Crystal Structure and Properties of Heusler Alloys: A Comprehensive Review
Abstract
:1. Introduction
2. Classification of Heusler Alloys
2.1. Symmetric Heusler Alloys
2.1.1. Conventional Heusler Alloys
2.1.2. All D-Metal Heusler Alloys
2.1.3. Half Heusler Alloys
2.2. Less Symmetric Heusler Alloys
2.2.1. Inverse Heusler Alloys
2.2.2. Binary Heusler Alloys
2.2.3. Quaternary Heusler Alloys
2.2.4. Non-Stoichiometric Heusler Alloys
2.2.5. Atomic Disorder in Heusler Alloys
2.2.6. Crystallographic Defects in Heusler Alloys
3. Characteristics and Properties of Heusler Ni-Mn-Sn-X Alloys
3.1. Structure and Phase Change in Ni-Mn-Sn-X Heusler Alloys
3.2. Thermal Properties in Heusler Alloys
3.3. Magnetic and Shape Memory Alloys
3.4. Magnetocaloric Effect in Heusler Alloys
3.5. Additional Properties and Applications of Heusler Alloys
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wederni, A.; Ipatov, M.; Pineda, E.; Escoda, L.; González, J.-M.; Khitouni, M.; Suñol, J.-J. Martensitic Transformation, Thermal Analysis and Magnetocaloric Properties of Ni-Mn-Sn-Pd Alloys. Processes 2020, 8, 1582. [Google Scholar] [CrossRef]
- Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Zhang, K.; Tan, C.; Guo, E.; Feng, Z.; Zhu, J.; Tong, Y.; Cai, W. Simultaneous Tuning of Martensitic Transformation Behavior, Magnetic and Mechanical Properties in Ni-Mn-Sn Magnetic Alloy by Cu Doping. J. Mater. Chem. C Mater. 2018, 6, 5228–5238. [Google Scholar] [CrossRef]
- Lu, H.Z.; Liu, L.H.; Yang, C.; Luo, X.; Song, C.H.; Wang, Z.; Wang, J.; Su, Y.D.; Ding, Y.F.; Zhang, L.C.; et al. Simultaneous Enhancement of Mechanical and Shape Memory Properties by Heat-Treatment Homogenization of Ti2Ni Precipitates in TiNi Shape Memory Alloy Fabricated by Selective Laser Melting. J. Mater. Sci. Technol. 2022, 101, 205–216. [Google Scholar] [CrossRef]
- Trehern, W.; Ortiz-Ayala, R.; Atli, K.C.; Arroyave, R.; Karaman, I. Data-Driven Shape Memory Alloy Discovery Using Artificial Intelligence Materials Selection (AIMS) Framework. Acta Mater. 2022, 228, 117751. [Google Scholar] [CrossRef]
- Gusarov, B.; Gusarova, E.; Viala, B.; Gimeno, L.; Boisseau, S.; Cugat, O.; Vandelle, E.; Louison, B. Thermal Energy Harvesting by Piezoelectric PVDF Polymer Coupled with Shape Memory Alloy. Sens. Actuators A Phys. 2016, 243, 175–181. [Google Scholar] [CrossRef]
- Huang, X.M.; Wang, L.D.; Liu, H.X.; Yan, H.L.; Jia, N.; Yang, B.; Li, Z.B.; Zhang, Y.D.; Esling, C.; Zhao, X.; et al. Correlation between Microstructure and Martensitic Transformation, Mechanical Properties and Elastocaloric Effect in Ni-Mn-Based Alloys. Intermetallics 2019, 113, 106579. [Google Scholar] [CrossRef]
- Bachagha, T.; Daly, R.; Khitouni, M.; Escoda, L.; Saurina, J.; Suñol, J. Thermal and Structural Analysis of Mn49.3Ni43.7Sn7.0 Heusler Alloy Ribbons. Entropy 2015, 17, 646–657. [Google Scholar] [CrossRef]
