Deformation Mechanism of Solidified Ti3Al Alloys with Penta Twins under Shear Loading
Abstract
:1. Introduction
2. Simulation Methodology
2.1. EAM Potential
2.2. Simulation Details
3. Results
3.1. Induced Solidification
3.2. Shear Characteristics
3.3. Plastic Deformation Due to the Interaction between Dislocations and TBs
4. Discussion
5. Conclusions
- (1)
- A sample with multiple twins can be obtained by induced solidification using penta-twinned structures under a quenching rate of 1.0 × 1011 K/s, during which induced penta twins are formed by FCC nanocrystals with tetrahedral shapes, and defective multitwinned regions can also be observed.
- (2)
- Dislocations nucleate and propagate easier in defective multitwinned regions than in regions without defects, as defects reduce the stress needed to deform a sample. Correspondingly, defects outside the regular penta twins enhance the nucleation and propagation of dislocations on TBs serving as the surfaces of the regular penta twins. Thus, dislocations nucleate and further propagate on TBs in the penta twins, causing the failure of the penta twins.
- (3)
- The slip system of a Ti3Al alloy with multitwinned structures is the {0 0 0 1} <−2 1 1 0> basal slip under shear loading, and there are obvious strain-hardening effects during deformation. The slip path in TBs is divided into two steps: the {0 0 0 1} crystalline plane slips along <−1 1 0 0> first and then along <−1 0 1 0>.
- (4)
- Interactions between Shockley dislocations and TBs cause the migration of TB and the failure of penta twins, which could be the mechanism of plastic deformation in Ti3Al alloys with penta twins.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Appel, F.; Clemens, H.; Fischer, F.D. Modeling Concepts for Intermetallic Titanium Aluminides. Prog. Mater. Sci. 2016, 81, 55–124. [Google Scholar] [CrossRef]
- Kim, S.W.; Hong, J.K.; Na, Y.S.; Yeom, J.T.; Kim, S.E. Development of Tial Alloys with Excellent Mechanical Properties and Oxidation Resistance. Mater. Design 2014, 54, 814–819. [Google Scholar] [CrossRef]
- Schnabel, J.E.; Scheider, I. Crystal Plasticity Modeling of Creep in Alloys with Lamellar Microstructures at the Example of Fully Lamellar TiAl. Front. Mater. 2021, 75, 81187. [Google Scholar] [CrossRef]
- Cao, H.; Chen, W.K.; Rui, Z.Y.; Yan, C.F. Effects of Orientation and Twin Boundary Spacing on the Mechanical Behaviour of Gamma-Tial Alloy. Mol. Simulat. 2022, 48, 231–246. [Google Scholar] [CrossRef]
- Shi, C.C.; Lu, Z.; Zhang, K.F.; Deng, L.W.; Wang, C. Microstructure Evolution and Mechanical Properties of Gamma-Tial Honeycomb Structure Fabricated by Isothermal Forging and Pulse Current Assisted Diffusion Bonding. Intermetallic 2018, 99, 59–68. [Google Scholar] [CrossRef]
- Xie, Z.C.; Gao, T.H.; Guo, X.T.; Qin, X.M.; Xie, Q. Evolution of Icosahedral Clusters During the Rapid Solidification of Liquid Tial Alloy. Physica B 2014, 440, 130–137. [Google Scholar] [CrossRef]
- Liu, Y.T.; Gao, T.H.; Gao, Y.; Li, L.X.; Tan, M.; Xie, Q.; Chen, Q.; Tian, Z.A.; Liang, Y.C.; Wang, B. New Phase Transition Pattern of Fivefold Twins Transformed into Lamellar Structure in Ti3Al Alloy. CrystEngComm 2021, 23, 6800–6809. [Google Scholar] [CrossRef]
- Liu, Y.T.; Gao, T.H.; Gao, Y.; Li, L.X.; Tan, M.; Xie, Q. Evolution of Defects and Deformation Mechanisms in Different Tensile Directions of Solidified Lamellar Ti-Al Alloy. Chin. Phys. B 2022, 31, 046105. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, T.H.; Li, L.X.; Xie, Q.; Chen, Q.; Tian, Z.A.; Liang, Y.C.; Wang, B. Evolution of Dislocation and Twin Structures in Ti3Al During Solidification. Vacuum 2021, 194, 110525. [Google Scholar] [CrossRef]
- Ji, G.P.; Ji, A.L.; Lu, N.P.; Cao, Z.X. Formation and Morphology Evolution of Icosahedral and Decahedral Silver Crystallites from Vapor Deposition in View of Symmetry Misfit. J. Cryst. Growth 2019, 518, 89–94. [Google Scholar] [CrossRef]
- Schrenker, N.J.; Xie, Z.C.; Schweizer, P.; Moninger, M.; Werner, F.; Karpstein, N.; Makovic, M.; Spyropoulos, G.D.; Gobelt, M.; Christiansen, S.; et al. Microscopic Deformation Modes and Impact of Network Anisotropy on the Mechanical and Electrical Performance of Five-Fold Twinned Silver Nanowire Electrodes. ACS Nano 2021, 15, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.A.; Xing, W.D.; Xu, X.; Meng, F.Y.; Ma, X.Q.; Yu, R. Twin Boundary and Fivefold Twins in Nickel Oxide. Phys. Status. Solidi B 2021, 258, 2000377. [Google Scholar] [CrossRef]
