to the Programming Puzzle, 1st ed.; Human Kinetics: Leeds, UK, 2019; pp. 1–443. [Google Scholar]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Berkelmans, D.M.; Dalbo, V.J.; Kean, C.O.; Milanović, Z.; Stojanović, E.; Stojiljković, N.; Scanlan, A.T. Heart rate monitoring in basketball: Applications, player responses, and practical recommendations. J. Strength Cond. Res. 2018, 32, 2383–2399. [Google Scholar] [CrossRef] [PubMed]
- Sanders, G.J.; Boos, B.; Rhodes, J.; Kollock, R.O.; Peacock, C.A. Competition-based heart rate, training load, and time played above 85% peak heart rate in NCAA division I women’s basketball. J. Strength Cond. Res. 2021, 35, 1095–1102. [Google Scholar] [CrossRef]
- Strauss, A.; Sparkes, M.; Pienaar, C. The use of GPS analysis to quantify the internal and external match demands of semi-elite level female soccer players during a tournament. J. Sport Sci. Med. 2019, 18, 73–81. [Google Scholar]
- Banister, E.; Calvert, T.; Savage, M.; Bach, T. A systems model of training for athletic performance. Aust. J. Sports Med. 1975, 7, 57–61. [Google Scholar]
- Banister, E. Modelling elite athletic performance. In Physiological Testing of the High-Performance Athlete; Green, H., McDougal, J., Wegner, H., Eds.; Human Kinetics: Champaign, IL, USA, 1991; pp. 403–424. [Google Scholar]
- Malone, S.; Hughes, B.; Collins, K. Effect of training load distribution on aerobic fitness measures in hurling players. J. Strength Cond. Res. 2019, 33, 825–830. [Google Scholar] [CrossRef]
- Coutts, A.J.; Cormack, S. Monitoring the training response. In High Performance Training for Sports; Joyce, D., Lewindon, D., Eds.; Human Kinetics: Leeds, UK, 2014; pp. 71–85. [Google Scholar]
- Fox, J.L.; Scanlan, A.T.; Stanton, R. A review of player monitoring approaches in basketball: Current trends and future directions. J. Strength Cond. Res. 2017, 1, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S. Heart Rate Monitoring Book, 1st ed.; Fleet Feet Press: Sacramento, CA, USA, 1993; pp. 1–141. [Google Scholar]
- Scanlan, A.; Wen, N.; Tucker, P.; Dalbo, V. The relationships between internal and external training load models during basketball training. J. Strength Cond. Res. 2014, 28, 239–2405. [Google Scholar] [CrossRef]
- Scanlan, A.; Wen, N.; Tucker, P.; Borges, N.; Dalbo, V. Training mode’s influence on the relationships between training-load models during basketball conditioning. Int. J. Sports Physiol. Perform. 2014, 9, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Hoyos, J.; Santalla, A.; Earnest, C.; Chicharro, J.L. Tour de France versus Vuelta a Espana: Which is harder? Med. Sci. Sports Exerc. 2003, 35, 872–878. [Google Scholar] [PubMed]
- Scanlan, A.T.; Fox, J.L.; Poole, J.L.; Conte, D.; Milanović, Z.; Lastella, M.; Dalbo, V.J. A comparison of traditional and modified Summated-Heart-Rate-Zones models to measure internal training load in basketball players. Meas. Phys. Educ. Exerc. Sci. 2018, 22, 303–309. [Google Scholar] [CrossRef]
- Stagno, K.M.; Thatcher, R.; van Someren, K.A. A modified TRIMP to quantify the in-season training load of team sport players. J. Sports Sci. 2009, 25, 629–634. [Google Scholar] [CrossRef]
- Manzi, V.; Iellamo, F.; Impellizzeri, F.; D’Ottavio, S.; Castagna, C. Relation between individualized training impulses and performance in distance runners. Med. Sci. Sports Exerc. 2009, 41, 2090–2096. [Google Scholar] [CrossRef]
- Mara, J.K.; Thompson, K.G.; Pumpa, K.L. Physical and physiological characteristics of various-sided games in elite women’s soccer. Int. J. Sports Physiol. Perform. 2016, 11, 953–958. [Google Scholar] [CrossRef]