- Wen, J.; Yang, B.; Dong, Z.; Yan, Y.; Zhao, X. Manipulation of the Martensitic Transformation and Exchange Bias Effect in the Ni45Co5Mn37In13 Ferromagnetic Shape Memory Alloy Films. Magnetochemistry 2023, 9, 51. [Google Scholar] [CrossRef]
- Goswami, D.; Chattopadhyay, S.; Das, J. Effect of the Post Annealing Cooling Rate on the Martensitic Transformation and the Magnetocaloric Effect in Ni-Mn-Sn Ribbons. Mater. Res. Bull. 2023, 160, 112129. [Google Scholar] [CrossRef]
- Dadda, K.; Alleg, S.; Souilah, S.; Suňol, J.J.; Dhahri, E.; Bessais, L.; Hlil, E.K. Critical Behavior, Magnetic and Magnetocaloric Properties of Melt-Spun Ni50Mn35Sn15 ribbons. J. Alloys Compd. 2018, 735, 1662–1672. [Google Scholar] [CrossRef]
- Modak, R.; Raja, M.M.; Srinivasan, A. Enhanced Magneto-Caloric Effect upon Fourth Element (Cu, Fe, Co) Substitution in Ni-Mn-Sn Thin Films. Appl. Phys. A 2019, 125, 57. [Google Scholar] [CrossRef]
- Wederni, A.; Ipatov, M.; González, J.M.; Khitouni, M.; Suñol, J.J. Ni-Mn-Sn-Cu Alloys after Thermal Cycling: Thermal and Magnetic Response. Materials 2021, 14, 6851. [Google Scholar] [CrossRef] [PubMed]
- Graf, T.; Casper, F.; Winterlik, J.; Balke, B.; Fecher, G.H.; Felser, C. Crystal Structure of New Heusler Compounds. Z. Anorg. Allg. Chem. 2009, 635, 976–981. [Google Scholar] [CrossRef]
- Heusler, O. Kristallstruktur Und Ferromagnetismus Der Mangan-Aluminium-Kupferlegierungen. Ann. Phys. 1934, 411, 155–201. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Wederni, A.; Ipatov, M.; Gonzalez, J.; Zhukova, V.; Zhukov, A. Elucidation of the Strong Effect of the Annealing and the Magnetic Field on the Magnetic Properties of Ni2-Based Heusler Microwires. Crystals 2022, 12, 1755. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Garcia-Gomez, A.; Ipatov, M.; Corte-Leon, P.; Zhukova, V.; Blanco, J.M.; Zhukov, A. Fabrication and Magneto-Structural Properties of Co2-Based Heusler Alloy Glass-Coated Microwires with High Curie Temperature. Chemosensors 2022, 10, 225. [Google Scholar] [CrossRef]
- Datta, S.; Kar, M. NiMnSn Half Heusler Alloy: Critical Phenomena at the Ferromagnetic to Paramagnetic Phase Transition. Mater. Today Proc. 2022, 57, 431–435. [Google Scholar] [CrossRef]
- Chen, C.; Yu, L.; Zhu, J.; Tan, C. The Mechanical Properties of Ni-Mn-Sn Alloy Thin Films with Fe Doping. Integr. Ferroelectrics 2020, 207, 156–165. [Google Scholar] [CrossRef]
- Gruner, M.E.; Niemann, R.; Entel, P.; Pentcheva, R.; Rößler, U.K.; Nielsch, K.; Fähler, S. Modulations in Martensitic Heusler Alloys Originate from Nanotwin Ordering. Sci. Rep. 2018, 8, 8489. [Google Scholar] [CrossRef]
- Resnina, N.; Belyaev, S.; Shelyakov, A.; Ubyivovk, E. Violation of the Sequence of Martensite Crystals Formation on Cooling and Their Shrinking on Heating during B2 ↔ B19′ Martensitic Transformation in Ti40.7Hf9.5Ni44.8Cu5 Shape-Memory Alloy. Phase Transit. 2017, 90, 289–298. [Google Scholar] [CrossRef]
