Simultaneous Improvement in Strength and Ductility of TC4 Matrix Composites Reinforced with Ti1400 Alloy and In Situ-Synthesized TiC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Material Characterization
3. Results
4. Discussion
5. Conclusions
- (1)
- The microstructures of (Ti1400 + TiC)/TC4 composites exhibited discontinuous distribution of in situ-formed TiC particles, forming a network structure. The compositional and structural transition zone between the Ti1400 alloy and TC4 matrix were crucial in achieving superior mechanical properties.
- (2)
- The yield strength and tensile strength of the TiC/TC4 composite were substantially higher than those of the TC4 alloy. However, the total elongation was only 57% of that in the TC4 alloy. Increasing the Ti1400 alloy content enhanced the tensile strength of the composite while still maintaining a significantly higher total elongation compared to the TiC/TC4 composite.
- (3)
- The increase in strength mainly came from the additional solid solution strengthening provided by the substitutional elements Cr and Mo and the fine grain strengthening. The compositional and structural transition zone formed by element diffusion had a better interface combination between the Ti1400 alloy and TC4 matrix, which can alleviate the severe stress concentration and is conducive to the improvement of elongation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shang, C.; Zhang, F.; Xiong, Y.; Wan, Q.; Chen, F. Spark Plasma Forging and Network Size Effect on Strength-Ductility Trade-off in Graphene Reinforced Ti6Al4V Matrix Nanocomposites. Mater. Sci. Eng. A 2023, 862, 144480. [Google Scholar] [CrossRef]
- Ghasali, E.; Ghahremani, D.; Orooji, Y. Using metallic additives as a bonding layer to produce Ti-based laminated composites via spark plasma sintering. J. Sci. Adv. Mater. Devices 2021, 6, 435–445. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.M.; Cheng, X.W.; Chang, S.; Mu, X.N. Effect of Ball Milling Time on Microstructure and Mechanical Properties of Graphene Nanoplates and TiBw Reinforced Ti–6Al–4V Alloy Composites. Mater. Sci. Eng. A 2022, 861, 144240. [Google Scholar] [CrossRef]
- Chang, S.; Du, W.; Zhao, Z.; Bai, P. Microstructure and High Temperature-Mechanical Properties of TiC/Graphene/Ti6Al4V Composite Formed by Laser Powder Bed Fusion. Metals 2023, 13, 163. [Google Scholar] [CrossRef]
- Dong, L.; Lu, J.; Fu, Y.; Huo, W.; Liu, Y.; Li, D.; Zhang, Y. Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites: Properties, interfacial structures and strengthening mechanisms. Carbon 2020, 164, 272–286. [Google Scholar] [CrossRef]
- Wang, S.; Huang, L.; Jiang, S.; Zhang, R.; Liu, B.; Sun, F.; An, Q.; Jiao, Y.; Geng, L. Microstructure evolution and tensile properties of as-rolled TiB/TA15 composites with network microstructure. Mater. Sci. Eng. A 2021, 804, 140783. [Google Scholar] [CrossRef]
- Wu, H.; Li, S.; Han, Y.; Huang, G.; Mao, J.; Lu, W. Understanding the confined TiB fiber-like structure for strength-ductility combination of discontinuous-reinforced titanium matrix composites. Mater. Sci. Eng. A 2022, 852, 143645. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, J.; Liu, T.; Shang, C. Enhanced Mechanical Properties of Few-Layer Graphene Reinforced Titanium Alloy Matrix Nanocomposites with a Network Architecture. Mater. Des. 2020, 186, 108330. [Google Scholar] [CrossRef]
