A Study of the Performance of Dissimilar Pulsed-Laser-Welded JSC590R/JAC980YL Steel Joints of Differential Thickness
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Response Surface Test Results
0.002AC + 0.112BC − 0.097A2 − 0.0002B2 − 0.017C2
0.051AC + 0.038BC − 0.073A2 + 0.018B2 − 0.066C2
212.85AC + 308.00BC − 344.25A2 − 76.556B2 − 188.050C2
3.2. Macroscopic Morphology and Microstructure of the Joint Cross-Section
3.3. Microhardness and Tensile Properties of Joints
4. Conclusions
- The primary factors influencing the quality of the pulsed-laser-welded joints of JSC590R/JSC980YL heterogeneous steel with varying thicknesses were identified through a response surface test analysis. The importance of these factors is as follows: the out-of-focus amount, the welding speed, and then the single-pass heat input. The interactions between these factors were extremely significant. The welding parameters that were optimized based on Design-Expert 13 software were as follows: an out-of-focus amount of −0.13 mm, a welding speed of 4.5 mm/s, and a single-pass heat input of 9 J.
- Macroscopic morphological observations and a local microstructure analysis of the optimized JSC590R/JSC980YL welded joints yielded the following insights. The welding process resulted in the formation of a distinct line separating the weld zone and HAZ which could be further subdivided into HAZ1 and HAZ2. The weld zone was primarily composed of coarse slate martensite dispersed throughout, with a particularly dense concentration near the centerline. The microstructure of HAZ1 comprised various sizes of equiaxed martensite, while HAZ2 contained martensite, ferrite, and small amounts of residual austenite, carbides, and tempered martensite.
- The performance testing of the welded joints revealed that a softening zone (HAZ2) was observed on both sides of the HAZ of the welded joints. The hardness of the optimized JSC590R and JAC980YL steel decreased by approximately 5% and 13%, respectively, compared to the base material. The average engineering stress of the welded joints was 616.9 MPa in the tensile test. The fracture region shifted from the HAZ of the JSC590R steel to the base material zone, exhibiting a plastic fracture mode.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, Y.J.; Li, Z.; Wang, W.; Yang, T.; Pi, G.; Li, Y. Influence Mechanism of Initial Gap Disturbance on the Resistance Spot Welding Process. Automot. Innov. 2024, 7, 360–372. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, Y.; Yu, F.; Liu, Y.; Zhou, E.; Fan, Z.; Ge, E.; Li, Y.; Lin, Z. Strengthening flat-die friction self-pierce riveting joints via manipulating stir zone geometry by tailored rivet structures. Int. J. Mach. Tools Manuf. 2024, 203, 104223. [Google Scholar] [CrossRef]
- Xia, Y.J.; Lv, T.L.; Ghassemi-Armaki, H.; Li, Y.B.; Carlson, B.E. Quantitative interpretation of dynamic resistance signal in resistance spot welding. Weld J 2023, 102, 69–87. [Google Scholar] [CrossRef]
- Viňáš, J.; Brezinová, J.; Brezina, J.; Maruschak, P.O. Structural and Mechanical Features of Laser-Welded Joints of Zinc-Coated Advanced Steel Sheets. Mater. Sci. 2019, 55, 46–51. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Chen, X.; Yin, G.; Chen, Y.; Xiao, C. Microstructure and mechanical properties of CP780 steel-7075 aluminum alloy laser welded joint assisted by rotating magnetic field. Mater. Res. Express 2024, 11, 106515. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, C. Autogenous laser-welded dissimilar joint of ferritic/martensitic P92 steel and Inconel 617 alloy: Mechanism, microstructure, and mechanical properties. Arch. Civ. Mech. Eng. 2022, 22, 39. [Google Scholar] [CrossRef]
