Prediction of Silicon Content in the Hot Metal of a Blast Furnace Based on FPA-BP Model
Abstract
:1. Introduction
2. Data Analysis and Preprocessing
2.1. Data Source
2.2. Data Missing Value Processing
2.3. Data Normalization
2.4. Principal Component Analysis Screening Input Sequence
3. Prediction Model and Method
3.1. BP Neural Network Prediction Model
3.2. FPA-BP Neural Network Optimization Model
3.2.1. Flower Pollination Algorithm
3.2.2. Model Optimization
3.3. Data Set Segmentation
3.4. Selection of Model Evaluation Indicators
3.5. Model Prediction
4. Conclusions
- (1)
- For the prediction of silicon content in hot metal, the FPA-BP prediction model was superior to the BP for hit rate, average absolute error, root mean square error, average absolute percentage error, and other indicators. The prediction results were more accurate, and the operation speed was faster.
- (2)
- Principal component analysis was used to screen the input sequence that affects the silicon content in the hot metal of the blast furnace. When the retention rate of the central component information was 0.9, the influence parameters reduced from twenty-one dimensions to nine, reducing the influence of too many parameters and the correlation between parameters.
- (3)
- Under the furnace fluctuation, the predicted value of the BP model deviated significantly from the actual value. In contrast, the expected value of the optimized FPA-BP model was closer to the actual value, which was appropriate for the complex condition of the furnace.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, M. Blast furnace ironmaking: View on future developments. Ironmak. Steelmak. 2016, 42, 734–742. [Google Scholar] [CrossRef]
- Yang, Y.L.; Zhang, S.; Yin, Y.X. A modified ELM algorithm for the prediction of silicon content in hot metal. Neural Comput. Appl. 2016, 27, 241–247. [Google Scholar] [CrossRef]
- Li, Z.; Yang, C.; Liu, W.; Zhou, H.; Li, Y. Research on hot metal Si-content prediction based on LSTM-RNN. CIESC J. 2018, 69, 992–997. [Google Scholar]
- Yi, L.Z.; Li, L.; Jiang, Z.H. Prediction of silicon content in hot metal using neural network and rough set theory. J. Iron Steel Res. 2019, 31, 689–695. [Google Scholar]
- Zhao, H.; Zhao, D.; Yue, Y.; Wang, H. Study on prediction method of hot metal temperature in blast furnace. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 316–323. [Google Scholar]
- Wang, Y.K.; Liu, X.Y.; Zhang, B.L. Based on SVM-RFE. Australian and New Zealand Control Conference, on feature selection and blast furnace temperature tendency prediction in hot metal. In Proceedings of the 2018 Australian & New Zealand Control Conference (ANZCC), Melbourne, Australia, 7–8 December 2018; pp. 371–378. [Google Scholar]
- Zhang, H.; Zhang, S.; Yin, Y.; Chen, X. Prediction of the hot metal silicon content in blast furnace based on extreme learning machine. Int. J. Mach. Learn. Cybern. 2017, 9, 1697–1705. [Google Scholar] [CrossRef]
- Han, Y.; Li, J.; Yang, X.L.; Liu, W.X.; Zhang, Y.Z. Dynamic prediction research of silicon content in hot metal driven by big data in blast furnace smelting process under Hadoop cloud platform. Complexity 2018, 8, 8079697. [Google Scholar] [CrossRef]