- Tjong, S.C.; Mai, Y.-W. Processing-structure-property aspects of particulate and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 2008, 68, 583–601. [Google Scholar] [CrossRef]
- Chen, R.; An, Q.; Wang, S.; Huang, L.; Zhang, R.; Wang, C.; Zhou, S.; Geng, L. Overcoming the Strength-Ductility Trade-off Dilemma in TiBw/TC18 Composites via Network Architecture with Trace Reinforcement. Mater. Sci. Eng. A 2022, 842, 143092. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, S.; Chen, X.; An, Q.; Huang, L.; Geng, L.; Yang, F. Significantly Enhanced Superplasticity of TiBw/near-α Ti Composite: Microstructure Tailoring and Deformation Mechanisms. Mater. Sci. Eng. A 2022, 853, 143772. [Google Scholar] [CrossRef]
- Lin, F.; Ren, M.; Jia, F.; Huo, M.; Yang, M.; Chen, Z.; Jiang, Z. Achieving Balanced Strength-Ductility of Heterostructured TiC/Graphene Nanoplatelets (GNPs) Reinforced Al Matrix Composites by Tuning TiC-to-GNPs Ratio. Compos. Commun. 2023, 38, 101529. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, H.; Cheng, X.; Fan, Q.; Zhang, Z.; Mu, X.; Liu, L.; Feng, K. Achieving High Performance in (NiTi2 + TiC)/Ti Composites with Network Architecture via Reaction Interface Design. J. Alloys Compd. 2022, 925, 166230. [Google Scholar] [CrossRef]
- Moradi, M.; Moazeni, M.; Salimijazi, H.R. Microstructural characterization and failure mechanism of vacuum plasma sprayed Ti-6Al-4V/B4C composite. Vacuum 2014, 107, 34–40. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, B.; Liu, Y.; Ji, S.; Ao, Q. Research on Preparation and Characterization of Ti-Ti5Si3 Gradient Composite Porous Material via in-Situ Reactive Process. J. Alloys Compd. 2022, 899, 163405. [Google Scholar] [CrossRef]
- Ghasali, E.; Nezhad, M.S.A.; Ghazvinian, S. Preparation of Ti-based laminated composites through spark plasma sintering with different carbon sources as the bonding layer. Ceram. Int. 2019, 45, 14045–14057. [Google Scholar] [CrossRef]
- Yue, H.; Peng, H.; Fan, G.; Yang, J.; Chen, H.; Fang, X. Microstructure and Mechanical Properties of Y2O3-Bearing Ti–48Al–2Cr–2Nb Alloy Prepared by Selective Electron Beam Melting. Mater. Sci. Eng. A 2022, 840, 142960. [Google Scholar] [CrossRef]
- Singh, H.; Hayat, M.; He, Z.; Peterson, V.K.; Das, R.; Cao, P. In situ neutron diffraction observations of Ti-TiB composites. Compos. Part A 2019, 124, 105501. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, L.; Yan, H.; Zhu, G.; Teng, J.; Wang, B.; Luo, L.; Chen, R.; Su, Y.; Guo, J. Hydrogen-Induced Modification of the Interface between Matrix and Ceramic Phase of (TiB + TiC)/Ti–6Al–4V. Compos. Commun. 2023, 37, 101434. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, M.; Dong, L.; Sun, G.; Zhang, W.; Xue, H.; Fu, Y.; Elmarakbi, A.; Zhang, Y. In-Situ Synthesized TiC/Ti-6Al-4V Composites by Elemental Powder Mixing and Spark Plasma Sintering: Microstructural Evolution and Mechanical Properties. J. Alloys Compd. 2023, 947, 169557. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X.; Qin, J.; Zhang, D.; Lu, W. Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions. Mater. Sci. Eng. A 2015, 628, 366–373. [Google Scholar] [CrossRef]
- Moghadam, A.D.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene-a review. Compos. B Eng. 2015, 77, 402–420. [Google Scholar] [CrossRef]
