The Microstructural Evolution of Nickel Single Crystal under Cyclic Deformation and Hyper-Gravity Conditions: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crack Model Analysis under Zero-Gravity Conditions
3.2. Crack Model Analysis under Hyper-Gravity Conditions
3.3. Temperature Effect
3.4. [110](−110) and [11−2](111) Crack Models under Hyper-Gravity Conditions
4. Conclusions
- (1)
- A gradient tension–compression stress distribution is created under hyper-gravity conditions. The dynamical mechanical properties present different behaviors with statical simulation. The fatigue crack life is decreasing with increased hyper-gravity intensity.
- (2)
- The critical stress is strongly dependent on the hyper-gravity intensities and temperatures, which decrease with the increase in hyper-gravity and elevated temperature, indicating a reducing barrier of plastic deformation.
- (3)
- A brittle-to-ductile transition occurs between temperatures of 1 and 300 K in the [001](010) crack model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollock, T.M.; Tin, S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Zhao, S.; Xie, X.; Smith, G.D.; Patel, S.J. Microstructural stability and mechanical properties of a new nickel-based superalloy. Mater. Sci. Eng. A 2003, 355, 96–105. [Google Scholar] [CrossRef]
- Pollock, T.M. Alloy design for aircraft engines. Nat. Mater. 2016, 15, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, P. Fatigue damage and crack growth in aluminium alloys. Acta Met. 1963, 11, 703–715. [Google Scholar] [CrossRef]
- Laird, C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In Fatigue Crack Propagation; ASTM International: West Conshohocken, PA, USA, 1967. [Google Scholar]
- Laird, C.; Smith, G.C. Crack propagation in high stress fatigue. Philos. Mag. 1962, 7, 847–857. [Google Scholar] [CrossRef]
- Machová, A.; Pokluda, J.; Uhnáková, A.; Hora, P. 3D atomistic studies of fatigue behaviour of edge crack (001) in bcc iron loaded in mode I and II. Int. J. Fatigue 2014, 66, 11–19. [Google Scholar] [CrossRef]
- Akbarian, S.; Dehghani, K. On the molecular dynamics simulation of fatigue behavior of pre-cracked aluminum chip for NEMS application: Effect of cyclic loading mode and surface roughness geometry. Int. J. Fatigue 2020, 135, 105570. [Google Scholar] [CrossRef]
- Ma, L.; Xiao, S.; Deng, H.; Hu, W. Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading. Int. J. Fatigue 2014, 68, 253–259. [Google Scholar] [CrossRef]
- Chowdhury, P.B.; Sehitoglu, H.; Rateick, R.G.; Maier, H.J. Modeling fatigue crack growth resistance of nanocrystalline alloys. Acta Mater. 2013, 61, 2531–2547. [Google Scholar] [CrossRef]
- Horstemeyer, M.; Farkas, D.; Kim, S.; Tang, T.; Potirniche, G. Nanostructurally small cracks (NSC): A review on atomistic mod-eling of fatigue. Int. J. Fatigue 2010, 32, 1473–1502. [Google Scholar] [CrossRef]
- Potirniche, G.; Horstemeyer, M.; Jelinek, B.; Wagner, G. Fatigue damage in nickel and copper single crystals at nanoscale. Int. J. Fatigue 2005, 27, 1179–1185. [Google Scholar] [CrossRef]
- Potirniche, G.P.; Horstemeyer, M. On the growth of nanoscale fatigue cracks. Philos. Mag. Lett. 2006, 86, 185–193. [Google Scholar] [CrossRef]
- Potirniche, G.; Horstemeyer, M.; Gullett, P.; Jelinek, B. Atomistic modelling of fatigue crack growth and dislocation structuring in FCC crystals. Proc. R. Soc. A Math. Phys. Eng. Sci. 2006, 462, 3707–3731. [Google Scholar] [CrossRef]
- Farkas, D.; Willemann, M.; Hyde, B. Atomistic Mechanisms of Fatigue in Nanocrystalline Metals. Phys. Rev. Lett. 2005, 94, 165502. [Google Scholar] [CrossRef] [Green Version]
