Electrochemistry of Tin Deposition from Methanesulfonic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Electrochemical Testing
3. Results and Discussion
3.1. Cyclic Voltammetry Experiments
3.2. Linear Sweep Voltammetry Experiment
3.3. Chronoamperometric Experiments
3.4. Characterization of Sn
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walsh, F.C.; Low, C.T.J. A review of developments in the electrodeposition of tin. Surf. Coat. Technol. 2016, 288, 79–94. [Google Scholar] [CrossRef]
- Tarselli, M.A. Tin can. Nat. Chem. 2017, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Sivakov, V. Tin/Tin Oxide Nanostructures: Formation, Application, and Atomic and Electronic Structure Peculiarities. Nanomaterials 2023, 13, 2391. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cheng, M.; Bu, J.; Cheng, L.; Ru, J.; Hua, Y.; Wang, D. Understanding the electrochemical behavior of Sn(II) in choline chloride-ethylene glycol deep eutectic solvent for tin powders preparation. Adv. Powder Technol. 2022, 33, 103670. [Google Scholar] [CrossRef]
- Lodge, A.W.; Hasan, M.M.; Bartlett, P.N.; Beanland, R.; Hector, A.L.; Kashtiban, R.J.; Levason, W.; Reid, G.; Sloan, J.; Smith, D.C.; et al. Electrodeposition of tin nanowires from a dichloromethane based electrolyte. RSC Adv. 2018, 8, 24013–24020. [Google Scholar] [CrossRef]
- Meng, Z.-C.; Gao, L.-Y.; Liu, Z.-Q. Synthesis of Sn nanowire by template electrodeposition and its conversion into Sn nanosolder. Mater. Charact. 2020, 163, 110278. [Google Scholar] [CrossRef]
- Sajeev, A.; Krishnamoorthy, K.; Pazhamalai, P.; Bhunia, K.; Sathyaseelan, A.; Kim, S.-J. Methanol-assisted energy-saving green hydrogen production using electrodeposited 3D-metallic tin as an electrocatalyst. J. Mater. Chem. A 2023, 11, 22419–22429. [Google Scholar] [CrossRef]
- Luo, L.; Qiao, H.; Xu, W.; Li, D.; Zhu, J.; Chen, C.; Lu, Y.; Zhu, P.; Zhang, X.; Wei, Q. Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries. J. Solid State Electrochem. 2017, 21, 1385–1395. [Google Scholar] [CrossRef]
- Angadi, S.I.; Sreenivas, T.; Jeon, H.-S.; Baek, S.-H.; Mishra, B.K. A review of cassiterite beneficiation fundamentals and plant practices. Miner. Eng. 2015, 70, 178–200. [Google Scholar] [CrossRef]
- Van Daele, K.; De Mot, B.; Pupo, M.; Daems, N.; Pant, D.; Kortlever, R.; Breugelmans, T. Sn-Based Electrocatalyst Stability: A Crucial Piece to the Puzzle for the Electrochemical CO2 Reduction toward Formic Acid. ACS Energy Lett. 2021, 6, 4317–4327. [Google Scholar] [CrossRef]
- An, X.; Li, S.; Hao, X.; Xie, Z.; Du, X.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate. Renew. Sustain. Energy Rev. 2021, 143, 110952. [Google Scholar] [CrossRef]
- Nguyen-Phan, T.-D.; Ellis, J.E.; Nagarajan, A.V.; Howard, B.H.; Mpourmpakis, G.; Kauffman, D.R. Precisely doping the surface of tin-based electrocatalysts for improved CO2 conversion to liquid chemicals. Appl. Catal. B 2024, 340, 123250. [Google Scholar] [CrossRef]
- Shaikh, N.S.; Shaikh, J.S.; Márquez, V.; Pathan, S.C.; Mali, S.S.; Patil, J.V.; Hong, C.K.; Kanjanaboos, P.; Fontaine, O.; Tiwari, A.; et al. New perspectives, rational designs, and engineering of Tin (Sn)-based materials for electrochemical CO2 reduction. Mater. Today Sustain. 2023, 22, 100384. [Google Scholar] [CrossRef]
- Li, Y.-G.; Liu, S.-S.; Wang, C.-H.; Luo, T.; Xiang, C.-L.; Li, S.; Chang, C.; Yang, S.-H.; Wang, H.-H.; Chen, Y.-M. Electro-Deposition Behavior in Methanesulfonic-Acid-Based Lead Electro-Refining. J. Sustain. Metall. 2021, 7, 1910–1916. [Google Scholar] [CrossRef]