- Czerwinski, F. Current trends in automotive lightweighting strategies and materials. Materials 2021, 14, 6631. [Google Scholar] [CrossRef]
- Sandrini, G.; Gadola, M.; Chindamo, D.; Candela, A.; Magri, P. Exploring the Impact of Vehicle Lightweighting in Terms of Energy Consumption: Analysis and Simulation. Energies 2023, 16, 5157. [Google Scholar] [CrossRef]
- Lina, S.; You, L.; Junxiang, J. Effect of laser welding and laser wire filling on forming and properties of dissimilar steel welded joints. Mater. Res. Express 2023, 10, 126504. [Google Scholar] [CrossRef]
- Öztürk, E.; Arıkan, H. Investigation of mechanical properties of laser welded dual-phase steels at macro and micro levels. Opt. Laser Technol. 2023, 157, 108713. [Google Scholar] [CrossRef]
- Wang, H.; Liu, L.; Wang, H.; Zhou, J. Control of defects in the deep drawing of tailor-welded blanks for complex-shape automotive panel. Int. J. Adv. Manuf. Technol. 2022, 119, 3235–3245. [Google Scholar] [CrossRef]
- Alves, P.; Lima, M.; Raabe, D.; Sandim, H.R.Z. Laser beam welding of dual-phase DP1000 steel. J. Mater. Process. Technol. 2018, 252, 498–510. [Google Scholar] [CrossRef]
- Kuril, A.A.; Ram, G.J.; Bakshi, S.R. Solidification and Liquation Cracking Behavior of Dual-Phase Steel DP600. Metall. Mater. Trans. B 2019, 50, 2029–2036. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhao, L.; Zhu, J. Microstructure and Mechanical Behavior of DP600 Welded Joints Obtained by Fiber Laser Welding. JOM 2023, 75, 2662–2668. [Google Scholar] [CrossRef]
- Gao, S.; Li, Y.; Yang, L.; Qiu, W. Microstructure and mechanical properties of laser-welded dissimilar DP780 and DP980 high-strength steel joints. Mater. Sci. Eng. A 2018, 720, 117–129. [Google Scholar] [CrossRef]
- Farabi, N.; Chen, D.L.; Zhou, Y. Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints. J. Mater. Eng. Perform. 2011, 21, 222–230. [Google Scholar] [CrossRef]
- Dak, G.; Sirohi, S.; Pandey, C. Study on microstructure and mechanical behavior relationship for laser-welded dissimilar joint of P92 martensitic and 304L austenitic steel. Int. J. Press. Vessel. Pip. 2022, 196, 104629. [Google Scholar] [CrossRef]
- Sun, Q.; Di, H.-S.; Li, J.-C.; Wang, X.-N. Effect of pulse frequency on microstructure and properties of welded joints for dual phase steel by pulsed laser welding. Mater. Des. 2016, 105, 201–211. [Google Scholar] [CrossRef]
- Shamov, E.; Mishin, M.; Shiganov, I.; Taksants, M.; Efimov, E. Features of pulsed laser welding with deep fusion penetration. Weld. Int. 2019, 33, 358–364. [Google Scholar] [CrossRef]
- Herzog, R.; Strelnikov, D. An optimal control problem for single-spot pulsed laser welding. J. Math. Ind. 2023, 13, 4. [Google Scholar] [CrossRef]
- Gandhi, A.D.; Kundu, A.; Kumar, R.; Chakraborti, P.C. Effect of Heat Input on the Weld Thermal Cycle, Microstructure, Tensile Damage and Fracture Behavior of Pulsed Laser-Welded Dual-Phase Steel. J. Mater. Eng. Perform. 2023, 1–18. [Google Scholar] [CrossRef]
- Ghattas, B.; Manzon, D. Machine Learning Alternatives to Response Surface Models. Mathematics 2023, 11, 3406. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, K.; Ding, R.; Luo, Z.; He, J. Optimization of Ultrasonic Welding Parameters Based on Response Surface Methodology. J. Phys. Conf. Ser. 2023, 2474, 012029. [Google Scholar] [CrossRef]
- Attah, B.I.; Lawal, S.A.; Bala, K.C.; Ikumapayi, O.M.; Adedipe, O.; Mahto, R.P.; Akinlabi, E.T. Optimization and numerical analysis of friction stir welding parameters of AA7075-T651 and AA 1200-H19 using tapered tool. Int. J. Interact. Des. Manuf. (IJIDeM) 2023, 18, 6639–6653. [Google Scholar] [CrossRef]
- GB/T 228.1-2021; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. China Standards Press: Beijing, China, 2021.
