The Multi-Objective Optimization of Blast Furnace Oxygen Enrichment Rate Based on Optimal Carbon Ratio
Abstract
:1. Introduction
2. Data Processing and Correlation Analysis
2.1. Outlier Screening of the Production Data
2.2. Analysis of the Linear Association of the Production Parameter
3. The Creation and Analysis of Correlation Model
3.1. RBF Neural Network Algorithm Principle
- (1)
- The basis function of the RBF hidden layer was:
- (2)
- The basis function of the RBF output layer was:
3.2. Construction and Analysis of the Correlation Model
- (1)
- Constraint condition modeling
- (2)
- Target condition modeling
4. Correlation Model Optimization Based on the NSGA-II Multi-Objective Genetic Algorithm
4.1. Principle of NSGA-II Multi-Objective Genetic Algorithm
- (1)
- Combine the evolutionary offspring population (Qt) with the parent population (Pt) to constitute populations (Rt) with a size of 2N.Then, sort the population (Rt) in a nondominated manner to find a series of nondominated sets (Z1) and calculate the crowding degree of each individual.
- (2)
- Z1 was the optimal individual set with high rank and large aggregation distance for the overall Rt population. Put Z1 in the new parent population Pt+1.
- (3)
- If the Pt+1 population was smaller than N, then the next nondominated set Z2 needs to be added to Pt+1 until Zn was added to the nondominated set and the population exceeds N. The crowding comparison operator was then used for each individual in Zn. Take the previous {num (Zn) − (num (Pt+1) − N)} individuals so that the size of the Pt+1 population reaches N.
- (4)
- Through genetic operators, such as selection, crossover, and mutation, the next parent Pt+1 generates a new offspring population Qt+1.
- (5)
- The next parent Pt+1 produces a new offspring population Qt+1 and merges it into a new population Rt+1. The nondominated population was then reordered.
- (6)
- Repeat steps (1)~(5) until the evolutionary algebra reaches the maximum evolutionary algebra Genmax. The final parent population was the optimal solution set of the problem.
4.2. Multi-Objective Optimization Results and Analysis of the NSGA-II Algorithm
5. Application and Analysis of the Multi-Objective Optimization Results
5.1. Industrial Test of Multi-Objective Optimization Results
5.2. Analysis of Industrial Test Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, D.; Cheng, S.; Wang, Y.; Jiang, X. The production of large blast furnaces during 2016 and future development of ironmaking in China. Ironmak. Steelmak. 2017, 44, 714–720. [Google Scholar] [CrossRef]
- Zhou, C.D. Technical Manual of Blast Furnace Iron-Making Production; Metallurgical Industry Press: Beijing, China, 2002; pp. 367–368. [Google Scholar]
- Zhang, F.M.; Cao, C.Z.; Meng, X.L.; Li, L. Technological Development Orientation on Ironmaking of Contemporary Blast Furnace. Adv. Mater. Res. 2014, 2949, 1138–1142. [Google Scholar] [CrossRef]
- Ren, L.J.; Wei, H.Q. Practice on intensified smelting and target output achievement in No.1 BF of ShoufangJingtang joint Co., Ltd. Ironmaking 2010, 29, 16–19. [Google Scholar]
- Wakabayashi, K.; Fujiura, M.; Mori, T.; Inoue, N. Theoretical Analyses on the High Top-Gas-Pressure Operation and Oxygen-Enriched Operation of Blast Furnace. Trans. Iron Steel Inst. Jpn. 1970, 10, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.Y.; Zhu, R.L. Reducing Fule Ratio While Increasing Oxygen Enrichment to Enhance Blast Furnace Output. Iron Steel 2010, 45, 9–12+17. [Google Scholar] [CrossRef]