- Jin, B.; Dreisinger, D.B. A green electrorefining process for production of pure lead from methanesulfonic acid medium. Sep. Purif. Technol. 2016, 170, 199–207. [Google Scholar] [CrossRef]
- Balaji, R.; Pushpavanam, M. Methanesulphonic acid in electroplating related metal finishing industries. Trans. IMF 2003, 81, 154–158. [Google Scholar] [CrossRef]
- Low, C.T.J.; Walsh, F.C. The stability of an acidic tin methanesulfonate electrolyte in the presence of a hydroquinone antioxidant. Electrochim. Acta 2008, 53, 5280–5286. [Google Scholar] [CrossRef]
- Walsh, F.C.; de León, C.P. Versatile electrochemical coatings and surface layers from aqueous methanesulfonic acid. Surf. Coat. Technol. 2014, 259, 676–697. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Methanesulfonic Acid (MSA) in Hydrometallurgy. J. Sustain. Metall. 2023, 9, 26–45. [Google Scholar] [CrossRef]
- Chang, C.; Yang, S.; Liu, S.; Wang, H.; Liu, H.; Qu, J.; Jin, W.; Wang, C.; Chen, Y. Energy-Efficient and Green Extraction of Bismuth Metal in Methanesulfonic Acid-Based Membrane Electrochemical Systems. ACS Sustain. Chem. Eng. 2023, 11, 7851–7862. [Google Scholar] [CrossRef]
- Kong, D.; Zheng, Z.; Meng, F.; Li, N.; Li, D. Electrochemical Nucleation and Growth of Cobalt from Methanesulfonic Acid Electrolyte. J. Electrochem. Soc. 2018, 165, D783. [Google Scholar] [CrossRef]
- Xiang, C.; Zhu, S.; Song, J.; Li, Y.; Luo, T.; Chang, C.; Qu, J.; Yang, S.; Wang, C.; Chen, Y. Green Electrorefining of Crude Lead with High-Quality Deposits in an Additive-Assisted Methanesulfonic Acid System. ACS Sustain. Chem. Eng. 2022, 10, 11223–11231. [Google Scholar] [CrossRef]
- Low, C.T.J.; Kerr, C.; Barker, B.D.; Smith, J.R.; Campbell, S.A.; Walsh, F.C. Electrochemistry of tin deposition from mixed sulphate and methanesulphonate electrolyte. Trans. IMF 2008, 86, 148–152. [Google Scholar] [CrossRef]
- Fletcher, S. Some new formulae applicable to electrochemical nucleation/growth/collision. Electrochim. Acta 1983, 28, 917–923. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Isaev, V.A.; Grishenkova, O.V.; Zaykov, Y.P. Theory of cyclic voltammetry for electrochemical nucleation and growth. J. Solid State Electrochem. 2018, 22, 2775–2778. [Google Scholar] [CrossRef]
- Cao, X.; Xu, L.; Wang, C.; Li, S.; Wu, D.; Shi, Y.; Liu, F.; Xue, X. Electrochemical Behavior and Electrodeposition of Sn Coating from Choline Chloride–Urea Deep Eutectic Solvents. Coatings 2020, 10, 1154. [Google Scholar] [CrossRef]
- Yang, H.; Reddy, R.G. Electrochemical deposition of zinc from zinc oxide in 2:1 urea/choline chloride ionic liquid. Electrochim. Acta 2014, 147, 513–519. [Google Scholar] [CrossRef]
- Hinatsu, J.; Foulkes, F. Electrochemical kinetic parameters for the cathodic deposition of copper from dilute aqueous acid sulfate solutions. Can. J. Chem. Eng. 1991, 69, 571–577. [Google Scholar] [CrossRef]
- Nagaishi, R.; Arisaka, M.; Kimura, T.; Kitatsuji, Y. Spectroscopic and electrochemical properties of europium(III) ion in hydrophobic ionic liquids under controlled condition of water content. J. Alloys Compd. 2007, 431, 221–225. [Google Scholar] [CrossRef]
- Al-Dawsari, J.N.; Bessadok-Jemai, A.; Wazeer, I.; Mokraoui, S.; AlMansour, M.A.; Hadj-Kali, M.K. Fitting of experimental viscosity to temperature data for deep eutectic solvents. J. Mol. Liq. 2020, 310, 113127. [Google Scholar] [CrossRef]
- Souayeh, B.; Reddy, M.G.; Sreenivasulu, P.; Poornima, T.; Rahimi-Gorji, M.; Alarifi, I.M. Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle. J. Mol. Liq. 2019, 284, 163–174. [Google Scholar] [CrossRef]