- Castagna, C.; Impellizzeri, F.M.; Chaouachi, A.; Manzi, V. Preseason variations in aerobic fitness and performance in elite-standard soccer players: A team study. J. Strength Cond. Res. 2013, 27, 2959–2965. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Scott, B.R.; Janse de Jonge, X.A.K. Quantifying session ratings of perceived exertion for field-based speed training methods in team sport athletes. J. Strength Cond. Res. 2012, 26, 2721–2728. [Google Scholar] [CrossRef] [PubMed]
- Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998, 30, 64–68. [Google Scholar] [CrossRef]
- Wallace, L.; Coutts, A.J.; Bell, J.; Simpson, N.; Slattery, K. Using Session-RPE to monitor training load in swimmers. Strength Cond. J. 2008, 30, 72–76. [Google Scholar] [CrossRef]
- Foster, C.J.A.; Florhaug, J.; Franklin, L.; Gottschall, L.A.; Hrovatin, P.S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Alexiou, H.; Coutts, A.J. A comparison of methods used for quantifying internal training load in women soccer players. Int. J. Sport Physiol. Perform. 2008, 3, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.A.; Moreira, A.; Crewther, B.T.; Nosaka, K.; Viveiros, L.; Aoki, M.S. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program. J. Strength Cond. Res. 2014, 28, 2973–2980. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.A.; Brito, J.; Nakamura, F.Y.; Figueiredo, P.; Rebelo, A. Using the rating of perceived exertion and heart rate to quantify training intensity in female soccer players: Validity and utility. J Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- McGuinness, A.; McMahon, G.A.; Malone, S.; Kenna, D.; Passmore, D.; Collins, K. Monitoring wellness, training load, and running performance during a major international female field hockey tournament. J. Strength Cond. Res. 2020, 34, 2312–2320. [Google Scholar] [CrossRef] [PubMed]
- Lago-Fuentes, C.; Jiménez-Loaisa, A.; Padrón-Cabo, A.; Fernández-Villarino, M.; Mecías-Calvo, M.; Travassos, B.; Rey, E. Monitoring workloads of a professional female futsal team over a season: A case study. Sports 2020, 8, 69. [Google Scholar] [CrossRef]
- Tiernan, C.; Comyns, T.; Lyons, M.; Nevill, A.M.; Warrington, G. The association between training load indices and injuries in elite soccer players. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Christen, J.; Foster, C.; Porcari, J.P.; Mikat, R.P. Temporal robustness of the session rating of perceived exertion. Int. J. Sports Physiol. Perform. 2016, 11, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Fanchini, M.; Ferraresi, I.; Petruolo, A.; Azzalin, A.; Ghielmetti, R.; Schena, F.; Impellizzeri, F.M. Is a retrospective RPE appropriate in soccer? Response shift and recall bias. Sci. Med. Football 2016, 1, 53–59. [Google Scholar] [CrossRef]
- Singh, F.; Foster, C.; Tod, D.; McGuigan, M.R. Monitoring different types of resistance training using session rating of perceived exertion. Int. J. Sports Physiol. Perform. 2007, 2, 34–45. [Google Scholar] [CrossRef] [PubMed]
- McLaren, S.J.; Macpherson, T.W.; Coutts, A.J.; Hurst, C.; Spears, I.R.; Weston, M. the relationships between internal and external measures of training load and intensity in team sports: A meta-analysis. Sports Med. 2018, 48, 641–658. [Google Scholar] [CrossRef] [PubMed]
- Flatt, A.A.; Esco, M.R. Smartphone-derived heart-rate variability and training load in a women’s soccer team. Int. J. Sports Physiol. Perform. 2015, 10, 994–1000. [Google Scholar] [CrossRef]
- Foster, C.; Boullosa, D.; McGuigan, M.; Fusco, A.; Cortis, C.; Arney, B.E.; Orton, B.; Dodge, C.; Jaime, S.; Radtke, K.; et al. 25 years of session rating of perceived exertion: Historical perspective and development. Int. Sports Physiol. Perform. 2021, 16, 612–621. Available online: https://journals.humankinetics.com/view/journals/ijspp/aop/article-10.1123-ijspp.2020-0599/article-10.1123-ijspp.2020-0599.xml (accessed on 1 April 2021).