- Yan, C.J.; Cheng, X.L.; Gao, J.J.; Zhou, Y.S. Effect of High Oxygen Enrichment PCI on BF Iron-Making. Iron Steel 2013, 48, 25–28. [Google Scholar] [CrossRef]
- Wang, G.W.; Zhang, J.L.; Shao, J.G. Model for Economic Evaluation of Iron Production With Oxygen-Enriched and Pulverized Coal Injection. Iron Steel 2013, 48, 21–26. [Google Scholar] [CrossRef]
- Wu, L.Y.; Hu, L.H.; Wang, W.Y. Contribution of high oxygen enrichment rate to energy saving for large blast furnace. Energy Metall. Ind. 2020, 39, 18–20+54. [Google Scholar]
- Zhang, J.; Wang, K.; Wang, Z. Matching analysis of oxygen enrichment rate with furnace condition of No.1 blast furnace in ShougangJingtang. J. Iron Steel Res. 2020, 32, 720–726. [Google Scholar] [CrossRef]
- Yu, X.B.; Ni, W.J.; Zou, Z.S. Integrated Model of Oxygen-Enriched Blast Furnace. J. North. Univ. (Nat. Sci.) 2018, 39, 1248–1252+1314. [Google Scholar]
- Geerdes, M.; Chaigneau, R.; Lingiardi, O. Modern Blast Furnace Ironmaking; Delft University Press: Delft, The Netherlands, 2015; pp. 188–189. [Google Scholar]
- Pinegar, H.K.; Moats, M.S.; Sohn, H.Y. Flowsheet development, process simulation and economic feasibility analysis for novel suspension iron-making technology based on natural gas. Ironmak. Steelmak. 2013, 40, 32–43. [Google Scholar] [CrossRef]
- Helle, H.; Helle, M.; Pettersson, F.; Saxén, H. Optimisation study of ironmaking using biomass. Ironmak. Steelmak. 2010, 37, 590–598. [Google Scholar] [CrossRef]
- Wei, M.; Wang, Q.; Ye, M.; Li, J.B.; Xu, X.X. An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network. Chin. J. Eng. 2022, 44, 380–388. [Google Scholar] [CrossRef]
- Liu, H.L.; Wu, S.; Wei, G.Y.; Li, X.; Gao, X.N. Click-through rate prediction model based on a deep neural network. Chin. J. Eng. 2022, 44, 1917–1925. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.D.; Wu, N. A CNN-based CSI fingerprint indoor localization method. Sci. Technol. Eng. 2021, 43, 1512–1521. [Google Scholar] [CrossRef]
- Pei, Y.Y.; Yang, X.B.; Chuan, J.P.; Wu, X.S.; Cheng, H.M.; Lv, X.F. Time series prediction of microseismic energy level based on feature extraction of one-dimensional convolutional neural network. Sci. Technol. Eng. 2021, 43, 1003–1009. [Google Scholar] [CrossRef]
- Cui, G.M.; Lv, M.Y. Multi-objective optimization of furnace coal injection setting based on optimal fuel ratio. Sci. Technol. Eng. 2020, 20, 4022–4028. [Google Scholar]
- Park, J.I.; Jung, H.J.; Jo, M.K.; Oh, H.-S.; Han, J.-W. Mathematical modeling of the burden distribution in the blast furnace shaft. Met. Mater. Int. 2011, 17, 485–496. [Google Scholar] [CrossRef]
- Li, Z.N.; Chu, N.S.; Liu, Z.G.; Li, B.F. Prediction and optimization of blast furnace parameters based on machine learning and genetic algorithm. J. North. Univ. (Nat. Sci.) 2020, 41, 1262–1267. [Google Scholar]
- Hua, C.; Wu, J.; Li, J.; Guan, X. Silicon content prediction and industrial analysis on blast furnace using support vector regression combined with clustering algorithms. Neural Comput. Appl. 2017, 28, 4111–4121. [Google Scholar] [CrossRef]
- Fahmideh, M.; Beydoun, G. Big data analytics architecture design-An application in manufacturing systems—Science Direct. Comput. Ind. Eng. 2019, 128, 948–963. [Google Scholar] [CrossRef]
- Chen, S.; Cowan, C.N.; Grant, P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 1991, 2, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, M.Y. How to eliminate observations containing gross errors. Metrol. Sci. Technol. 1973, 2, 13–15. [Google Scholar]