- Ru, J.; Hua, Y.; Wang, D. Direct Electro-Deoxidation of Solid PbO to Porous Lead in Choline Chloride-Ethylene Glycol Deep Eutectic Solvent. J. Electrochem. Soc. 2017, 164, D143. [Google Scholar] [CrossRef]
- Bu, J.; Ru, J.; Wang, Z.; Hua, Y.; Xu, C.; Zhang, Y.; Wang, Y. Controllable preparation of antimony powders by electrodeposition in choline chloride-ethylene glycol. Adv. Powder Technol. 2019, 30, 2859–2867. [Google Scholar] [CrossRef]
- Khelladi, M.; Mentar, L.; Boubatra, M.; Azizi, A.; Kahoul, A. Early stages of cobalt electrodeposition on FTO and n-type Si substrates in sulfate medium. Mater. Chem. Phys. 2010, 122, 449–453. [Google Scholar] [CrossRef]
- Komsiyska, L.; Staikov, G. Electrocrystallization of Au nanoparticles on glassy carbon from HClO4 solution containing [AuCl4]−. Electrochim. Acta 2008, 54, 168–172. [Google Scholar] [CrossRef]
- Kahoul, A.; Azizi, F.; Bouaoud, M. Effect of citrate additive on the electrodeposition and corrosion behaviour of Zn–Co alloy. Trans. IMF 2017, 95, 106–113. [Google Scholar] [CrossRef]
- Gu, S.; Wang, X.; Wei, Y.; Fang, B. Mechanism for nucleation and growth of electrochemical deposition of palladium(II) on a platinum electrode in hydrochloric acid solution. Sci. China Chem. 2014, 57, 755–762. [Google Scholar] [CrossRef]
- Guo, M.W.; Sun, C.B.; Yang, W.Q.; Chen, L.; Lei, H.; Zhang, Q.B. Sulphur-induced electrochemical synthesis of manganese nanoflakes from choline chloride/ethylene glycol-based deep eutectic solvent. Electrochim. Acta 2020, 341, 136017. [Google Scholar] [CrossRef]
- Scharifker, B.; Hills, G. Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 1983, 28, 879–889. [Google Scholar] [CrossRef]
- Cao, X.; Xu, L.; Shi, Y.; Wang, Y.; Xue, X. Electrochemical behavior and electrodeposition of cobalt from choline chloride-urea deep eutectic solvent. Electrochim. Acta 2019, 295, 550–557. [Google Scholar] [CrossRef]
V (mV/s) | Epc/V | Epc/2/V | Epc − Epc/2/V | Epa/V | ΔEpa/mV | jpc (mA/cm2) | jpa (mA/cm2) |
---|---|---|---|---|---|---|---|
20 | −0.560 | −0.531 | 29 | −0.381 | 179 | −11.806 | 59.414 |
40 | −0.577 | −0.542 | 35 | −0.377 | 200 | −14.787 | 65.732 |
60 | −0.586 | −0.544 | 42 | −0.375 | 211 | −16.851 | 71.389 |
80 | −0.596 | −0.552 | 44 | −0.371 | 225 | −19.995 | 77.912 |
100 | −0.602 | −0.556 | 46 | −0.365 | 237 | −22.874 | 85.554 |
T/K | Epc/V | Epc/2/V | |Epc − Epc/2|/mV | Epa/V | ΔEpa/mV | jpc (mA/cm2) | D0 (10−5 cm2/s) |
---|---|---|---|---|---|---|---|
298 | −0.608 | −0.555 | 53 | −0.362 | 246 | −22.074 | 1.1 ± 0.1 |
308 | −0.600 | −0.549 | 51 | −0.359 | 241 | −25.284 | 1.4 ± 0.1 |
318 | −0.592 | −0.543 | 49 | −0.357 | 235 | −27.776 | 1.6 ± 0.1 |
328 | −0.581 | −0.536 | 45 | −0.351 | 230 | −31.868 | 2.0 ± 0.1 |
338 | −0.573 | −0.529 | 44 | −0.350 | 223 | −33.967 | 2.2 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, J.; Wang, X.; Wei, J.; Tong, X.; Xu, R.; Yang, L. Electrochemistry of Tin Deposition from Methanesulfonic Acid. Metals 2024, 14, 87. https://doi.org/10.3390/met14010087
Yang Y, Wang J, Wang X, Wei J, Tong X, Xu R, Yang L. Electrochemistry of Tin Deposition from Methanesulfonic Acid. Metals. 2024; 14(1):87. https://doi.org/10.3390/met14010087
Chicago/Turabian StyleYang, Yuantao, Junli Wang, Xuanbing Wang, Jinlong Wei, Xiaoning Tong, Ruidong Xu, and Linjing Yang. 2024. "Electrochemistry of Tin Deposition from Methanesulfonic Acid" Metals 14, no. 1: 87. https://doi.org/10.3390/met14010087
APA StyleYang, Y., Wang, J., Wang, X., Wei, J., Tong, X., Xu, R., & Yang, L. (2024). Electrochemistry of Tin Deposition from Methanesulfonic Acid. Metals, 14(1), 87. https://doi.org/10.3390/met14010087