- Bachagha, T.; Suñol, J.J. All-d-Metal Heusler Alloys: A Review. Metals 2023, 13, 111. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Liu, E.K.; Chen, J.H.; Li, Y.; Liu, G.D.; Luo, H.Z.; Xi, X.K.; Zhang, H.W.; Wang, W.H.; Wu, G.H. Realization of Multifunctional Shape-Memory Ferromagnets in All-d-Metal Heusler Phases. Appl. Phys. Lett. 2015, 107, 22406. [Google Scholar] [CrossRef]
- Roy, S.; Blackburn, E.; Valvidares, S.M.; Fitzsimmons, M.R.; Vogel, S.C.; Khan, M.; Dubenko, I.; Stadler, S.; Ali, N.; Sinha, S.K.; et al. Delocalization and Hybridization Enhance the Magnetocaloric Effect in Cu-Doped Ni2MnGa. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 79, 235127. [Google Scholar] [CrossRef]
- Wederni, A.; Salaheldeen, M.; Ipatov, M.; Zhukova, V.; Zhukov, A. Influence of the Geometrical Aspect Ratio on the Magneto-Structural Properties of Co2MnSi Microwires. Metals 2023, 13, 1692. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Wederni, A.; Ipatov, M.; Zhukova, V.; Zhukov, A. Preparation and Magneto-Structural Investigation of High-Ordered (L21 Structure) Co2MnGe Microwires. Processes 2023, 11, 1138. [Google Scholar] [CrossRef]
- Meyers, M.A.; Ruud, C.O.; Barrett, C.S. Observations on the Ferromagnetic β Phase of the Cu–Mn–Sn System. J. Appl. Crystallogr. 1973, 6, 39–41. [Google Scholar] [CrossRef]
- Graf, T.; Parkin, S.S.P.; Felser, C. Heusler Compounds—A Material Class with Exceptional Properties. IEEE Trans. Magn. 2011, 47, 367–373. [Google Scholar] [CrossRef]
- Tavares, S.; Yang, K.; Meyers, M.A. Heusler Alloys: Past, Properties, New Alloys, and Prospects. Prog. Mater. Sci. 2023, 132, 101017. [Google Scholar] [CrossRef]
- He, X.; Kang, Y.; Wei, S.; Zhang, Y.; Cao, Y.; Xu, K.; Li, Z.; Jing, C.; Li, Z. A Large Barocaloric Effect and Its Reversible Behavior with an Enhanced Relative Volume Change for Ni42.3Co7.9Mn38.8Sn11 Heusler Alloy. J. Alloys Compd. 2018, 741, 821–825. [Google Scholar] [CrossRef]
- Elphick, K.; Frost, W.; Samiepour, M.; Kubota, T.; Takanashi, K.; Sukegawa, H.; Mitani, S.; Hirohata, A. Heusler Alloys for Spintronic Devices: Review on Recent Development and Future Perspectives. Sci. Technol. Adv. Mater. 2021, 22, 235–271. [Google Scholar] [CrossRef] [PubMed]
- Khandy, S.A.; Islam, I.; Wani, A.F.; Ali, A.M.; Sayed, M.A.; Srinavasan, M.; Kaur, K. Strain Dependent Electronic Structure, Phonon and Thermoelectric Properties of CuLiX (X=S, Te) Half Heusler Compounds. Phys. B Condens. Matter 2024, 677, 415698. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple Rules for the Understanding of Heusler Compounds. Prog. Solid. State Chem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Wjin, H.P.J. Alloys and Compounds of d-Elements with Main Group Elements; Part 2; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar] [CrossRef]