- Sedgwick, P. Spearman’s rank correlation coefficient. BMJ 2018, 362, k4131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S. Python Machine Learning Algorithm Principle, Implementation and Case Study; Tsinghua University Publishing: Beijing, China, 2019; pp. 184–196. [Google Scholar]
- Chen, X.Q.; Hou, Z.X.; Guo, L.M.; Luo, W.C. Improved multi-objective genetic algorithm based on NSGA-Ⅱ. J. Comput. Appl. 2006, 26, 2453–2456. [Google Scholar]
- Niu, Z.J. The Application Research on Prediction and Classification Based on Artificial Neural Network; North University of China: Taiyuan, China, 2016; pp. 2–13. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
Parameter Name | FR (f1) | PCR (f2) | Hot Metal Temperature (g1) | Hot Metal Silicon Content (g2) |
---|---|---|---|---|
Charging rate (m1) | −0.45 | 0.28 | 0.13 | −0.15 |
Blast volume (m2) | −0.28 | 0.49 | −0.02 | −0.36 |
Hot blast pressure (m3) | −0.10 | 0.60 | 0.30 | 0.12 |
Top pressure (m4) | −0.16 | 0.67 | 0.14 | −0.03 |
Pressure difference (m5) | 0.06 | 0.05 | 0.32 | 0.24 |
Air permeability resistance index (m6) | 0.21 | −0.49 | −0.02 | 0.20 |
Blast temperature (m7) | 0.14 | 0.59 | 0.13 | 0.00 |
Oxygen enriched rate (m8) | 0.20 | 0.44 | 0.19 | 0.20 |
Coke rate (m9) | 0.41 | −0.74 | −0.27 | 0.03 |
Water temperature drop (m10) | 0.31 | −0.06 | −0.10 | 0.07 |
Gas utilization efficiency (m11) | −0.67 | −0.02 | 0.16 | 0.04 |
(n − 1) Hot metal temperature (n1) | −0.06 | 0.29 | 0.10 | −0.11 |
(n − 1) Hot metal silicon content (n2) | 0.27 | 0.40 | −0.05 | −0.02 |
(n − 1) Hot metal manganese content (n3) | 0.05 | 0.17 | −0.08 | −0.22 |
(n − 1) Hot metal phosphorus content (n4) | 0.06 | 0.41 | 0.05 | −0.05 |
(n − 1) Hot metal sulfur content (n5) | −0.25 | 0.27 | 0.27 | 0.12 |
Parameter Name | FR/kg·t−1 | PCR/kg·t−1 | Hot Metal Temperature/°C | Hot Metal Silicon Content/% |
---|---|---|---|---|
Absolute error | 3.28 | 1.57 | 0.84 | 0.03 |
Relative error/% | 0.01 | 0.05 | 0.002 | 0.13 |
Hit rate/% | 90.00 | 70.00 | 100.00 | 73.33 |
Variable Name | Current Level | Multi-Objective Optimization Value 1 | Multi-Objective Optimization Value 2 | Multi-Objective Optimization Value 3 |
---|---|---|---|---|
Oxygen enriched rate/% | 2.81 | 2.70 | 2.72 | 2.71 |
Hot metal temperature/°C | 1500.00 | 1503.52 | 1503.47 | 1503.50 |
Hot metal silicon content/% | 0.51 | 0.45 | 0.45 | 0.45 |
FR/kg·t−1 | 555.21 | 553.86 | 553.92 | 553.88 |
PCR/kg·t−1 | 133.10 | 144.58 | 144.78 | 144.63 |
CR/kg·t−1 | 422.11 | 409.28 | 409.15 | 409.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Luo, G.; Wang, Y.; Zhang, G. The Multi-Objective Optimization of Blast Furnace Oxygen Enrichment Rate Based on Optimal Carbon Ratio. Metals 2023, 13, 777. https://doi.org/10.3390/met13040777
Gao D, Luo G, Wang Y, Zhang G. The Multi-Objective Optimization of Blast Furnace Oxygen Enrichment Rate Based on Optimal Carbon Ratio. Metals. 2023; 13(4):777. https://doi.org/10.3390/met13040777
Chicago/Turabian StyleGao, Donghui, Guoping Luo, Yueming Wang, and Guocheng Zhang. 2023. "The Multi-Objective Optimization of Blast Furnace Oxygen Enrichment Rate Based on Optimal Carbon Ratio" Metals 13, no. 4: 777. https://doi.org/10.3390/met13040777
APA StyleGao, D., Luo, G., Wang, Y., & Zhang, G. (2023). The Multi-Objective Optimization of Blast Furnace Oxygen Enrichment Rate Based on Optimal Carbon Ratio. Metals, 13(4), 777. https://doi.org/10.3390/met13040777