- Putlur, P.; Foster, C.; Miskowski, J.A.; Kane, M.K.; Burton, S.E.; Scheett, T.P.; McGuigan, M.R. Alteration of immune function in women collegiate soccer players and college students. J. Sports Sci. Med. 2004, 3, 234–243. [Google Scholar]
- Rogalski, B.; Dawson, B.; Heasman, J.; Gabbett, T.J. Training and game loads and injury risk in elite Australian footballers. J. Sci. Med. Sport 2013, 16, 409–503. [Google Scholar] [CrossRef]
- Blanch, P.; Gabbett, T.J. Has the athlete trained enough to return to play safely? The acute:chronic workload ratio permits clinicians to quantify a player’s risk of subsequent injury. Br. J. Sports Med. 2016, 50, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Delecroix, B.; McCall, A.; Dawson, B.; Berthoin, S.; Dupont, G. Workload monotony, strain and non-contact injury incidence in professional football players. Sci. Med. Football 2018, 3, 105–108. [Google Scholar] [CrossRef]
- Cristina-Souza, G.; Santos-Mariano, A.C.; Souza-Rodrigues, C.C.; Osiecki, R.; Silva, S.F.; Lima-Silva, A.F.; De Oliveira, F.R. Menstrual cycle alters training strain, monotony, and technical training length in young. J. Sports Sci. 2019, 37, 1824–1830. [Google Scholar] [CrossRef]
- Menaspà, M.J.; Menaspà, P.; Clark, S.A.; Fanchini, M. Validity of the online athlete management system to assess training load. Int. J. Sports Physiol. Perform. 2018, 13, 750–754. [Google Scholar] [CrossRef]
- McLaren, S.J.; Smith, A.; Bartlett, J.D.; Spears, I.R.; Weston, M. Differential training loads and individual fitness responses to pre-season in professional rugby union players. J. Sports Sci. 2018, 21, 2438–2446. [Google Scholar] [CrossRef] [PubMed]
- McLaren, S.J.; Smith, A.; Spears, I.R.; Weston, M. A detailed quantification of differential ratings of perceived exertion during team-sport training. J. Sci. Med. Sport 2017, 20, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.D.; Songane, F.; Emmonds, S.; Chesterton, P.; Weston, M.; McLaren, S.J. Differential ratings of perceived match and training exertion in girls’ soccer. Int. J. Sports Physiol. Perform. 2020, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.L.; Chapman, D.W.; Cronin, J.; Newton, M.J.; Gill, N. Fatigue monitoring in high performance sport: A survey of current trends. J. Aust. Strength Cond. 2012, 20, 12–23. [Google Scholar]
- Faude, O.; Kellmann, M.; Ammann, T.; Schnittker, R.; Meyer, T. Seasonal changes in stress indicators in high level football. Int. J. Sports Med. 2011, 32, 259–265. [Google Scholar] [CrossRef]
- Saw, A.E.; Main, L.C.; Gastin, P.B. Monitoring the athlete training response: Subjective self-reported measures trump commonly used objective measures: A systematic review. Br. J. Sports Med. 2016, 50, 281–291. [Google Scholar] [CrossRef]
- Kellmann, M. Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scand. J. Med. Sci. Sports 2010, 20, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hooper, S.L.; Mackinnon, L.T. Monitoring overtraining in athletes. Sports Med. 1995, 20, 321–327. [Google Scholar] [CrossRef]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A. Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur. J. Sport Sci. 2013, 13, 1–24. [Google Scholar] [CrossRef]
- di Fronso, S.; Nakamura, F.Y.; Bortoli, L.; Robazza, C.; Bertollo, M. Stress and recovery balance in amateur basketball players: Differences by gender and preparation phase. Int. J. Sports Physiol. Perform. 2013, 8, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Kellmann, M.; Altenburg, D.; Lormes, W.; Steinacker, J.M. Assessing stress and recovery during preparation for the world championships in rowing. Sport Psychol. 2001, 15, 151–167. [Google Scholar] [CrossRef]