- Životský, O.; Skotnicová, K.; Čegan, T.; Juřica, J.; Gembalová, L.; Zažímal, F.; Szurman, I. Structural and Magnetic Properties of Inverse-Heusler Mn2FeSi Alloy Powder Prepared by Ball Milling. Materials 2022, 15, 697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Huang, G.; Li, S. Mechanical Properties of DO3 Based on First Principles. Crystals 2020, 10, 488. [Google Scholar] [CrossRef]
- Liu, H.; Gao, G.Y.; Hu, L.; Ni, Y.; Zu, F.; Zhu, S.; Wang, S.; Yao, K.L. Bulk and Surface Half-Metallicity: The Case of D03-Type Mn3Ge. J. Appl. Phys. 2014, 115, 33704. [Google Scholar] [CrossRef]
- Hebri, S.; Abdelli, A.-B.; Belfedal, N.; Bensaid, D. Investigating the Structural, Electronic, and Elastic Properties of Li-Based Quaternary Heusler Alloy Semiconductors Using Hybrid Functional-HSE06 Bandgap Recalculations. Inorg. Chem. Commun. 2023, 150, 110479. [Google Scholar] [CrossRef]
- Galanakis, I.H.; Dederichs, P. Half-Metallicity and Slater-Pauling Behavior in the Ferromagnetic Heusler Alloys. In Half-Metallic Alloys; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–39. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Wederni, A.; Ipatov, M.; Zhukova, V.; Anton, R.L.; Zhukov, A. Enhancing the Squareness and Bi-Phase Magnetic Switching of Co2FeSi Microwires for Sensing Application. Sensors 2023, 23, 5109. [Google Scholar] [CrossRef] [PubMed]
- Balke, B.; Wurmehl, S.; Fecher, G.H.; Felser, C.; Kübler, J. Rational Design of New Materials for Spintronics: Co2FeZ (Z.=Al, Ga, Si, Ge). Sci. Technol. Adv. Mater. 2008, 9, 014102. [Google Scholar] [CrossRef]
- Kumar, A.; Pan, F.; Husain, S.; Akansel, S.; Brucas, R.; Bergqvist, L.; Chaudhary, S.; Svedlindh, P. Temperature-Dependent Gilbert Damping of Co2FeAl Thin Films with Different Degree of Atomic Order. Phys. Rev. B 2017, 96, 224425. [Google Scholar] [CrossRef]
- Özduran, M.; Candan, A.; Akbudak, S.; Kushwaha, A.K.; İyigör, A. Structural, Elastic, Electronic, and Magnetic Properties of Si-Doped Co2MnGe Full-Heusler Type Compounds. J. Alloys Compd. 2020, 845, 155499. [Google Scholar] [CrossRef]
- Koch, D.; Beckmann, B.; Fortunato, N.M.; Miroshkina, O.N.; Gruner, M.E.; Zhang, H.; Gutfleisch, O.; Donner, W. Chemical Long Range Ordering in All-d-Metal Heusler Alloys. J. Appl. Phys. 2022, 131, 73903. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Liu, E.K.; Li, Y.; Han, X.L.; Du, Z.W.; Luo, H.Z.; Liu, G.D.; Xi, X.K.; Zhang, H.W.; Wang, W.H.; et al. Magnetostructural Martensitic Transformations with Large Volume Changes and Magneto-Strains in All-d-Metal Heusler Alloys. Appl. Phys. Lett. 2016, 109, 71904. [Google Scholar] [CrossRef]
- Wederni, A.; Ipatov, M.; Pineda, E.; Suñol, J.-J.; Escoda, L.; González, J.M.; Alleg, S.; Khitouni, M.; Żuberek, R.; Chumak, O.; et al. Magnetic Properties, Martensitic and Magnetostructural Transformations of Ferromagnetic Ni-Mn-Sn–Cu Shape Memory Alloys. Appl. Phys. A 2020, 126, 320. [Google Scholar] [CrossRef]