- Sun, G.; Zhuang, S.; Jia, D.; Pan, X.; Sun, Y.; Tu, F.; Lu, M. Facile Fabricating Titanium/Graphene Composite with Enhanced Conductivity. Mater. Lett. 2023, 333, 133680. [Google Scholar] [CrossRef]
- Lu, J.; Dong, L.; Liu, Y.; Fu, Y.; Zhang, W.; Du, Y.; Zhang, Y.; Zhao, Y. Simultaneously enhancing the strength and ductility in titanium matrix composites via discontinuous network structure. Compos. Part A 2020, 136, 105971. [Google Scholar] [CrossRef]
- Cho, S.; Kim, J.; Jo, I.; Park, J.H.; Lee, J.; Hong, H.-U.; Lee, B.H.; Hwang, W.R.; Suh, D.-W.; Lee, S.-K. Effect of molybdenum on interfacial properties of titanium carbide reinforced Fe composite. J. Mater. Sci. Technol. 2022, 107, 252–258. [Google Scholar] [CrossRef]
- Tan, C.; Liu, Y.; Weng, F.; Ng, F.L.; Su, J.; Xu, Z.; Ngai, X.D.; Chew, Y. Additive manufacturing of voxelized heterostructured materials with hierarchical phases. Addit. Manuf. 2022, 54, 102775. [Google Scholar] [CrossRef]
- Wimler, D.; Lindemann, J.; Gammer, C.; Spoerk-Erdely, P.; Stark, A.; Clemens, H.; Mayer, S. Novel intermetallic-reinforced near-α Ti alloys manufactured by spark plasma sintering. Mater. Sci. Eng. A 2020, 792, 139798. [Google Scholar] [CrossRef]
- Yu, H.; Sun, Y.; Hu, L.; Zhou, H.; Wan, Z. Microstructural evolution of AZ61-10 at.%Ti composite powders during mechanical milling. Mater. Des. 2016, 104, 265–275. [Google Scholar] [CrossRef]
- Luo, H.; Li, J.; Ye, J.; Lu, Y.; Tan, J.; Song, J.; Chen, X.; Zheng, K.; Pan, F. Influence of Ti-6Al-4V particles on the interfacial microstructure and strength-ductility synergetic mechanism of AZ91 magnesium alloy. Mater. Charact. 2022, 191, 112154. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, F.; Huang, Y.; Shang, C.; Wan, Q. Multiple strengthening via high-entropy alloy particle addition in titanium matrix composites fabricated by spark plasma sintering. Mater. Sci. Eng. A 2022, 859, 144235. [Google Scholar] [CrossRef]
- Ma, G.; Liu, X.; Song, C.; Niu, F.; Wu, D. TiCp reinforced Ti6Al4V of follow-up synchronous electromagnetic induction-laser hybrid directed energy deposition: Microstructure evolution and mechanical properties. Addit. Manuf. 2022, 59, 103087. [Google Scholar] [CrossRef]
- Jayaprakash, M.; Ping, D.H.; Yamabe-Mitarai, Y. Effect of Zr and Si addition on high temperature mechanical properties of near-α Ti–Al–Zr–Sn based alloys. Mater. Sci. Eng. A 2014, 612, 456–461. [Google Scholar] [CrossRef]
- Jiang, X.J.; Zhou, Y.K.; Feng, Z.H.; Xia, C.Q.; Tan, C.L.; Liang, S.X.; Zhang, X.Y.; Ma, M.Z.; Liu, R.P. Influence of Zr content on β-phase stability in α-type Ti–Al alloys. Mater. Sci. Eng. A 2015, 639, 407–411. [Google Scholar] [CrossRef]
- Vidyuk, T.M.; Dudina, D.V.; Korchagin, M.A.; Gavrilov, A.I.; Skripkina, T.S.; Ukhina, A.V.; Anisimov, A.G.; Bokhonov, B.B. Melting at the inter-particle contacts during Spark Plasma Sintering: Direct microstructural evidence and relation to particle morphology. Vacuum 2020, 181, 109566. [Google Scholar] [CrossRef]
- Feng, T.; Zheng, W.; Chen, W.; Shi, Y.; Fu, Y.Q. Enhanced interfacial wettability and mechanical properties of Ni@Al2O3/Cu ceramic matrix composites using spark plasma sintering of Ni coated Al2O3 powders. Vacuum 2021, 184, 109938. [Google Scholar] [CrossRef]