- Nirgude, S.; Kalpande, S. Parametric optimization of friction stir welding of AA 6101 T-64 and pure Cu using response surface methodology. IJIDeM 2024, 18, 1789–1807. [Google Scholar] [CrossRef]
- Mathevon, A.; Massardier, V.; Fabrègue, D.; Douillard, T.; Rocabois, P.; Ollagnier, A.; Perez, M. Tempering of Dual Phase steels: Microstructural evolutions and mechanical properties. Mater. Sci. Eng. A 2024, 908, 146762. [Google Scholar] [CrossRef]
- Saha, D.C.; Biro, E.; Gerlich, A.P.; Zhou, Y. Influences of blocky retained austenite on the heat-affected zone softening of dual-phase steels. Mater. Lett. 2020, 264, 127368. [Google Scholar] [CrossRef]
- Nawaz, B.; Long, X.; Li, Y.; Yang, Z.; Zhang, F. Effect of Ferrite/Martensite on Microstructure Evolution and Mechanical Properties of Ultrafine Vanadium Dual-Phase Steel. J. Mater. Eng. Perform. 2022, 31, 4305–4317. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, C.; Qiao, L.; Yan, Y. Embrittlement mechanism of ferrite-martensite dual-phase steel during strain-baking. Mater. Sci. Eng. A 2023, 884, 145544. [Google Scholar] [CrossRef]
- Avendaño-Rodríguez, D.; Rodriguez-Baracaldo, R.; Weber, S.; Mujica-Roncery, L. Martensite content effect on fatigue crack growth and fracture energy in dual-phase steels. Fatigue Fract. Eng. Mater. Struct. 2024, 47, 884–902. [Google Scholar] [CrossRef]
- Rezazadeh, V.; Hoefnagels, J.P.M.; Geers, M.G.D.; Peerlings, R. On the critical role of martensite hardening behavior in the paradox of local and global ductility in dual-phase steels. Eur. J. Mech.-A/Solids 2024, 104, 105152. [Google Scholar] [CrossRef]
- Khorasani, F.; Jamaati, R.; Jamshidi Aval, H. Effect of Intercritical Annealing Time on the Microstructure and Mechanical Properties of Dual-Phase Steel Processed by Large-Strain Asymmetric Cold-Rolling. Steel Res. Int. 2023, 94, 2300086. [Google Scholar] [CrossRef]
Materials | C | Mn | Si | P | S | Fe |
---|---|---|---|---|---|---|
JSC590R | 0.2 | 1.387 | 0.252 | 0.019 | 0.01 | Bal. |
JAC980YL | 0.15 | 2.36 | 0.44 | 0.013 | 0.003 | Bal. |
Level of Factors | A: Out-of-Focus Amount (mm) | B: Welding Speed (mm/s) | C: Single-Pass Heat Input (J) |
---|---|---|---|
−1 | −1 | 1.5 | 7 |
0 | 0 | 3 | 8 |
1 | 1 | 4.5 | 9 |
Number | Out-of-Focus/mm | Welding Speed/(mm·s−1) | Single-Pass Heat Input/J | Depth of Fusion/mm | Welding Seam Area/mm2 | Tensile Strength/N |
---|---|---|---|---|---|---|
1 | −1 | 1.5 | 8 | 0.979 | 1.293520 | 7279.1 |
2 | 1 | 1.5 | 8 | 0.741 | 0.778807 | 7115.8 |
3 | −1 | 4.5 | 8 | 0.929 | 0.793117 | 7353.0 |
4 | 1 | 4.5 | 8 | 0.701 | 0.579345 | 5564.9 |
5 | −1 | 3 | 7 | 0.906 | 0.715414 | 7345.3 |
6 | 1 | 3 | 7 | 0.624 | 0.484368 | 5822.7 |
7 | −1 | 3 | 9 | 1.022 | 1.126500 | 7376.4 |
8 | 1 | 3 | 9 | 0.733 | 0.691820 | 6705.2 |
9 | 0 | 1.5 | 7 | 1.060 | 0.926564 | 7476.7 |
10 | 0 | 4.5 | 7 | 0.682 | 0.480822 | 6012.0 |
11 | 0 | 1.5 | 9 | 0.818 | 1.143230 | 7032.8 |
12 | 0 | 4.5 | 9 | 1.111 | 0.925233 | 7416.1 |
13 | 0 | 3 | 8 | 0.958 | 0.940322 | 7416.6 |
14 | 0 | 3 | 8 | 0.935 | 0.861141 | 7357.4 |
15 | 0 | 3 | 8 | 0.941 | 0.916116 | 7397.8 |
16 | 0 | 3 | 8 | 0.921 | 0.895600 | 7296.3 |
17 | 0 | 3 | 8 | 0.918 | 0.853444 | 7255.4 |
Source of Variance | Square Sum | Degrees of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
Model | 0.3138 | 9 | 0.0349 | 94.29 | <0.0001 |
A | 0.1344 | 1 | 0.1344 | 363.57 | <0.0001 |
B | 0.0038 | 1 | 0.0038 | 10.35 | 0.0147 |