- Qiu, P.; Yang, J.; Huang, X.; Chen, X.; Chen, L. Effect of Antisite Defects on Band Structure and Thermoelectric Performance of ZrNiSn Half-Heusler Alloys. Appl. Phys. Lett. 2010, 96, 152105. [Google Scholar] [CrossRef]
- Jodin, L.; Tobola, J.; Pecheur, P.; Scherrer, H.; Kaprzyk, S. Effect of Substitutions and Defects in Half-Heusler FeVSb Studied by Electron Transport Measurements and KKR-CPA Electronic Structure Calculations. Phys. Rev. B 2004, 70, 184207. [Google Scholar] [CrossRef]
- Kumar, A.; Chaudhary, S.; Chandra, S. Effect of Point Defects and Lattice Distortions on the Structural, Electronic, and Magnetic Properties of Co2MnAl Heusler Alloy. Phys. Rev. Mater. 2024, 8, 034405. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Lin, T.; Wang, W.; Liu, G. Phase Stability and Magnetic Properties of Mn3Z (Z = Al, Ga, In, Tl, Ge, Sn, Pb) Heusler Alloys. Appl. Sci. 2019, 9, 964. [Google Scholar] [CrossRef]
- Chen, P.; Yan, Z.; Liu, X.; Cao, D.; Gao, D.; Gao, C. Tetragonal Distortion Modified Magnetism and Anomalous Hall Effect of Mn2CoAl Heusler Alloys through Ar Ion Irradiation. J. Phys. D Appl. Phys. 2022, 55, 6. [Google Scholar] [CrossRef]
- Rekik, H.; Krifa, M.; Bachaga, T.; Escoda, L.; Sunol, J.J.; Khitouni, M.; Chmingui, M. Structural and Martensitic Transformation of MnNiSn Shape Memory Alloys. Int. J. Adv. Manuf. Technol. 2017, 90, 291–298. [Google Scholar] [CrossRef]
- Chatterjee, S.; Giri, S.; De, S.K.; Majumdar, S. Reentrant-Spin-Glass State in Ni2Mn1.36Sn0.64 Shape-Memory Alloy. Phys. Rev. B 2009, 79, 291–298. [Google Scholar] [CrossRef]
- Louidi, S.; Suñol, J.J.; Bachagha, T.; González-Legarreta, L.; Rosa, W.O.; Hernando, B. Thermomagnetic and Structural Analysis of As-Quenched Ni49Co1Mn37Sn13. Phys. Status Solidi (C) Curr. Top. Solid State Phys. 2014, 11, 1116–1119. [Google Scholar] [CrossRef]
- Zhang, K.; Tian, X.; Tan, C.; Guo, E.; Zhao, W.; Cai, W. Designing a New Ni-Mn-Sn Ferromagnetic Shape Memory Alloy with Excellent Performance by Cu Addition. Metals 2018, 8, 152. [Google Scholar] [CrossRef]
- Hernando, B.; Llamazares, J.L.S.; Santos, J.D.; Sánchez, M.L.; Escoda, L.; Suñol, J.J.; Varga, R.; García, C.; González, J. Grain Oriented NiMnSn and NiMnIn Heusler Alloys Ribbons Produced by Melt Spinning: Martensitic Transformation and Magnetic Properties. J. Magn. Magn. Mater. 2009, 321, 763–768. [Google Scholar] [CrossRef]
- Chabri, T.; Venimadhav, A.; Nath, T.K. Magnetic and Lattice Entropy Change across Martensite Transition of Ni-Mn-Sn Melt Spun Ribbons: Key Factors in Magnetic Refrigeration. J. Magn. Magn. Mater. 2018, 466, 385–392. [Google Scholar] [CrossRef]
- Chabri, T.; Venimadhav, A.; Nath, T.K. Interplay of Austenite and Martensite Phase inside Martensite Transition Regime and Its Role on Magnetocaloric Effect and Magnetoresistance in Ni-Mn-Sn Based Heusler Alloy. Intermetallics 2018, 102, 65–71. [Google Scholar] [CrossRef]