- Spirin, N.A.; Polinov, A.A.; Gurin, I.A.; Beginyuk, V.A.; Pishnograev, S.N.; Istomin, A.S. Information System for Real-Time Prediction of the Silicon Content of Iron in a Blast Furnace. Metallurgist 2020, 63, 898–905. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Jiang, D.W.; Wang, X.D.; Zhang, J.L.; Liu, Z.J.; Zhao, B.J. Prediction of blast furnace hot metal temperature based on support vector regression and limit learning machine. Chin. J. Eng. 2021, 43, 569–576. [Google Scholar]
- Wen, B.; Wu, S.; Zhou, H.; Gu, K. A BP neural network-based mathematical model for predicting Si content in hot metal from COREX process. J. Iron Steel Res. 2018, 30, 776–781. [Google Scholar]
- Cui, G.M.; Li, J.; Zhang, Y.; Li, Z.D.; Ma, X. Prediction Modeling Study for Blast Furnace Hot Metal Temperature Based on T-S Fuzzy Neural Network Model. Iron Steel 2013, 48, 11–15. [Google Scholar]
- Liang, W.; Wang, G.; Ning, X.; Zhang, J.; Li, Y.; Jiang, C.; Zhang, N. Application of BP neural network to predict coal ash melting characteristic temperature. Fuel 2020, 260, 56–63. [Google Scholar] [CrossRef]
- Tunckaya, Y. Performance assessment of permeability index prediction in an ironmaking process via soft computing techniques. J. Soc. Mech. Eng. Part II Electron. J. Process Mech. Eng. 2017, 231, 1101–1109. [Google Scholar] [CrossRef]
- Pan, D.; Jiang, Z.H.; Chen, Z.P. Temperature measurement and compensation method of blast furnace hot metal based on infrared computer vision. IEEE Trans. Instrum. Meas. 2018, 68, 3576–3582. [Google Scholar] [CrossRef]
- Song, J.H.; Yang, C.J.; Zhou, Z.; Liu, W.H.; Ma, S.Y. Application of improved EMD-Elman neural network to predict silicon content in hot metal. CIESC J. 2016, 67, 729–735. [Google Scholar]
- Jiang, K.; Jiang, Z.H.; Xie, Y.F.; P, D.; G, W.H. Inte lligent Prediction of the Change Trend of Silicon Content in Blast Furnace. Control Eng. China 2020, 27, 540–546. [Google Scholar]
- Guo, D.W.; Zhou, P. Soft-sensor modeling of silicon content in hot metal based on sparse robust LS-SVR and multi-objective optimization. Chin. J. Eng. 2016, 38, 1233–1241. [Google Scholar]
- Zhang, H.G.; Zhang, S.; Yin, Y.X. Multi-class fault diagnosis of BF based on global optimization LS-SVM. Chin. J. Eng. 2017, 39, 39–47. [Google Scholar]
- Gan, L.Z.; Liu, H.K.; Sun, Y.X. Sparse least squares support vector machine for function estimation. In Proceedings of the 3rd International Symposium on Neural Networks, Chengdu, China, 28 May–1 June 2006; pp. 1016–1022. [Google Scholar]
- Wu, B.; Han, S.; Xiao, J.; Hu, X.; Fan, J. Error compensation based on BP neural network for airborne laser ranging. Optik 2016, 127, 4083–4088. [Google Scholar] [CrossRef]
- Zhang, J.H.; Jin, Y.J.; Shen, F.M.; Su, X.L. The prediction model of silicon content in hot metal is established using an optimized BP neural network. J. Iron Steel Res. 2007, 19, 60–63. [Google Scholar]
- Luo, Z.Y.; Zhu, Z.H.; Xie, Z.Q.; Sun, G.L. Multi-objective optimization algorithm of flower differential pollination workflow for cloud computing. Acta Electron. Sin. 2021, 49, 470–476. [Google Scholar]