- McNair, P.; Lorr, M.; Droppleman, L. POMS Manual, 2nd ed.; Education and Industrial Testing Service: San Diego, CA, USA, 1981. [Google Scholar]
- Rushall, B.S. A tool for measuring stress tolerance in elite athletes. J. Appl. Sport Psychol. 1990, 2, 51–66. [Google Scholar] [CrossRef]
- Kellmann, M.; Kallus, K. Recovery-Stress Questionnaire for Athletes: User manual, 1st ed.; Pearson: Frankfurt, Germany, 2016; pp. 1–357. [Google Scholar]
- Gastin, P.B.; Meyer, D.; Robinson, D. Perceptions of wellness to monitor adaptive responses to training and competition in elite Australian football. J. Strength Cond. Res. 2013, 27, 2518–2526. [Google Scholar] [CrossRef]
- Campbell, P.G.; Stewart, I.B.; Sirotic, A.C.; Minett, G.M. Does exercise intensity affect wellness scores in a dose-like fashion? Eur. J. Sport Sci. 2020, 20, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.G.; Stewart, I.B.; Sirotic, A.C.; Drovandi, B.C.; Foy, H.; Minett, G.M. Analysing the predictive capacity and dose-response of wellness in load monitoring. J. Sports Sci. 2021. [Google Scholar] [CrossRef]
- Mackinnon, L.T.; Hooper, S.L. Plasma glutamine and upper respiratory tract infection during intensified training in swimmers. Med. Sci. Sports Exerc. 1996, 28, 285–290. [Google Scholar]
- Killen, N.M.; Gabbett, T.J.; Jenkins, D.G. Training loads and incidence of injury during the preseason in professional rugby league players. J. Strength Cond. Res. 2010, 24, 2079–2084. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, M.J.; Wilkes, D.; Elliot, C.A.; Lizamore, C.A.; Kathiravel, Y. Monitoring training loads and perceived stress in young elite university athletes. Front. Physiol. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- Watson, A.; Brickson, S.; Brooks, A.; Dunn, W. Subjective well-being and training load predict in-season injury and illness risk in female youth soccer players. Br. J. Sports Med. 2017, 51, 194–199. [Google Scholar] [CrossRef]
- Cullen, B.D.; McCarren, A.L.; Malone, S. Ecological validity of self-reported wellness measures to assess pre-training and pre-competition preparedness within elite Gaelic football. Sport Sci. Health 2020. [Google Scholar] [CrossRef]
- Jeffries, A.C.; Wallace, L.; Coutts, A.J.; McLaren, S.J.; McCall, A.; Impellizzeri, F.M. Athlete-reported outcome measures for monitoring training responses: A systematic review of risk of bias and measurement property quality according to the COSMIN guidelines. Int. J. Sports Physiol. Perform. 2020, 15, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Saw, A.E.; Main, L.C.; Gastin, P.B. Role of a self-report measure in athlete preparation. J. Strength Cond. Res. 2015, 29, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.; Spiteri, T.; Piggott, B.; Bonhotal, J.; Haff, G.G.; Joyce, C. Monitoring and managing fatigue in Basketball. Sports 2018, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.H.; Fitz-Clarke, J.R.; Banister, E.W. Modelling human performance in running. J. Appl. Physiol. 1990, 69, 1171–1177. [Google Scholar] [CrossRef]
- Morton, R.H. Modelling training and overtraining. J. Sports Sci. 2001, 15, 335–340. [Google Scholar] [CrossRef]
- Fitz-Clarke, J.R.; Morton, R.H.; Banister, E.W. Optimizing athletic performance by influence curves. J. Appl. Physiol. 1991, 71, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- West, S.W.; Clubb, J.; Torres-Ronda, L.; Howells, D.; Leng, E.; Vescovi, J.D.; Carmody, S.; Posthumus, M.; Dalen-Lorentsen, T.; Windt, J. More than a metric: How training load is used in elite sport for athlete management. Int. J. Sports Med. 2021, 42, 300–306. [Google Scholar] [CrossRef]