- Krenke, T.; Moya, X.; Aksoy, S.; Acet, M.; Entel, P.; Mañosa, L.; Planes, A.; Elerman, Y.; Yücel, A.; Wassermann, E.F. Electronic Aspects of the Martensitic Transition in Ni-Mn Based Heusler Alloys. J. Magn. Magn. Mater. 2007, 310, 2788–2789. [Google Scholar] [CrossRef]
- Friák, M.; Zelený, M.; Mazalová, M.; Miháliková, I.; Turek, I.; Kaštil, J.; Kamarád, J.; Míšek, M.; Arnold, Z.; Schneeweiss, O.; et al. The Impact of Disorder on the 4O-Martensite of Ni-Mn-Sn Heusler Alloy. Intermetallics 2022, 151, 107708. [Google Scholar] [CrossRef]
- Wang, X.; Shang, J.X.; Wang, F.H.; Jiang, C.B.; Xu, H. Bin Effect of 3d Transition Elements Substitution for Ni in Ni2Mn1+xSn1−x on the Phase Stability and Magnetic Properties: A First Principle Investigation. J. Magn. Magn. Mater. 2014, 368, 286–294. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Z.; Li, Z.; Yang, Y.; Yang, B.; Zhang, Y.; Esling, C.; Zhao, X.; Zuo, L. Magnetostructural Transformation and Magnetocaloric Effect in Mn-Ni-Sn Melt-Spun Ribbons. Eur. Phys. J. Plus 2017, 132, 42. [Google Scholar] [CrossRef]
- Kirat, G.; Ali Aksan, M. Investigation of Martensitic Transformation and Magnetoresistance Properties of Cu-Substituted Ni-Mn-Sn-B Melt Spun Ribbons. J. Magn. Magn. Mater. 2021, 529, 167858. [Google Scholar] [CrossRef]
- Das, R.; Sarma, S.; Perumal, A.; Srinivasan, A. Effect of Co and Cu Substitution on the Magnetic Entropy Change in Ni46Mn43Sn11 Alloy. J. Appl. Phys. 2011, 109, 07A901. [Google Scholar] [CrossRef]
- Finley, J.; Lee, C.H.; Pinshane, Y.; Liu, H.L. Spin-Orbit Torque Switching in a Nearly Compensated Heusler Ferrimagnet. Adv. Mater. 2019, 31, 1805361. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, C.; Yang, D.; Zhang, R.; Huang, X.; Jiang, Y.; Yu, G.; Pan, L. Crystalline and Magnetic Structures and Ferromagnetic Resonance Study of Ni-Co-Mn-Ge Heusler Alloy System. J. Alloys Comp. 2018, 739, 77–84. [Google Scholar] [CrossRef]
- Zhang, K.; Tan, C.; Zhao, W.; Guo, E.; Tian, X. Computation-Guided Design of Ni-Mn-Sn Ferromagnetic Shape Memory Alloy with Giant Magnetocaloric Effect and Excellent Mechanical Properties and High Working Temperature via Multielement Doping. ACS Appl. Mater. Interfaces 2019, 11, 34827–34840. [Google Scholar] [CrossRef] [PubMed]
- Kulkova, S.E.; Eremeev, S.V.; Kakeshita, T.; Kulkov, S.S.; Rudenski, G.E. The Electronic Structure and Magnetic Properties of Full- and Half-Heusler Alloys. Mat. Trans. 2006, 47, 599–606. [Google Scholar] [CrossRef]
- Khan, R.A.A.; Ghomashchi, R.; Xie, Z.; Chen, L. Ferromagnetic Shape Memory Heusler Materials: Synthesis, Microstructure Characterization and Magnetostructural Properties. Materials 2018, 11, 988. [Google Scholar] [CrossRef] [PubMed]