- Niu, Q.; Cao, A.M.; Chen, X.Y.; Z, D. Short-term load forecasting based on flower pollination algorithm and BP neural network. Power Grid Clean Energy 2020, 36, 28–32. [Google Scholar]
- Liu, J.S.; Liu, L.; Li, Y. A Differential Evolution Flower Pollination Algorithm with Dynamic Switch Probability. Chin. J. Electron. 2019, 28, 737–747. [Google Scholar] [CrossRef]
- Pham, Q.B.; Sammen, S.S.; Abba, S.I.; Mohammadi, B.; Shahid, S.; Abdulkadir, R.A. New hybrid model based on relevance vector machine with flower pollination algorithm for phycocyanin pigment concentration estimation. Environ. Sci. Pollut. Res. 2021, 28, 32–36. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.L.; Sun, T. A constrained optimization method based on BP neural network. Neurocomput. Its Appl. 2018, 29, 413–419. [Google Scholar] [CrossRef]
- Chen, W.; Kong, F.; Wang, B.; Li, Y. Application of grey relational analysis and extreme learning machine method for predicting hot metal silicon content in blast furnace. Ironmak. Steelmak. 2019, 46, 974–979. [Google Scholar] [CrossRef]
- Zheng, B.H. Material procedure quality forecast based on genetic BP neural network. Mod. Phys. Lett. B 2017, 31, 26–32. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Yang, Z.N.; Zhang, L.G.; Wan, S.Y.; Wang, Z.Y. Short-term power load forecast based on dimension reduction by elastic network and flower pollination algorithm optimized BP neural network. Chin. J. Sci. Instrum. 2019, 40, 47–54. [Google Scholar]
- Hu, J.H.; Huang, Y.L.; Zhang, J.; Wang, Q.H.; Zhou, X.L.; Ma, J.W. Prediction of the tension reducing steel pipe wall thickness based on sparrow search algorithm optimized double hidden layer BP neural network. J. Plast. Eng. 2022, 29, 145–151. [Google Scholar]
z1 | z2 | z3 | z4 | z5 | z6 | z7 | z8 | z9 |
---|---|---|---|---|---|---|---|---|
9384 | 303 | 1120 | 215 | 238 | 28 | 36 | 185 | 0.42 |
9367 | 299 | 1108 | 210 | 243 | 25 | 39 | 176 | 0.39 |
9421 | 304 | 1103 | 209 | 235 | 27 | 38 | 183 | 0.40 |
9388 | 306 | 1095 | 212 | 221 | 26 | 35 | 185 | 0.40 |
9455 | 300 | 1089 | 209 | 236 | 27 | 39 | 180 | 0.39 |
9623 | 298 | 1076 | 223 | 247 | 25 | 35 | 184 | 0.38 |
10,653 | 301 | 1107 | 226 | 258 | 25 | 40 | 183 | 0.39 |
9202 | 303 | 1132 | 230 | 232 | 29 | 33 | 179 | 0.41 |
9324 | 305 | 1139 | 233 | 227 | 31 | 37 | 182 | 0.41 |
9405 | 305 | 1152 | 238 | 241 | 25 | 36 | 185 | 0.42 |
Principal Component | Characteristic Value | Contribution Rate | Cumulative Contribution Rate |
---|---|---|---|
X1 | 8.2157 | 0.3043 | 0.3043 |
X2 | 4.3256 | 0.1545 | 0.4588 |
X3 | 2.9567 | 0.1056 | 0.5644 |
X4 | 2.5236 | 0.0901 | 0.6545 |
X5 | 1.9856 | 0.0709 | 0.7254 |
X6 | 1.5268 | 0.0545 | 0.7799 |
X7 | 1.3258 | 0.0474 | 0.8273 |
X8 | 1.1023 | 0.0394 | 0.8667 |
X9 | 0.9852 | 0.0352 | 0.9018 |
… | … | … | … |
X21 | 0.032 | 0.002 | 1 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
---|---|---|---|---|---|---|---|---|---|
z′1 | 0.0815 | −0.0654 | 0.2099 | 0.0858 | 0.0612 | 0.0144 | −0.0205 | −0.0155 | 0.1255 |
z′2 | −0.0632 | 0.3246 | 0.0625 | 0.0024 | −0.1202 | −0.1032 | 0.0254 | 0.0194 | 0.0919 |
z′3 | 0.1983 | −0.0342 | −0.1041 | 0.2856 | 0.0318 | 0.0248 | 0.0256 | 0.1306 | −0.2260 |
