Integrity Assessment of Stress Corrosion Cracking Susceptibility of Duplex UNS S32205 and Austenitic UNS S31653 Stainless Steel Reinforcements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Testing Method and Environment
2.3. Characterization Techniques
3. Results
3.1. Microstructure Characterization
3.2. Slow Strain Rate Testing (SSRT)
3.3. Fractographic Study
4. Discussion
4.1. Residual Stress
4.2. Mechanical Properties Degradation and Ductility Assessment
Standard | High Ductility | εUTS,k % | p | Anom MPa | Id | |
---|---|---|---|---|---|---|
MC 2010 | D | ≥1.25 < 1.45 | ≥8.0 | 1.37 | 388 | 70 |
EC-2 | C | ≥1.15 < 1.35 | ≥7.5 | 0.82 | 363 | 62 |
ASTM A615 | Grade 60 | ≥1.25 | ≥7.0 | 1.24 | 338 | 61 |
≥1.13 | ≥9.0 | 0.83 | 438 | 75 | ||
FIB | S | ≥1.15 | ≥6.0 | 0.70 | 288 | 49 |
≥1.17 | ≥5.0 | 0.68 | 238 | 41 |
4.3. Change in Ductile/Brittle Area Ratio
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrade, C. 17—Future trends in research on reinforcement corrosion. In Woodhead Publishing Series in Civil and Structural Engineering, 2nd ed.; Harries, K.A., Sharma, B., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 353–374. ISBN 978-0-12-821840-2. [Google Scholar]
- Ghosh, P.; Recinos, A. Computation of corrosion initiation time with HPC mixtures and high-quality rebars. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Qian, J.; Zheng, Y.; Dong, Y.; Wu, H.; Guo, H.; Zhang, J. Sustainability and resilience of steel—Shape memory alloy reinforced concrete bridge under compound earthquakes and functional deterioration within entire life-cycle. Eng. Struct. 2022, 271, 114937. [Google Scholar] [CrossRef]
- Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J. Sustainability and durability analysis of reinforced concrete structures. IOP Conf. Ser. Mater. Sci. Eng. 2017, 246, 012038. [Google Scholar] [CrossRef]
- Almasabha, G.; Murad, Y.; Alghossoon, A.; Saleh, E.; Tarawneh, A. Sustainability of using steel fibers in reinforced concrete deep beams without stirrups. Sustainability 2023, 15, 4721. [Google Scholar] [CrossRef]
- EPA. Construction and Demolition Debris Management in the United States; U.S. Environmental Protection Agency: Washington, DC, USA, 2020.
- Ahmed, G.H. A review of “3D concrete printing”: Materials and process characterization, economic considerations and environmental sustainability. J. Build. Eng. 2023, 66, 105863. [Google Scholar] [CrossRef]
- Kalina, R.D.; Lean, S.M.; Breen, J.E. Comparative Study of Mechanical and Corrosion Resistance Properties of Bridge Post-Tensioning Strands; Technical Report FHWA/TX-11/0-4562-3; Texas Department of Transportation: Austin, TX, USA, 2011.
- Zhou, Y.; Mahmood, S.; Engelberg, D.L. Bipolar electrochemistry for high throughput screening of localised corrosion in stainless steel rebars. Constr. Build. Mater. 2023, 366, 130174. [Google Scholar] [CrossRef]
- Tri-Council Development Fund. The High Cost of Corrosion. 2021. Available online: https://tcdfillinois.org/news/the-high-cost-of-corrosion (accessed on 15 November 2023).
- ARTBA. Bridge Report; American Road & Transportation Builders Association: Washington, DC, USA, 2019. [Google Scholar]
- ASTM A941-22a; Standard Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Pokhmurs’kyi, V.I.; Balyts’kyi, O.I.; Krokhmal’nyi, O.O. General and pitting corrosion of chromium-manganese steels in halogen solutions. Mater. Sci. 2000, 36, 313–324. [Google Scholar] [CrossRef]
- EN 1990:2019; Eurocode—Basis of Structural Design. European Standard: Brussels, Belgium, 2019.