- Yue, Y.H.; Zhang, Q.; Yang, Z.Y.; Gong, Q.H.; Guo, L. Study of the Mechanical Behavior of Radially Grown Fivefold Twinned Nanowires on the Atomic Scale. Small 2016, 12, 3503–3509. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Qin, Q.Q.; Xu, F.; Fan, F.R.; Ding, Y.; Zhang, T.; Wiley, B.J.; Wang, Z.L. Size Effects on Elasticity, Yielding, and Fracture of Silver Nanowires: In Situ Experiments. Phys. Rev. B 2012, 85, 045443. [Google Scholar] [CrossRef]
- Xu, R.; Hur, B.; Lim, S.; Kim, Y. The Relation of the Tensile & Shear Stress of Schmid & Their Efficient Fracture Stress with Twins and Dislocations in TiAl Alloys. Sch. Int. J. Chem. Mater. Sci. 2022, 5, 1–5. [Google Scholar]
- Adachi, K.; Waki, H. Elastic Constants and Internal Friction of Forged Β-Solidifying Tial Alloys at Room Temperature and High Temperature. Intermetallics 2022, 142, 107456. [Google Scholar] [CrossRef]
- Nie, T.; Wang, D.; Gong, X.Q. A Comparative Study on the Twinning Boundaries of Five-Fold Twinned Copper and Gold Nanorods. Appl. Surf. Sci. 2021, 543, 148764. [Google Scholar] [CrossRef]
- Gao, Y.F.; Zhou, Y.G.; Hu, M. Enormous Suppression of Phonon Transport in Silicon Nanowires with Five-Fold Twin Boundary. J. Mater. Chem. A 2018, 6, 18533–18542. [Google Scholar] [CrossRef]
- Deng, Z.L.; Luo, J.; Yuan, W.J.; Xi, W. Formation and Disintegration Investigation of Fivefold Annealing Twins in Copper Nanoparticles. Scripta. Mater. 2019, 169, 42–45. [Google Scholar] [CrossRef]
- Cao, A.J.; Wei, Y.G. Formation of Fivefold Deformation Twins in Nanocrystalline Face-CenteredCubic Copper Based on Molecular Dynamics Simulations. Appl. Phys. Lett. 2006, 89, 041919. [Google Scholar] [CrossRef]
- Chen, Y.B.; Huang, Q.S.; Zhao, S.C.; Zhou, H.F.; Wang, J.W. Penta-Twin Destruction by Coordinated Twin Boundary Deformation. Nano Lett. 2021, 21, 8378–8384. [Google Scholar] [CrossRef] [PubMed]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated Identification and Indexing of Dislocations in Crystal Interfaces. Model. Simul. Mater. Sci. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with Ovito-the Open Visualization Tool. Model. Simul. Mater. Sci. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Zope, R.R.; Mishin, Y. Interatomic Potentials for Atomistic Simulations of the Ti-Al System. Phys. Rev. B 2003, 68, 024102. [Google Scholar] [CrossRef]
- Sun, S.T.; Ramachandran, B.R.; Wick, C.D. Solid, Liquid, and Interfacial Properties of Tial Alloys: Parameterization of a New Modified Embedded Atom Method Model. J. Phys.-Condens. Mat. 2018, 30, 075002. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Qiao, H.Y.; Feng, R.C.; Wang, Q.; Wang, M.M.; Li, J.H. Effect of Cutting Depth on Mechanical Properties of Single Crystal Gamma-Tial Alloy. Rare. Metal. Mater. Eng. 2020, 49, 1931–1937. [Google Scholar]
- Yin, X.Y.; Yao, Q.; Liu, J.J.; Zhang, L. Atomic Simulations of Melting Behaviours for TiAl Alloy Nanoparticles During Heating. Bull. Mater. Sci. 2020, 43, 241. [Google Scholar]
- Xie, Z.C.; Gao, T.H.; Guo, X.T.; Xie, Q. Molecular Dynamics Simulation of Nanocrystal Formation and Deformation Behavior of Ti3Al Alloy. Comp. Mater. Sci. 2015, 98, 245–251. [Google Scholar] [CrossRef]
- Tian, Z.A.; Liu, R.S.; Peng, P.; Hou, Z.; Liu, H.; Zheng, C.; Dong, K.; Yu, A. Freezing structures of free silver nanodroplets: A molecular dynamics simulation study. Phys. Lett. A 2009, 373, 1667–1671. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Xie, H.; Meng, Z.; Gao, T. Deformation Mechanism of Solidified Ti3Al Alloys with Penta Twins under Shear Loading. Metals 2022, 12, 1356. https://doi.org/10.3390/met12081356
Guo X, Xie H, Meng Z, Gao T. Deformation Mechanism of Solidified Ti3Al Alloys with Penta Twins under Shear Loading. Metals. 2022; 12(8):1356. https://doi.org/10.3390/met12081356
Chicago/Turabian StyleGuo, Xiaotian, Han Xie, Zihao Meng, and Tinghong Gao. 2022. "Deformation Mechanism of Solidified Ti3Al Alloys with Penta Twins under Shear Loading" Metals 12, no. 8: 1356. https://doi.org/10.3390/met12081356
APA StyleGuo, X., Xie, H., Meng, Z., & Gao, T. (2022). Deformation Mechanism of Solidified Ti3Al Alloys with Penta Twins under Shear Loading. Metals, 12(8), 1356. https://doi.org/10.3390/met12081356