Study on Physical Mechanisms of Thickness Effect of Incremental Hole-Drilling Method Based on Energy Analysis
Abstract
:1. Introduction
2. Calculation of Calibration Coefficients for the Incremental Hole-Drilling Method Based on the Integral Method
3. Finite Element Model of Incremental Hole-Drilling Method Based on Three Constraint Conditions
4. Results and Discussion
4.1. Analysis of the Bottom Free Constraint Situation
4.2. Analysis of the Bottom Support Constraint Situation
4.3. Analysis of Bottom Z-Direction Degrees of Freedom Constraints Situation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabatabaeian, A.; Ghasemi, A.R.; Shokrieh, M.M.; Marzbanrad, B.; Baraheni, M.; Fotouhi, M. Residual Stress in Engineering Materials: A Review. Adv. Eng. Mater. 2021, 24, 2100786. [Google Scholar] [CrossRef]
- Fajoui, J.; Kchaou, M.; Sellami, A.; Branchu, S.; Elleuch, R.; Jacquemin, F. Impact of residual stresses on mechanical behaviour of hot work steels. Eng. Fail. Anal. 2018, 94, 33–40. [Google Scholar] [CrossRef]
- Chen, S.; Gao, H.; Zhang, Y.; Wu, Q.; Gao, Z.; Zhou, X. Review on residual stresses in metal additive manufacturing: Formation mechanisms, parameter dependencies, prediction and control approaches. J. Mater. Res. Technol. 2022, 17, 2950–2974. [Google Scholar] [CrossRef]
- Yi, R.; Chen, C.; Shi, C.; Li, Y.; Li, H.; Ma, Y. Research advances in residual thermal stress of ceramic/metal brazes. Ceram. Int. 2021, 47, 20807–20820. [Google Scholar] [CrossRef]
- Diaz, A.; Cuesta, I.I.; Alegre, J.M.; de Jesus, A.M.P.; Manso, J.M. Residual stresses in cold-formed steel members: Review of measurement methods and numerical modelling. Thin-Walled Struct. 2021, 159, 107335. [Google Scholar] [CrossRef]
- Guo, J.; Fu, H.; Pan, B.; Kang, R. Recent progress of residual stress measurement methods: A review. Chin. J. Aeronaut. 2021, 34, 54–78. [Google Scholar] [CrossRef]
- Yazdanmehr, A.; Jahed, H. On the Surface Residual Stress Measurement in Magnesium Alloys Using X-Ray Diffraction. Materials 2020, 13, 5190. [Google Scholar] [CrossRef]
- Taisei, D.; Masayuki, N.; Junichi, O. Residual Stress Measurement of Industrial Polymers by X-ray Diffraction. Adv. Mat. Res 2015, 1110, 100–103. [Google Scholar] [CrossRef]
- Sun, G.; Chen, B. The technology and application of residual stress analysis by neutron diffraction. Nucl. Tech. 2007, 30, 286–289. [Google Scholar]
- Li, J.; Wang, H.; Sun, G.; Chen, B.; Chen, Y.; Pang, B.; Zhang, Y.; Wang, Y.; Zhang, C.; Gong, J.; et al. Neutron diffractometer RSND for residual stress analysis at CAEP. Nucl. Instrum. Meth. A. 2015, 783, 76–79. [Google Scholar] [CrossRef]
- Carpenter, H.W.; Reid, R.G.; Paskaramoorthy, R. Sensitivity Analysis of the Crack Compliance and Layer Removal Methods for Residual Stress Measurement in GFRP Pipes. J. Appl. Mech. Trans. ASME 2016, 138, 031001. [Google Scholar] [CrossRef]
- Liu, L.; Sun, J.; Chen, W.; Chen, Q. Study on Distribution of Initial Residual Stress in 7075T651 Aluminium Alloy Plate. China Mech. Eng. 2016, 27, 537–543. [Google Scholar]
- Kim, C.H. Investigation on the Hole-producing Techniques of Residual-stress Measurement by Incremental Hole-drilling Method in Injection Molded Part. Fibers Polym. 2018, 19, 1776–1780. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, L.; Lu, J. A Computational Method of Residual Stress Calculation for Incremental Hole-Drilling Method Utilized Composite Materials. Mater. Sci. Forum. 2015, 813, 94–101. [Google Scholar] [CrossRef]
- Schajer, G.S.; Rickert, T.J. Incremental Computation Technique for Residual Stress Calculations Using the Integral Method. Exp. Mech. 2011, 51, 1217–1222. [Google Scholar] [CrossRef]
- ASTM E837-13a; Standard Test Method for Determining Residual Stresses by the Hole Drilling Strain-Gage Method. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM E837-20; Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method. ASTM International: West Conshohocken, PA, USA, 2020.