z′4 | −0.0984 | 0.1346 | 0.2205 | 0.0588 | −0.0180 | 0.0138 | −0.1135 | −0.1585 | 0.0343 |
z′5 | 0.1128 | 0.1367 | 0.0206 | 0.0726 | −0.0144 | 0.0428 | 0.0211 | 0.0111 | 0.1211 |
z′6 | −0.0092 | 0.2623 | 0.0063 | −0.0144 | 0.1678 | −0.1644 | 0.0283 | −0.0213 | 0.0326 |
z′7 | 0.0167 | −0.2876 | −0.1640 | 0.2764 | 0.0842 | 0.0149 | 0.1235 | 0.2035 | −0.1378 |
z′8 | −0.0962 | 0.2201 | 0.0385 | 0.0984 | 0.1052 | 0.1379 | 0.2455 | 0.0735 | 0.1129 |
z′9 | 0.1326 | 0.0984 | 0.1015 | 0.1032 | −0.1116 | 0.0271 | 0.0295 | 0.2165 | 0.1388 |
z′10 | 0.3387 | 0.1128 | 0.0605 | −0.0084 | −0.0598 | 0.0377 | −0.0095 | 0.0345 | 0.0536 |
z′11 | 0.0097 | −0.3092 | −0.0232 | 0.0304 | 0.0166 | 0.0228 | 0.0242 | −0.0172 | 0.2838 |
z′12 | 0.3423 | 0.1627 | 0.0414 | 0.0136 | 0.1314 | −0.2696 | 0.0254 | 0.0199 | 0.0018 |
z′13 | 0.0341 | 0.0962 | −0.0366 | 0.012 | 0.3628 | 0.1044 | −0.2006 | −0.0316 | −0.1260 |
z′14 | −0.1092 | 0.1325 | 0.1135 | 0.0144 | −0.1166 | 0.2509 | 0.1135 | 0.0255 | 0.0643 |
z′15 | 0.1110 | −0.0237 | −0.1001 | 0.1152 | 0.1868 | 0.2239 | 0.1111 | 0.1021 | −0.0811 |
z′16 | −0.0192 | 0.0097 | 0.0145 | −0.0044 | −0.0019 | 0.2682 | 0.0343 | 0.2063 | 0.0266 |
z′17 | 0.2814 | 0.1423 | −0.1264 | 0.0248 | −0.0332 | −0.1409 | −0.0155 | −0.0235 | −0.1378 |
z′18 | 0.1082 | −0.1341 | −0.0135 | 0.1224 | 0.0816 | 0.1379 | 0.0145 | 0.0763 | 0.0729 |
z′19 | −0.2232 | 0.3232 | 0.1075 | −0.2114 | −0.1016 | 0.0271 | −0.0295 | 0.0265 | 0.1388 |
z′20 | 0.3189 | −0.1209 | 0.0685 | −0.1064 | −0.1332 | 0.1377 | 0.0395 | 0.1455 | −0.0536 |
z′21 | −0.0216 | −0.0923 | 0.2527 | 0.0125 | 0.0818 | −0.0028 | 0.1242 | 0.0762 | 0.0838 |
Number | 1 | 2 | 3 | 4 | 5 |
Hot air temperature | 1120 | 1108 | 1103 | 1095 | 1089 |
Furnace top temperature | 215 | 210 | 209 | 212 | 209 |
Furnace top pressure | 238 | 243 | 235 | 221 | 236 |
Air permeability index | 28 | 25 | 27 | 26 | 27 |
Coal injection rate | 36 | 39 | 38 | 35 | 39 |
Differential pressure | 185 | 176 | 183 | 185 | 180 |
… | …… | ||||
Hot air pressure | 0.42 | 0.39 | 0.4 | 0.4 | 0.39 |
Si content | 0.56 | 0.6 | 0.58 | 0.53 | 0.62 |
BP predicted value | 0.63 | 0.55 | 0.43 | 0.65 | 0.51 |
FPA-BP predicted value | 0.59 | 0.62 | 0.55 | 0.57 | 0.55 |
Model | HR | MAPE | MAE | RMSE | Time/s |
---|---|---|---|---|---|
BP | 70.00% | 0.1999 | 0.0614 | 0.0932 | 0.8601 |
FPA-BP | 86.00% | 0.1305 | 0.0444 | 0.0599 | 0.3230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Xing, X.; Pang, Z.; Lv, M. Prediction of Silicon Content in the Hot Metal of a Blast Furnace Based on FPA-BP Model. Metals 2023, 13, 918. https://doi.org/10.3390/met13050918
Song J, Xing X, Pang Z, Lv M. Prediction of Silicon Content in the Hot Metal of a Blast Furnace Based on FPA-BP Model. Metals. 2023; 13(5):918. https://doi.org/10.3390/met13050918
Chicago/Turabian StyleSong, Jiale, Xiangdong Xing, Zhuogang Pang, and Ming Lv. 2023. "Prediction of Silicon Content in the Hot Metal of a Blast Furnace Based on FPA-BP Model" Metals 13, no. 5: 918. https://doi.org/10.3390/met13050918
APA StyleSong, J., Xing, X., Pang, Z., & Lv, M. (2023). Prediction of Silicon Content in the Hot Metal of a Blast Furnace Based on FPA-BP Model. Metals, 13(5), 918. https://doi.org/10.3390/met13050918