- Li, K.; Wang, P.; Li, Q.; Fan, Z. Durability assessment of concrete structures in HZM sea link project for service life of 120 years. Mater. Struct. 2016, 49, 3785–3800. [Google Scholar] [CrossRef]
- Connal, J. Second Gateway Bridge, Brisbane, Australia. IABSE Symp. Rep. 2010, 97, 78–85. [Google Scholar] [CrossRef]
- Rabi, M.; Shamass, R.; Cashell, K.A. Structural performance of stainless steel reinforced concrete members: A review. Constr. Build. Mater. 2022, 325, 126673. [Google Scholar] [CrossRef]
- Cramer, S.D.; Covino, B.S.; Bullard, S.J.; Holcomb, G.R.; Russell, J.H.; Nelson, F.J.; Laylor, H.M.; Soltesz, S.M. Corrosion prevention and remediation strategies for reinforced concrete coastal bridges. Cem. Concr. Compos. 2002, 24, 101–117. [Google Scholar] [CrossRef]
- Sánchez-Deza, A.; Bastidas, D.M.; La Iglesia, A.; Mora, E.M.; Bastidas, J.M. Service life prediction for 50-year-old buildings in marine environments. Rev. Metal. 2018, 54, 111. [Google Scholar] [CrossRef]
- Castorena-González, J.H.; Martin, U.; Gaona-Tiburcio, C.; Núñez-Jáquez, R.E.; Almeraya-Calderón, F.M.; Bastidas, J.M.; Bastidas, D.M. Modeling steel corrosion failure in reinforced concrete by cover crack width 3D FEM analysis. Front. Mater. 2020, 7, 41. [Google Scholar] [CrossRef]
- Yang, Y.; Nakamura, H.; Yamamoto, Y.; Miura, T. Numerical simulation of bond degradation subjected to corrosion-induced crack by simplified rebar and interface model using RBSM. Constr. Build. Mater. 2020, 247, 118602. [Google Scholar] [CrossRef]
- Li, M.; Shen, D.; Yang, Q.; Cao, X.; Huang, C.; Cui, Z.; Qi, Y. Effect of reinforcement corrosion on the seismic performance of reinforced concrete shear walls. Constr. Build. Mater. 2023, 377, 130977. [Google Scholar] [CrossRef]
- He, Z.; He, C.; Ma, G.; Yang, W.; Xu, G. Performance assessment of deteriorated RC shield tunnels integrated with stochastic field-based modeling for nonuniform steel corrosion. Eng. Fail. Anal. 2023, 148, 107196. [Google Scholar] [CrossRef]
- Hong, S.; Qin, S.; Dong, P.; Li, G.; Zhang, Y.; Xing, F.; Dong, B. Quantification of rust penetration profile in reinforced concrete deduced by inverse modeling. Cem. Concr. Compos. 2020, 111, 103622. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, L. Prediction of corrosion-induced cracking of concrete cover: A critical review for thick-walled cylinder models. Ocean Eng. 2020, 213, 107688. [Google Scholar] [CrossRef]
- Dangwal, S.; Singh, H. Behavior of corrosion damaged non-seismically and seismically detailed reinforced concrete beam-column sub-assemblages under cyclic loading. Eng. Fail. Anal. 2023, 146, 107135. [Google Scholar] [CrossRef]
- Briz, E.; Biezma, M.V.; Bastidas, D.M. Stress corrosion cracking of new 2001 lean–duplex stainless steel reinforcements in chloride contained concrete pore solution: An electrochemical study. Constr. Build. Mater. 2018, 192, 1–8. [Google Scholar] [CrossRef]
- Martin, U.; Bastidas, D.M. Stress corrosion cracking mechanisms of UNS S32205 duplex stainless steel in carbonated solution induced by chlorides. Metals 2023, 13, 10645. [Google Scholar] [CrossRef]
- Martin Diaz, U.; Birbilis, N.; Macdonald, D.D.; Bastidas, D.M. Passivity breakdown and crack propagation mechanisms of lean duplex (UNS S32001) stainless steel reinforcement in high alkaline solution under stress corrosion cracking. Corrosion 2023, 79, 4229. [Google Scholar] [CrossRef]
- Martin, U.; Bastidas, D.M. Stress corrosion cracking failure analysis of aisi 1018 carbon steel reinforcing bars in carbonated and chloride contaminated environment. Eng. Fail. Anal. 2023, 146, 107159. [Google Scholar] [CrossRef]
- Yu, X.; Al-Saadi, S.; Kohli, I.; Zhao, X.; Singh Raman, R.K. Austenitic Stainless-Steel Reinforcement for Seawater Sea Sand Concrete: Investigation of Stress Corrosion Cracking. Metals 2021, 11, 500. [Google Scholar] [CrossRef]
- Briz, E.; Martin, U.; Biezma, M.V.; Calderon-Uriszar-Aldaca, I.; Bastidas, D.M. Evaluation of the mechanical behavior of 2001 LDSS and 2205 DSS reinforcements exposed to simultaneous load and corrosion in chloride contained concrete pore solution. J. Build. Eng. 2020, 31, 101456. [Google Scholar] [CrossRef]
- Ahmed, I.I.; Adebisi, J.A.; Abdulkareem, S.; Sherry, A.H. Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction. J. King Saud Univ. Eng. Sci. 2018, 30, 183–187. [Google Scholar] [CrossRef]
- ASTM G129-21; Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Hurley, M.F.; Scully, J.R. Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel. Corrosion 2006, 62, 892–904. [Google Scholar] [CrossRef]
