Advances in Additive Manufacturing Technology of Metals and Alloys

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Additive Manufacturing".

Deadline for manuscript submissions: closed (30 April 2024) | Viewed by 3581

Special Issue Editor


E-Mail Website
Guest Editor
College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Interests: manufacturing process modeling; hybrid additive manufacturing; post-treatment modeling; fatigue performance modeling

Special Issue Information

Dear Colleagues,

Additive Manufacturing (AM) remains a rich and rapidly developing theme in metal and alloy processing. The advancement of AM technology has brought opportunities not just for complex metal component fabrication but also for microstructure tailoring and novel material design. To model and analyze this advanced manufacturing technology for metal fabrication process optimization and component performance enhancement has become a challenging issue for both academia and industry.

This Special Issue aims to highlight research on the computation and simulation of metals processed with AM technology. In addition, post-treatment modeling and non-destructive testing and evaluation (NDT&E) on AM metals are invited here.

Dr. Lei Yan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • manufacturing process modeling
  • novel alloy design
  • microstructure modeling
  • residual stress and deformation modeling
  • mechanical behavior modeling
  • topology and surface optimization
  • post-treatment process modeling
  • qualification and certification process simulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 3092 KiB  
Article
Study on Physical Mechanisms of Thickness Effect of Incremental Hole-Drilling Method Based on Energy Analysis
by Keming Zhang, Yu Cao and Shangbin Xi
Metals 2024, 14(1), 86; https://doi.org/10.3390/met14010086 - 10 Jan 2024
Viewed by 806
Abstract
Incremental hole drilling is a commonly employed semi-destructive method for measuring internal residual stresses. It involves calculating internal residual stresses through the measurement of strains. The conversion of strain to stress is achieved through calibration coefficients, the accuracy of which directly influences the [...] Read more.
Incremental hole drilling is a commonly employed semi-destructive method for measuring internal residual stresses. It involves calculating internal residual stresses through the measurement of strains. The conversion of strain to stress is achieved through calibration coefficients, the accuracy of which directly influences the precision of residual stress measurements. These calibration coefficients are predominantly determined through finite element simulations, which must consider the sample’s characteristics and realistic experimental conditions. While there has been extensive research on the influence of sample thickness, the impact of thickness under different experimental conditions remains unexplored, and the underlying physical mechanisms driving thickness effects remain ambiguous. This paper addresses this gap by employing finite element simulations to investigate the impact of thickness on calibration coefficients under three commonly utilized experimental conditions. Moreover, this research endeavors to elucidate the physical mechanisms that contribute to variations in these coefficients through energy analysis. Full article
(This article belongs to the Special Issue Advances in Additive Manufacturing Technology of Metals and Alloys)
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 6138 KiB  
Review
Review of In Situ Detection and Ex Situ Characterization of Porosity in Laser Powder Bed Fusion Metal Additive Manufacturing
by Beytullah Aydogan and Kevin Chou
Metals 2024, 14(6), 669; https://doi.org/10.3390/met14060669 - 5 Jun 2024
Viewed by 772
Abstract
Over the past decade, significant research has focused on detecting abnormalities in metal laser powder bed fusion (L-PBF) additive manufacturing. Effective online monitoring systems are crucial for enhancing process stability, repeatability, and the quality of final components. Therefore, the development of in situ [...] Read more.
Over the past decade, significant research has focused on detecting abnormalities in metal laser powder bed fusion (L-PBF) additive manufacturing. Effective online monitoring systems are crucial for enhancing process stability, repeatability, and the quality of final components. Therefore, the development of in situ detection mechanisms has become essential for metal L-PBF systems, making efficient closed-loop control strategies to adjust process parameters in real time vital. This paper presents an overview of current in situ monitoring systems used in metal L-PBF, complemented by ex situ characterizations. It discusses in situ techniques employed in L-PBF and evaluates the applicability of commercial systems. The review covers optical, thermal, acoustic, and X-ray in situ methods, along with destructive and non-destructive ex situ methods like optical, Archimedes, and X-ray characterization techniques. Each technique is analyzed based on the sensor used for defect detection and the type or size of defects. Optical in situ monitoring primarily identifies large defects from powder bed abnormalities, while thermal methods detect defects as small as 100 µm and keyholes. Thermal in situ detection techniques are notable for their applicability to commercial devices and efficacy in detecting subsurface defects. Computed tomography scanning excels in locating porosity in 3D space with high accuracy. This study also explores the advantages of multi-sensor in situ techniques, such as combining optical and thermal sensors, and concludes by addressing current research needs and potential applications of multi-sensor systems. Full article
(This article belongs to the Special Issue Advances in Additive Manufacturing Technology of Metals and Alloys)
Show Figures

Figure 1

28 pages, 15446 KiB  
Review
Corrosion and Wear Behavior of Additively Manufactured Metallic Parts in Biomedical Applications
by Zhongbin Wei, Shokouh Attarilar, Mahmoud Ebrahimi and Jun Li
Metals 2024, 14(1), 96; https://doi.org/10.3390/met14010096 - 13 Jan 2024
Cited by 2 | Viewed by 1691
Abstract
Today, parts made by additive manufacturing (AM) methods have found many applications in the medical industry, the main reasons for which are the ability to custom design and manufacture complex structures, their short production cycle, their ease of utilization, and on-site fabrication, leading [...] Read more.
Today, parts made by additive manufacturing (AM) methods have found many applications in the medical industry, the main reasons for which are the ability to custom design and manufacture complex structures, their short production cycle, their ease of utilization, and on-site fabrication, leading to the fabrication of next-generation intricate patient-specific biomedical implants. These parts should fulfill numerous requirements, such as having acceptable mechanical strength, biocompatibility, satisfactory surface characteristics, and excellent corrosion and wear performance. It was known that AM techniques may lead to some uncertainties influencing part properties and causing significant evaluation conflicts in corrosion outcomes. Meanwhile, the corrosion and wear behavior of additively manufactured materials are not comprehensively discussed. In this regard, the present work is a review of the state-of-the-art knowledge dedicated to reviewing the actual scientific knowledge about the corrosion and wear response of additively manufactured biomedical components, elucidating the relevant mechanism and influential factors to enhance the performance of AM-manufactured implants specifically for the physiological human body fluids. Furthermore, there is a focus on the use of reinforced composites, surface engineering, and a preparation stage that can considerably affect the tribocorrosion behavior of AM-produced parts. The improvement of tribocorrosion performance can have a key role in the production of advanced AM implants and the present study can pave the way toward facile production of high-throughput AM biomedical parts that have very high resistance to corrosion and wear. Full article
(This article belongs to the Special Issue Advances in Additive Manufacturing Technology of Metals and Alloys)
Show Figures

Figure 1

Back to TopTop