- Malone, S.; Hughes, B.; Doran, D.A.; Collins, K.; Gabbett, T.J. Can the workload-injury relationship be moderated by improved strength, speed and repeated-sprint qualities? J. Sci. Med. Sport 2019, 22, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.; Collins, K.; McRoberts, A.; Doran, D. Understanding the association between external training load measures and injury risk in Elite Gaelic football. J. Sports Med. Phys. Fit. 2021, 16, 233–243. [Google Scholar]
- Windt, J.; Gabbett, T.J.; Ferris, D.; Khan, K.M. Training load-injury paradox: Is greater preseason participation associated with lower in-season injury risk in elite rugby league players? Br. J. Sports Med. 2017, 51, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Hulin, B.T.; Gabbett, T.J.; Blanch, P.; Chapman, P.; Bailey, D.; Orchard, J.W. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br. J. Sports Med. 2014, 48, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. Applying the acute:chronic workload ratio in elite football. Worth the effort? Br. J. Sports Med. 2017, 51, 1325–1327. [Google Scholar] [CrossRef] [PubMed]
- Carey, D.L.; Blanch, P.; Ong, K.; Crossley, K.M.; Crow, J.; Morris, M.E. Training loads and injury risk in Australian football-differing acute: Chronic workload ratios influence match injury risk. Br. J. Sports Med. 2017, 51, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Lolli, L.; Batterham, A.M.; Hawkins, R.; Kelly, D.M.; Strudwick, A.J.; Thorpe, R.; Gregson, W.; Atkinson, G. Mathematical coupling causes spurious correlation within the conventional acute-to-chronic workload ratio calculations. Br. J. Sports Med. 2019, 53, 921–922. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Tenan, M.S.; Kempton, T.; Novak, A.; Coutts, A.J. Acute:chronic workload ratio: Conceptual issues and fundamental pitfalls. Int. J. Sports Physiol. Perform. 2020, 15, 907–913. [Google Scholar] [CrossRef]
- Wang, C.; Vargas, J.T.; Stokes, T.; Steele, R.; Shier, I. Analysing activity and injury: Lessons learned from the acute:chronic workload ratio. Sports Med. 2020, 50, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.; Coutts, A.J.; Pruna, R.; McCall, A. Putting the “I” back in team. Int. J. Sports Physiol. Perform. 2018, 13, 1107–1111. Available online: https://journals.humankinetics.com/view/journals/ijspp/13/8/article-p1107.xml (accessed on 3 April 2021). [CrossRef]
- Turner, A.; Brazier, J.; Bishop, C.; Chavda, S.; Cree, J.; Read, P. Data analysis for strength and conditioning coaches. Strength Cond. J. 2015, 37, 76–83. [Google Scholar]
- Buchheit, M. Want to see my report, coach? Sport science reporting in the real world. Asp. Sport Med. J. 2017, 6, 36–42. [Google Scholar]
- Turner, A.N.; Jones, B.; Stewart, P.; Bishop, C.; Parmar, N.; Chavda, S.; Read, P. Total score of athleticism: Holistic athlete profiling to enhance decision-making. Strength Cond. J. 2019, 41, 91–101. [Google Scholar] [CrossRef]
- McGuigan, M.R.; Cormack, S.J.; Gill, N.D. Strength and power profiling of athletes: Selecting tests and how to use the information for program design. Strength Cond. J. 2013, 35, 7–14. [Google Scholar] [CrossRef]
- Robertson, S.; Bartlett, J.D.; Gastin, P.B. Red, amber, or green? Athlete monitoring in team sport: The need for decision-support systems. Int. J. Sports Physiol. Perform. 2017, 12, 273–279. [Google Scholar] [CrossRef]
- Pettitt, R.W. Evaluating strength and conditioning tests with z scores: Avoiding common pitfalls. Strength Cond. J. 2010, 32, 100–103. [Google Scholar] [CrossRef]
- Buchheit, M. Magnitudes matter more than beetroot juice. Sports Perform. Sci. Rep. 2018, 15, 1–3. [Google Scholar]