C | 0.0212 | 1 | 0.0212 | 57.39 | 0.0001 |
AB | 0.0000 | 1 | 0.0000 | 0.0676 | 0.8023 |
AC | 0.0000 | 1 | 0.0000 | 0.0331 | 0.8607 |
BC | 0.1126 | 1 | 0.1126 | 304.44 | <0.0001 |
A2 | 0.0395 | 1 | 0.0395 | 106.86 | <0.0001 |
B2 | 5.76 × 10−7 | 1 | 5.76 × 10−7 | 0.0016 | 0.9696 |
C2 | 0.0012 | 1 | 0.0012 | 3.15 | 0.1194 |
residual | 0.0026 | 7 | 0.0004 | ||
lost proposal | 0.0016 | 3 | 0.0005 | 2.03 | 0.2524 |
purest error | 0.0010 | 4 | 0.0003 | ||
total variation | 0.3163 | 16 | |||
R2 | 0.9918 | R2Adj | 0.9813 | R2Pre | 0.9159 |
Source of Variance | Square Sum | Degrees of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
Model | 0.7737 | 9 | 0.0860 | 96.42 | <0.0001 |
A | 0.2430 | 1 | 0.2430 | 272.51 | <0.0001 |
B | 0.2324 | 1 | 0.2324 | 260.68 | <0.0001 |
C | 0.2047 | 1 | 0.2047 | 229.56 | <0.0001 |
AB | 0.0226 | 1 | 0.0226 | 25.39 | 0.0015 |
AC | 0.0104 | 1 | 0.0104 | 11.63 | 0.0113 |
BC | 0.0130 | 1 | 0.0130 | 14.54 | 0.0066 |
A2 | 0.0226 | 1 | 0.0226 | 25.36 | 0.0015 |
B2 | 0.0071 | 1 | 0.0071 | 8.00 | 0.0255 |
C2 | 0.0181 | 1 | 0.0181 | 20.27 | 0.0028 |
residual | 0.0062 | 7 | 0.0009 | ||
lost proposal | 0.0009 | 3 | 0.0003 | 0.2193 | 0.8785 |
purest error | 0.0054 | 4 | 0.0013 | ||
total variation | 0.7800 | 16 | |||
R2 | 0.9920 | R2Adj | 0.9817 | R2Pre | 0.9712 |
Source of Variance | Square Sum | Degrees of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
Model | 5.951 × 106 | 9 | 6.61 × 105 | 101.40 | <0.0001 |
A | 2.148 × 106 | 1 | 2.15 × 106 | 32938 | <0.0001 |
B | 8.182 × 105 | 1 | 8.182 × 105 | 125.47 | <0.0001 |
C | 4.389 × 105 | 1 | 4389 × 105 | 67.31 | <0.0001 |
AB | 6.600 × 105 | 1 | 6.600 × 105 | 101.21 | <0.0001 |
AC | 1.812 × 105 | 1 | 1.812 × 105 | 27.79 | 0.0012 |
BC | 8.538 × 105 | 1 | 8.538 × 105 | 130.93 | <0.0001 |
A2 | 4.990 × 105 | 1 | 4.990 × 105 | 76.52 | <0.0001 |
B2 | 1.249 × 105 | 1 | 1.249 × 105 | 19.16 | 0.0032 |
C2 | 1.489 × 105 | 1 | 1.489 × 105 | 22.83 | 0.0020 |
residual | 45646.15 | 7 | 6520.88 | ||
lost proposal | 27178.58 | 3 | 9059.53 | 1.96 | 0.2617 |
purest error | 18467.56 | 4 | 4616.89 | ||
total variation | 5.997 × 106 | 16 | |||
R2 | 0.9924 | R2Adj | 0.9826 | R2Pre | 0.9227 |
Test Results | Depth of Fusion /mm | Weld Area /mm2 | Tensile /N |
---|---|---|---|
Projected results | 1.131 | 0.934 | 7449 |
Actual results | 1.121 | 0.9153 | 7396 |
Inaccuracy | 0.8% | 2.1% | 0.72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Feng, Q.; Wang, C.; Tian, S.; Niu, S.; Lou, M. A Study of the Performance of Dissimilar Pulsed-Laser-Welded JSC590R/JAC980YL Steel Joints of Differential Thickness. Metals 2024, 14, 1352. https://doi.org/10.3390/met14121352
Zhang R, Feng Q, Wang C, Tian S, Niu S, Lou M. A Study of the Performance of Dissimilar Pulsed-Laser-Welded JSC590R/JAC980YL Steel Joints of Differential Thickness. Metals. 2024; 14(12):1352. https://doi.org/10.3390/met14121352
Chicago/Turabian StyleZhang, Rui, Qiaobo Feng, Chunliang Wang, Shuai Tian, Sizhe Niu, and Ming Lou. 2024. "A Study of the Performance of Dissimilar Pulsed-Laser-Welded JSC590R/JAC980YL Steel Joints of Differential Thickness" Metals 14, no. 12: 1352. https://doi.org/10.3390/met14121352
APA StyleZhang, R., Feng, Q., Wang, C., Tian, S., Niu, S., & Lou, M. (2024). A Study of the Performance of Dissimilar Pulsed-Laser-Welded JSC590R/JAC980YL Steel Joints of Differential Thickness. Metals, 14(12), 1352. https://doi.org/10.3390/met14121352