- Bautista, A.; Pomares, J.C.; González, M.N.; Velasco, F. Influence of the microstructure of TMT reinforcing bars on their corrosion behavior in concrete with chlorides. Constr. Build. Mater. 2019, 229, 116899. [Google Scholar] [CrossRef]
- Sandim, M.J.R.; Souza Filho, I.R.; Mota, C.F.G.S.; Zilnyk, K.D.; Sandim, H.R.Z. Microstructural and magnetic characterization of a lean duplex steel: Strain-induced martensite formation and austenite reversion. J. Magn. Magn. Mater. 2021, 517, 167370. [Google Scholar] [CrossRef]
- Park, I.; Kim, E.-Y.; Yang, W.-J. Microstructural investigation of stress corrosion cracking in cold-formed AISI 304 reactor. Metals 2020, 11, 7. [Google Scholar] [CrossRef]
- Toribio, J.; Ayaso, F.-J. Cleavage stress producing notch-induced anisotropic fracture and crack path deflection in cold drawn pearlitic steel. Metals 2021, 11, 451. [Google Scholar] [CrossRef]
- Katona, R.M.; Karasz, E.K.; Schaller, R.F. A Review of the governing factors in pit-to-crack transitions of metallic structures. Corrosion 2023, 79, 72–96. [Google Scholar] [CrossRef] [PubMed]
- Mu, Z.; Yang, Y.; Gao, Z.; Jiang, Z. Mechanical behavior of special-shaped double-web steel-reinforced concrete column joints. Metals 2023, 13, 601. [Google Scholar] [CrossRef]
- Lun, P.Y.; Zhang, X.G.; Jiang, C.; Ma, Y.F.; Fu, L. Modelling of corrosion-induced concrete cover cracking due to chloride attacking. Materials 2021, 14, 1440. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, E.M.; Raducanu, D.; Vintila, A.N.; Alturaihi, S.S.; Serban, N.; Berbecaru, A.C.; Cojocaru, V.D. Influence of ageing treatment on microstructural and mechanical properties of a solution treated UNS S32750/EN 1.4410/F53 super duplex stainless steel (SDSS) alloy. J. Mater. Res. Technol. 2020, 9, 8592–8605. [Google Scholar] [CrossRef]
- Örnek, C.; Léonard, F.; McDonald, S.A.; Prajapati, A.; Withers, P.J.; Engelberg, D.L. Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires. NPJ Mater. Degrad. 2018, 2, 10. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Z.; Chen, J.; Yao, Y.; Li, D. Characterisation of stress corrosion durability and time-dependent performance of cable bolts in underground mine environments. Eng. Fail. Anal. 2023, 150, 107292. [Google Scholar] [CrossRef]
- Singh Raman, R.K.; Jones, R. Distinct advantages of circumferential notch tensile (CNT) testing in the determination of a threshold for stress corrosion cracking (KISCC). Materials 2021, 14, 5620. [Google Scholar] [CrossRef]
- Robl, T.; Wölfle, C.H.; Shahul Hameed, M.Z.; Rappl, S.; Krempaszky, C.; Werner, E. An Approach to Predict Geometrically and Thermo-Mechanically Induced Stress Concentrations in Ribbed Reinforcing Bars. Metals 2022, 12, 411. [Google Scholar] [CrossRef]
- Groza, J.R.; Eslamloo-Grami, M.; Bandy, R. The effect of thermo-mechanical treatment on the pitting corrosion of reinforcing carbon steel bars. Werkst. Und Korros. 1993, 44, 359–366. [Google Scholar] [CrossRef]
- Truschner, M. Effect of cold deformation on the stress corrosion cracking resistance of a high-strength stainless steel. J. Mater. Sci. 2022, 57, 20447–20461. [Google Scholar] [CrossRef]
- González-Velázquez, J.L.; Rivas-López, D.I.; Beltrán-Zúñiga, M.A.; Villagómez-Ortega, J.; Dorantes-Rosales, H.J. Fracture mechanics analysis of the stress corrosion cracking failure of stainless steel hexagonal head screws in a marine-industrial environment. Eng. Fail. Anal. 2023, 146, 107098. [Google Scholar] [CrossRef]
- Ponciano Gomes, J.A.C.; Silva, S.C.; Campos, T. Stress corrosion cracking susceptibility of armour layers in CO2 annulus environments—SSRT experimental simulation. Eng. Fail. Anal. 2022, 139, 106451. [Google Scholar] [CrossRef]
- Abe, S.; Kojima, M.; Hosoi, Y. Stress corrosion cracking susceptibility index, ISCC, of austenitic stainless steels in constant strain-rate test. In Stress Corrosion Cracking; The Slow Strain-Rate Technique; Ugiansky, G.M., Payer, J.H., Eds.; ASTM International: West Conshohocken, PA, USA, 1979; pp. 294–304. ISBN 978-0-8031-5548-0. [Google Scholar]
- Kordina, K.R.; Mancini, G.; Schäfer, K.; Schieβl, A.; Zilch, K. FIB Bulletin No. 55, Model Code 2010—First Complete Draft, Volume 1; Balázs, G.L., Ed.; The International Federation for Structural Concrete: Lausanne, Switzerland, 2010; ISBN 9782883940949. [Google Scholar]
- ASTM A615/A615M; Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- ACI 318-19; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2022; ISBN 9781641950565.