- Zhang, K.; Yuan, M.; Chen, J. General Calibration Formulas for Incremental Hole Drilling Optical Measurement. Exp. Tech. 2017, 41, 1–8. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, J.; Han, B. Study of residual stress distribution by a combined method of moire interferometry and incremental hole drilling, part II: Implementation. J. Appl. Mech.-Trans. ASME 1998, 65, 844–850. [Google Scholar] [CrossRef]
- Schajer, G.S.; Steinzig, M. Dual-Axis Hole-Drilling ESPI Residual Stress Measurements. J. Appl. Mech.-Trans. ASME 2010, 132, 011007. [Google Scholar] [CrossRef]
- Pisarev, V.; Odintsev, I.; Eleonsky, S.; Apalkov, A. Residual stress determination by optical interferometric measurements of hole diameter increments. Opt. Laser Eng. 2018, 110, 437–456. [Google Scholar] [CrossRef]
- Baldi, A. On the Implementation of the Integral Method for Residual Stress Measurement by Integrated Digital Image Correlation. Exp. Mech. 2019, 59, 1007–1020. [Google Scholar] [CrossRef]
- Xu, Y.; Bao, R. Residual stress determination in friction stir butt welded joints using a digital image correlation-aided slitting technique. Chin. J. Aeronaut. 2017, 30, 1258–1269. [Google Scholar] [CrossRef]
- Brynk, T. Application of 3D DIC Displacement Field Measurement in Residual Stress Calculations. Adv. Mater. Sci. 2017, 17, 46–53. [Google Scholar] [CrossRef]
- Nelson, D.V. Residual stress determination using full-field optical methods. J. Phys. Photonics 2021, 3, 044003. [Google Scholar] [CrossRef]
- Blödorn, R.; Bonomo, L.; Viotti, M.; Schroeter, R.; Albertazzi, A., Jr. Calibration Coefficients Determination Through Fem Simulations for the Hole-Drilling Method Considering the Real Hole Geometry. Exp. Tech. 2016, 41, 37–44. [Google Scholar] [CrossRef]
- Schajer, G. Compact Calibration Data for Hole-Drilling Residual Stress Measurements in Finite-Thickness Specimens. Exp. Mech. 2020, 60, 665–678. [Google Scholar] [CrossRef]
- Schuster, S.; Steinzig, M.; Gibmeier, J. Incremental Hole Drilling for Residual Stress Analysis of Thin Walled Components with Regard to Plasticity Effects. Exp. Mech. 2017, 57, 1457–1467. [Google Scholar] [CrossRef]
- Návrat, T.; Halabuk, D.; Vosynek, P. Efficiency of Plasticity Correction in the Hole-Drilling Residual Stress Measurement. Materials 2020, 13, 3396. [Google Scholar] [CrossRef]
- Peral, D.; de Vicente, J.; Porro, J.; Ocaña, J. Uncertainty analysis for non-uniform residual stresses determined by the hole drilling strain gauge method. Measurement 2017, 97, 51–63. [Google Scholar] [CrossRef]
- Mamane, A.I.; Giljean, S.; Pac, M.J.; L’Hostis, G. Optimization of the measurement of residual stresses by the incremental hole drilling method. Part I: Numerical correction of experimental errors by a configurable numerical–experimental coupling. Compos. Struct. 2022, 294, 115703. [Google Scholar] [CrossRef]
- Babaeeian, M.; Mohammadimehr, M. Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method. Opt. Laser Eng. 2020, 128, 106002. [Google Scholar] [CrossRef]
- Wu, J.; Qiang, B.; Liao, X.; Huang, Y.; Changrong, Y.; Li, Y. Hole-drilling method eccentricity error correction using a convolutional neural network. J. Strain Anal. Eng. Des. 2022, 58, 030932472210800. [Google Scholar] [CrossRef]
- Alegre, J.M.; Díaz, A.; Cuesta, I.I.; Manso, J.M. Analysis of the Influence of the Thickness and the Hole Radius on the Calibration Coefficients in the Hole-Drilling Method for the Determination of Non-uniform Residual Stresses. Exp. Mech. 2019, 59, 79–94. [Google Scholar] [CrossRef]
- Beghini, M.; Bertini, L.; Giri, A.; Santus, C.; Valentini, E. Measuring residual stress in finite thickness plates using the hole-drilling method. J. Strain Anal. Eng. Des. 2019, 54, 65–75. [Google Scholar] [CrossRef]
- Magnier, A.; Zinn, W.; Niendorf, T.; Scholtes, B. Residual Stress Analysis on Thin Metal Sheets Using the Incremental Hole Drilling Method—Fundamentals and Validation. Exp. Tech. 2019, 43, 65–79. [Google Scholar] [CrossRef]
- Hosseini, S.; Akbari, S.; Shokrieh, M. Residual stress measurement through the thickness of ball grid array microelectronics packages using incremental hole drilling. Microelectron. Reliab. 2019, 102, 113473. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, Y.; Zhao, S.; Chen, J. Numerical and experimental investigation of thickness effect on residual stress measurement. Mat. Sci. Technol. 2016, 32, 1495–1504. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Modulus of elasticity of aluminum alloy: E | 69.3 GPa |
Poisson’s Ratio of aluminum alloy: | 0.33 |
Hole diameter: | 2 mm |
Drilling increment: h | 0.05 mm |
Specimen thickness: W | 1.1–10 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Cao, Y.; Xi, S. Study on Physical Mechanisms of Thickness Effect of Incremental Hole-Drilling Method Based on Energy Analysis. Metals 2024, 14, 86. https://doi.org/10.3390/met14010086
Zhang K, Cao Y, Xi S. Study on Physical Mechanisms of Thickness Effect of Incremental Hole-Drilling Method Based on Energy Analysis. Metals. 2024; 14(1):86. https://doi.org/10.3390/met14010086
Chicago/Turabian StyleZhang, Keming, Yu Cao, and Shangbin Xi. 2024. "Study on Physical Mechanisms of Thickness Effect of Incremental Hole-Drilling Method Based on Energy Analysis" Metals 14, no. 1: 86. https://doi.org/10.3390/met14010086
APA StyleZhang, K., Cao, Y., & Xi, S. (2024). Study on Physical Mechanisms of Thickness Effect of Incremental Hole-Drilling Method Based on Energy Analysis. Metals, 14(1), 86. https://doi.org/10.3390/met14010086