Fatigue Damage Mechanism and Fatigue Life Prediction of Metallic Materials
1. Introduction and Scope
2. Contributions
3. Conclusions and Outlook
Conflicts of Interest
References
- Christodoulou, P.I.; Kermanidis, A.T. A Combined Numerical–Analytical Study for Notched Fatigue Crack Initiation Assessment in TRIP Steel: A Local Strain and a Fracture Mechanics Approach. Metals 2023, 13, 1652. [Google Scholar] [CrossRef]
- Su, Y.; Rui, S.-S.; Han, Q.-N.; Shang, Z.-H.; Niu, L.-S.; Li, H.; Ishikawa, H.; Shi, H.-J. Estimation Method of Relative Slip in Fretting Fatigue Contact by Digital Image Correlation. Metals 2022, 12, 1124. [Google Scholar] [CrossRef]
- Yelemessov, K.; Baskanbayeva, D.; Martyushev, N.V.; Skeeba, V.Y.; Gozbenko, V.E.; Karlina, A.I. Change in the Properties of Rail Steels during Operation and Reutilization of Rails. Metals 2023, 13, 1043. [Google Scholar] [CrossRef]
- Rui, S.-S.; Su, Y.; Zhao, J.-M.; Shang, Z.-H.; Shi, H.-J. A 3D Polycrystalline Plasticity Model for Isotropic Linear Evolution of Intragranular Misorientation with Mesoscopic Plastic Strain in Stretched or Cyclically Deformed Metals. Metals 2022, 12, 2159. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, Y.; Lei, H.; Wang, S.; Fang, L. Fatigue Crack Growth Behavior and Failure Mechanism of Nickel-Based Alloy GH4169 under Biaxial Load Based on Fatigue Test of Cruciform Specimen. Metals 2023, 13, 588. [Google Scholar] [CrossRef]
- Hu, X.; Zhuang, S.; Zheng, H.; Zhao, Z.; Jia, X. Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures. Metals 2022, 12, 1868. [Google Scholar] [CrossRef]
- Shi, L.; Xiang, L.; Tao, J.; Chen, Q.; Liu, J.; Zhong, Y. Actual Marine Atmospheric Pre-Corrosion Fatigue Performance of 7075-T73 Aluminum Alloy. Metals 2022, 12, 874. [Google Scholar] [CrossRef]
- Urrego, L.F.; García-Beltrán, O.; Arzola, N.; Araque, O. Mechanical Fracture of Aluminium Alloy (AA 2024-T4), Used in the Manufacture of a Bioproducts Plant. Metals 2023, 13, 1134. [Google Scholar] [CrossRef]
- Cui, H.; Du, C.; Zhang, H. Applications of Phase Field Methods in Modeling Fatigue Fracture and Performance Improvement Strategies: A Review. Metals 2023, 13, 714. [Google Scholar] [CrossRef]
- Li, M.; Luo, Y.; Xie, L. Fatigue Reliability Prediction Method of Large Aviation Planetary System Based on Hierarchical Finite Element. Metals 2022, 12, 1785. [Google Scholar] [CrossRef]
- Wen, C.; Zheng, Y.; Mi, D.; Qian, Z.; Zhang, H. Design for the Vent Holes of Gas Turbine Flow Guide Disks Based on the Shape Optimization Method. Metals 2023, 13, 1151. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Han, Q. Fatigue Damage Mechanism and Fatigue Life Prediction of Metallic Materials. Metals 2023, 13, 1752. https://doi.org/10.3390/met13101752
Cui H, Han Q. Fatigue Damage Mechanism and Fatigue Life Prediction of Metallic Materials. Metals. 2023; 13(10):1752. https://doi.org/10.3390/met13101752
Chicago/Turabian StyleCui, Haitao, and Qinan Han. 2023. "Fatigue Damage Mechanism and Fatigue Life Prediction of Metallic Materials" Metals 13, no. 10: 1752. https://doi.org/10.3390/met13101752
APA StyleCui, H., & Han, Q. (2023). Fatigue Damage Mechanism and Fatigue Life Prediction of Metallic Materials. Metals, 13(10), 1752. https://doi.org/10.3390/met13101752