- Ladinek, M.; Hofer, T. On the Influence of Loading Order in Nanostructural Fatigue Crack Propagation in BCC Iron—A Molecular Dynamics Study. Metals 2019, 9, 684. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-P.; Li, Y.-L.; Sun, X.-Y. Molecular dynamics simulation-based cohesive zone representation of fatigue crack growth in a single crystal nickel. Comput. Mater. Sci. 2015, 109, 66–75. [Google Scholar] [CrossRef]
- Yang, Y.; Imasogie, B.; Fan, G.; Liaw, P.K.; Soboyejo, W. Fatigue and Fracture of a Bulk Nanocrystalline NiFe Alloy. Met. Mater. Trans. A 2008, 39, 1145–1156. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S. Molecular Dynamics Simulation of Crack Propagation in Nanoscale Polycrystal Nickel Based on Different Strain Rates. Metals 2017, 7, 432. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, X.; Chen, C. Atomistic mechanisms of fatigue in nanotwinned metals. Acta Mater. 2015, 99, 77–86. [Google Scholar] [CrossRef]
- Xiao, Y.; Deng, X.; Ma, Y.; Huang, B.; Hu, W. Molecular dynamics study of fatigue behavior of nickel single-crystal under cyclic shear deformation and hyper-gravity condition. Model. Simul. Mater. Sci. Eng. 2022, 30, 055006. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Mishin, Y.; Farkas, D.; Mehl, M.; Papaconstantopoulos, D. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 1999, 59, 3393. [Google Scholar] [CrossRef] [Green Version]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Honeycutt, J.D.; Andersen, H.C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 1987, 91, 4950–4963. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 2010, 18, 085001. [Google Scholar] [CrossRef]
- Hu, N.; Huang, Y.; Wang, K.; Hu, W.; Chen, J.; Deng, H. Solidification of Undercooled Liquid under Supergravity Field by Phase-Field Crystal Approach. Metals 2022, 12, 232. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, X.; Xiao, S.; Deng, H.; Huang, B.; Zhu, W.; Hu, W. Effect of particle packing and density on shock response in ordered arrays of Ni + Al nanoparticles. Phys. Chem. Chem. Phys. 2019, 21, 7272–7280. [Google Scholar] [CrossRef]
- Xiong, Y.; Xiao, S.; Deng, H.; Zhu, W.; Hu, W. Investigation of the shock-induced chemical reaction (SICR) in Ni + Al nanoparticle mixtures. Phys. Chem. Chem. Phys. 2017, 19, 17607–17617. [Google Scholar] [CrossRef]
Crack Direction | L (nm) | H (nm) | W (nm) | Hcrack (nm) | Wcrack (nm) | Number of Atoms |
---|---|---|---|---|---|---|
[001](010) | 64.4 | 10.6 | 28.2 | 0.7 | 2.8 | 1,754,250 |
[110](−110) | 65.2 | 10.9 | 28.2 | 1.0 | 2.8 | 1,841,281 |
[11−2](111) | 64.4 | 11.0 | 27.8 | 0.7 | 2.8 | 1,800,996 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Xiao, Y.; Ma, Y.; Huang, B.; Hu, W. The Microstructural Evolution of Nickel Single Crystal under Cyclic Deformation and Hyper-Gravity Conditions: A Molecular Dynamics Study. Metals 2022, 12, 1128. https://doi.org/10.3390/met12071128
Deng X, Xiao Y, Ma Y, Huang B, Hu W. The Microstructural Evolution of Nickel Single Crystal under Cyclic Deformation and Hyper-Gravity Conditions: A Molecular Dynamics Study. Metals. 2022; 12(7):1128. https://doi.org/10.3390/met12071128
Chicago/Turabian StyleDeng, Xiaojuan, Yudi Xiao, Yiwu Ma, Bowen Huang, and Wangyu Hu. 2022. "The Microstructural Evolution of Nickel Single Crystal under Cyclic Deformation and Hyper-Gravity Conditions: A Molecular Dynamics Study" Metals 12, no. 7: 1128. https://doi.org/10.3390/met12071128
APA StyleDeng, X., Xiao, Y., Ma, Y., Huang, B., & Hu, W. (2022). The Microstructural Evolution of Nickel Single Crystal under Cyclic Deformation and Hyper-Gravity Conditions: A Molecular Dynamics Study. Metals, 12(7), 1128. https://doi.org/10.3390/met12071128