- Liu, C.; Lu, W.; Xia, W.; Du, C.; Rao, Z.; Best, J.P.; Brinckmann, S.; Lu, J.; Gault, B.; Dehm, G.; et al. Massive interstitial solid solution alloys achieve near-theoretical strength. Nat. Commun. 2022, 13, 1102. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Zhao, Q.; Zhang, C.; Bolzoni, L.; Yang, F. Microstructure characterization of a high strength Ti–6Al–4V alloy prepared from a powder mixture of TiH2 and 60Al40V masteralloy powders. J. Alloys Compd. 2020, 818, 152815. [Google Scholar] [CrossRef]
- Suzuki, T.; Takeuchi, S.; Yoshinaga, H. Dislocation Dynamics and Plasticity; Springer: Berlin, Germany, 1991. [Google Scholar]
- Zhu, L.; Zhang, Q.; Chen, Z.; Wei, C.; Cai, G.-M.; Jiang, L.; Jin, Z.; Zhao, J.-C. Measurement of interdiffusion and impurity diffusion coefficients in the bcc phase of the Ti–X (X = Cr, Hf, Mo, Nb, V, Zr) binary systems using diffusion múltiples. J. Mater. Sci. 2016, 52, 3255–3268. [Google Scholar] [CrossRef]
- Hansen, N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, F.; Saba, F.; Shang, C. Graphene-TiC hybrid reinforced titanium matrix composites with 3D network architecture: Fabrication, microstructure and mechanical properties. J. Alloys Compd. 2021, 859, 157777. [Google Scholar] [CrossRef]
- Jiang, S.; An, Q.; Cui, X.; Xiang, X.; Huang, L.; Zhang, R.; Sun, Y.; Geng, L. Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system. Mater. Sci. Eng. A 2021, 819, 141488. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, Z.; Yang, T.; Kong, H.; Luan, J.; Wang, A.; Wang, D.; Kuo, W.; Wang, Y.; Liu, C.T. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing. Science 2021, 374, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Sun, Q.; Xin, S.; Chen, Y.; Wu, C.; Wang, H.; Xu, J.; Wan, M.; Zeng, W.; Zhao, Y. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Froes, F.H.; Bomberger, H.B. The beta titanium alloys. JOM 1985, 37, 28–37. [Google Scholar] [CrossRef]
- Ankem, S.; Margolin, H.; Greene, C.A.; Neuberger, B.W.; Oberson, P.G. Mechanical properties of alloys consisting of two ductile phases. Prog. Mater. Sci. 2006, 51, 632–709. [Google Scholar] [CrossRef]
Element (w/t) | Al | V | Fe | Cr | Mo | Sn | Zr |
---|---|---|---|---|---|---|---|
TC4 | 6.07 | 3.93 | 0.18 | / | / | / | / |
Ti1400 | 4.12 | 4.62 | 0.18 | 5.55 | 4.16 | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, N.; Li, M.; Sun, G.; Xu, J.; Li, M.; Dong, L.; Zhang, Y. Simultaneous Improvement in Strength and Ductility of TC4 Matrix Composites Reinforced with Ti1400 Alloy and In Situ-Synthesized TiC. Metals 2023, 13, 965. https://doi.org/10.3390/met13050965
He N, Li M, Sun G, Xu J, Li M, Dong L, Zhang Y. Simultaneous Improvement in Strength and Ductility of TC4 Matrix Composites Reinforced with Ti1400 Alloy and In Situ-Synthesized TiC. Metals. 2023; 13(5):965. https://doi.org/10.3390/met13050965
Chicago/Turabian StyleHe, Ni, Mingjia Li, Guodong Sun, Junjie Xu, Mingyang Li, Longlong Dong, and Yusheng Zhang. 2023. "Simultaneous Improvement in Strength and Ductility of TC4 Matrix Composites Reinforced with Ti1400 Alloy and In Situ-Synthesized TiC" Metals 13, no. 5: 965. https://doi.org/10.3390/met13050965
APA StyleHe, N., Li, M., Sun, G., Xu, J., Li, M., Dong, L., & Zhang, Y. (2023). Simultaneous Improvement in Strength and Ductility of TC4 Matrix Composites Reinforced with Ti1400 Alloy and In Situ-Synthesized TiC. Metals, 13(5), 965. https://doi.org/10.3390/met13050965