- Medina, E.; Medina, J.M.; Cobo, A.; Bastidas, D.M. Evaluation of mechanical and structural behavior of austenitic and duplex stainless steel reinforcements. Constr. Build. Mater. 2015, 78, 1–7. [Google Scholar] [CrossRef]
- Yu, Q.-Q.; Gu, X.-L.; Zeng, Y.-H.; Zhang, W.-P. Flexural behavior of Corrosion-Damaged prestressed concrete beams. Eng. Struct. 2022, 272, 114985. [Google Scholar] [CrossRef]
- Cui, C.; Ma, R.; Martínez-Pañeda, E. A generalised, multi-phase-field theory for dissolution-driven stress corrosion cracking and hydrogen embrittlement. J. Mech. Phys. Solids 2022, 166, 104951. [Google Scholar] [CrossRef]
Alloy | C | Cr | Mn | Ni | Mo | N | Si | Co | Ti |
---|---|---|---|---|---|---|---|---|---|
UNS S32205 | 0.017 | 22.76 | 1.57 | 4.64 | 3.21 | 0.171 | 0.34 | 0.17 | 0.004 |
UNS S31653 | 0.016 | 17.55 | 1.18 | 10.1 | 2.12 | 0.167 | 0.25 | - | - |
UNS G10080 | 0.28 | 0.16 | 1.08 | 0.16 | 0.05 | - | 0.20 | - | - |
[Cl−] wt.% | σy MPa | εy % | σUTS MPa | εUTS % | εf % |
---|---|---|---|---|---|
UNS S32205 | |||||
0 | 510 ± 11 | 9.52 ± 0.45 | 717 ± 25 | 15.9 ± 0.74 | 21.0 ± 1.24 |
4 | 463 ± 19 | 8.42 ± 0.56 | 562 ± 31 | 12.8 ± 0.71 | 17.6 ± 1.33 |
8 | 407 ± 22 | 8.01 ± 0.55 | 480 ± 36 | 9.9 ± 0.55 | 11.9 ± 1.47 |
UNS S31653 | |||||
0 | 300 ± 12 | 4.87 ± 0.15 | 430 ± 20 | 15.1 ± 0.85 | 20.7 ± 1.77 |
4 | 280 ± 16 | 4.10 ± 0.25 | 390 ± 28 | 13.2 ± 0.72 | 16.6 ± 1.56 |
8 | 270 ± 27 | 3.95 ± 0.28 | 370 ± 34 | 12.9 ± 0.75 | 16.4 ± 1.63 |
UNS G10080 | |||||
0 | 290 ± 15 | 6.14 ± 0.22 | 342 ± 22 | 11.90 ± 0.66 | 15.40 ± 1.29 |
0.4 | 284 ± 19 | 6.06 ± 0.29 | 323 ± 34 | 8.50 ± 0.74 | 10.30 ± 1.06 |
4 | 262 ± 29 | 5.49 ± 0.31 | 296 ± 40 | 7.90 ± 0.77 | 9.20 ± 1.12 |
Alloy | σR, MPa | Rolling |
---|---|---|
UNS S32205 | 26 ± 15 | Hot |
UNS S31653 | 36 ± 12 | Hot |
UNS G10080 | 284 ± 32 | Cold |
[Cl−], wt.% | ISCC, % | Iδ, % | REL, % |
---|---|---|---|
UNS S32205 | |||
0 | - | - | - |
4 | 33.78 ± 4.51 | 16.19 ± 1.21 | 9.22 ± 1.02 |
8 | 76.55 ± 8.42 | 43.33 ± 2.51 | 20.20 ± 1.94 |
UNS S31653 | |||
0 | - | - | - |
4 | 11.88 ± 3.44 | 19.81 ± 1.66 | 6.67 ± 0.74 |
8 | 18.39 ± 5.12 | 20.77 ± 2.25 | 10.00 ± 1.13 |
UNS G10080 | |||
0 | - | - | - |
0.4 | 7.99 ± 2.38 | 33.12 ± 3.47 | 2.07 ± 0.52 |
4 | 22.53 ± 3.67 | 40.26 ± 4.96 | 9.66 ± 0.86 |