- Bernards, J.R.; Sato, K.; Haff, G.G.; Bazyler, C.D. Current research and statistical practices in sport science and a need for change. Sports 2017, 5, 87. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Hawley, J.A.; Burke, L.M. Design and analysis of research on sport performance enhancement. Med. Sci. Sports Exerc. 1999, 31, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. the numbers will love you back in return-I promise. Int. J. Sports Physiol. Perform. 2016, 11, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.P. The effect size statistic—Applications for the strength and conditioning coach. Strength Cond. J. 2013, 35, 37–40. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Lawrence Erlbaum: New Jersey, NY, USA, 1988; pp. 1–567. [Google Scholar]
- Gentles, J.A.; Hornsby, G.; Stone, M.H. Interpretation of results. In Performance Assessment in Strength & Conditioning; Comfort, P., Jones, P.A., McMahon, J.J., Eds.; Routledge: London, UK, 2019; pp. 292–312. [Google Scholar]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Lacome, M.; Simpson, B.; Buchheit, M. Monitoring training status with player-tracking technology. Still on the way to Rome. Aspetar. J. 2018, 7, 55–63. [Google Scholar]
TL Monitoring Tools | Advantages | Disadvantages |
---|---|---|
GPS |
|
|
HR Metrics |
|
|
RPE |
|
|
ASRM/RTT |
|
|
External Measures | ||||
Variables | Frequency | Objective | Analysis Method | Interpretations of Analysis data |
GPS TD Acc/Decel HSR VHSR MP | Field-based sessions | Measure of external field-based metrics | Avoid large spikes in week-to-week workload (10%) (Principle of progressive overload). Observe acute TL and chronic TL. Daily Readiness: SWC: TD: HSR Dist > 14.4 km/h: MP: Between player normalization: SWC: TD: Dist > 14.4 km/h: MP: Acc: 2% | |
Training Load | Weekly | Z-score relative to individual baseline measure | Avoid large spikes in week-to-week workload (10%) (principle of progressive overload). Observe acute TL and chronic TL. Z-score ≤ −1.5 | |
Internal Measures | ||||
Variables | Frequency | Objective | Analysis Method | Interpretations of Analysis data |
HR | Field-based session | Measure internal field-based metrics | SHRZ, Bannister’s TRIMP | Avoid large spikes in week to week workload (10%) SWC |
Session RPE | Every session | Measure perceived exertion | Z-score relative to individual baseline measure | Z-score ≤ −1.5 |
Monotony | Weekly | Measure uniformity and training variation | Z-score relative to baseline score | Z-score ≤ −1.5 |
Strain | Weekly | Measure overall training load and monotony | Z-score ≤ −1.5 | |
Variables | Frequency | Objective | Analysis Method | Interpretations of Analysis data |
Physio-Psycho measures | ||||
ASRM RTT (sleep quality, sleep duration, and muscle soreness) | 2 to 3 per week | Measure overall wellness and quality of sleep, muscle soreness, fatigue, stress | Change in raw score per individual | Z-score ≤ −1.5 + 2.0 on measurement item = positive or negative change |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duggan, J.D.; Moody, J.A.; Byrne, P.J.; Cooper, S.-M.; Ryan, L. Training Load Monitoring Considerations for Female Gaelic Team Sports: From Theory to Practice. Sports 2021, 9, 84. https://doi.org/10.3390/sports9060084
Duggan JD, Moody JA, Byrne PJ, Cooper S-M, Ryan L. Training Load Monitoring Considerations for Female Gaelic Team Sports: From Theory to Practice. Sports. 2021; 9(6):84. https://doi.org/10.3390/sports9060084
Chicago/Turabian StyleDuggan, John D., Jeremy A. Moody, Paul J. Byrne, Stephen-Mark Cooper, and Lisa Ryan. 2021. "Training Load Monitoring Considerations for Female Gaelic Team Sports: From Theory to Practice" Sports 9, no. 6: 84. https://doi.org/10.3390/sports9060084
APA StyleDuggan, J. D., Moody, J. A., Byrne, P. J., Cooper, S.-M., & Ryan, L. (2021). Training Load Monitoring Considerations for Female Gaelic Team Sports: From Theory to Practice. Sports, 9(6), 84. https://doi.org/10.3390/sports9060084