Steel | Diameter mm | Rolling | εUTS % | p | Anom MPa | Id | |
---|---|---|---|---|---|---|---|
UNS G10080 | 8 | CR | 1.28 | 8.37 | 1.81 | 989 | 30 |
16 | HR | 1.22 | 13.32 | 1.97 | 1142 | 53 | |
20 | HR | 1.21 | 11.84 | 1.69 | 869 | 49 | |
UNS S30400 | 8 | CR | 1.03 | 5.82 | 0.24 | 104 | 9 |
16 | HR | 1.36 | 18.68 | 3.78 | 2357 | 78 | |
20 | HR | 1.44 | 30.13 | 6.33 | 4363 | 139 | |
UNS S30453 | 20 | HR | 1.61 | - | - | - | - |
UNS S31600 | 10 | HR | 1.55 | 26.00 | - | - | - |
UNS S32205 | 6 | CR | 1.06 | 15.30 | 0.62 | 831 | 348 |
8 | CR | 1.09 | 3.72 | 0.47 | 172 | 6 | |
UNS S32304 | 8 | CR | 1.06 | 7.02 | 0.45 | 259 | 15 |
16 | HR | 1.34 | 24.46 | 4.41 | 2904 | 106 | |
20 | HR | 1.23 | 25.62 | 3.14 | 2305 | 98 | |
UNS S32001 | 8 | CR | 1.38 | 29.70 | 5.53 | 3932 | 139 |
16 | HR | 1.35 | 27.83 | 4.88 | 3479 | 126 | |
20 | HR | 1.31 | 28.63 | 4.55 | 3142 | 112 |
[Cl−], wt.% | p | Anom, MPa | Id | |
---|---|---|---|---|
UNS S32205 | ||||
0 | 1.41 | 7.65 | 5219 | 1.61 |
4 | 1.21 | 3.82 | 2993 | 1.15 |
8 | 1.18 | 2.99 | 1118 | 0.51 |
UNS S31653 | ||||
0 | 1.43 | 6.00 | 4979 | 5.11 |
4 | 1.39 | 4.85 | 3931 | 5.14 |
8 | 1.37 | 4.58 | 3947 | 5.55 |
UNS G10080 | ||||
0 | 1.18 | 2.75 | 2427 | 2.04 |
0.4 | 1.14 | 1.97 | 987 | 0.86 |
4 | 1.13 | 1.75 | 897 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, U.; Bastidas, D.M. Integrity Assessment of Stress Corrosion Cracking Susceptibility of Duplex UNS S32205 and Austenitic UNS S31653 Stainless Steel Reinforcements. Metals 2023, 13, 1932. https://doi.org/10.3390/met13121932
Martin U, Bastidas DM. Integrity Assessment of Stress Corrosion Cracking Susceptibility of Duplex UNS S32205 and Austenitic UNS S31653 Stainless Steel Reinforcements. Metals. 2023; 13(12):1932. https://doi.org/10.3390/met13121932
Chicago/Turabian StyleMartin, Ulises, and David M. Bastidas. 2023. "Integrity Assessment of Stress Corrosion Cracking Susceptibility of Duplex UNS S32205 and Austenitic UNS S31653 Stainless Steel Reinforcements" Metals 13, no. 12: 1932. https://doi.org/10.3390/met13121932
APA StyleMartin, U., & Bastidas, D. M. (2023). Integrity Assessment of Stress Corrosion Cracking Susceptibility of Duplex UNS S32205 and Austenitic UNS S31653 Stainless Steel Reinforcements. Metals, 13(12), 1932. https://doi.org/10.3390/met13121932