- Rama Rao, N.V.; Chandrasekaran, V.; Suresh, K.G. Effect of Ni/Mn Ratio on Phase Transformation and Magnetic Properties in Ni-Mn–In Alloys. J. Appl. Phys. 2010, 108, 043913. [Google Scholar] [CrossRef]
- Archana, R.; Kavita, S.; Ramakrishna, V.V.; Kumar, V.S.; Bhatt, P.; Yusuf, S.M.; Gopalan, R. Successive, Overlapping Transitions and Magnetocaloric Effect in Te Doped Ni-Mn-Sn Heusler Alloys. J. Alloys Compd. 2023, 947, 169434. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, W.; Xue, S.; Zhai, Q.; Frenzel, J.; Luo, Z. Composition-Dependent Crystal Structure and Martensitic Transformation in Heusler Ni-Mn-Sn Alloys. Acta Mater. 2013, 61, 4648–4656. [Google Scholar] [CrossRef]
- Louidi, S.; Suñol, J.J.; Ipatov, M.; Hernando, B. Effect of Cobalt Doping on Martensitic Transformations and the Magnetic Properties of Ni50−xCoxMn37Sn13 (x = 1, 2, 3) Heusler Ribbons. J. Alloys Compd. 2018, 739, 305–310. [Google Scholar] [CrossRef]
- Jing, C.; Li, Z.; Zhang, H.L.; Chen, J.P.; Qiao, Y.F.; Cao, S.X.; Zhang, J.C. Martensitic Transition and Inverse Magnetocaloric Effect in Co Doping Ni-Mn-Sn Heusler Alloy. Eur. Phys. J. B 2009, 67, 193–196. [Google Scholar] [CrossRef]
- Cong, D.Y.; Roth, S.; Schultz, L. Magnetic Properties and Structural Transformations in Ni-Co-Mn-Sn Multifunctional Alloys. Acta Mater. 2012, 60, 5335–5351. [Google Scholar] [CrossRef]
- Coll, R.; Saurina, J.; Escoda, L.; Suñol, J.J. Thermal Analysis of Mn50Ni50−x(Sn, In)x Heusler Shape Memory Alloys. J. Therm. Anal. Calorim. 2018, 134, 1277–1284. [Google Scholar] [CrossRef]
- Yüzüak, E. The Magnetothermal Characterization of Ni-Cu-Mn-Sn Alloy. Mater. Res. Bull. 2021, 142, 111398. [Google Scholar] [CrossRef]
- Sun, H.; Jing, C.; Zeng, H.; Su, Y.; Yang, S.; Zhang, Y.; Bachagha, T.; Zhou, T.; Hou, L.; Ren, W. Martensitic Transformation, Magnetic and Mechanical Characteristics in Unidirectional Ni-Mn-Sn Heusler Alloy. Magnetochemistry 2022, 8, 136. [Google Scholar] [CrossRef]
- Elwindari, N.; Kurniawan, C.; Manaf, A. Phase transition of Ni43Mn41Co5Sn11 Heusler alloy. AIP Conf. Proc. 2017, 1862, 030060. [Google Scholar]
- Govind, B.; Bharti, P.; Srivastava, M.; Kumar, A.; Bano, S.; Bhatt, K.; Tawale, J.S.; Pulikkotil, J.J.; Misra, D.K. Magnetic Properties of Intermediate Ni2-xMn1+xSb Full-Heusler Compounds. Mater. Res. Bull. 2021, 142, 111427. [Google Scholar] [CrossRef]
- Chmielus, M.; Chernenko, V.A.; Knowlton, W.B.; Kostorz, G.; Müllner, P. Training, Constraints, and High-Cycle Magneto-Mechanical Properties of Ni-Mn-Ga Magnetic Shape-Memory Alloys. Eur. Phys. J. Spec. Top. 2008, 158, 79–85. [Google Scholar] [CrossRef]
- Planes, A.; Mañosa, L.; Acet, M. Magnetocaloric Effect and Its Relation to Shape-Memory Properties in Ferromagnetic Heusler. J. Phys. Condens. Matter 2009, 21, 233201. [Google Scholar] [CrossRef]
- Pasquale, M.; Sasso, C.P.; Lewis, L.H.; Giudici, L.; Lograsso, T.; Schlagel, D. Magnetostructural Transition and Magnetocaloric Effect in Ni55Mn20Ga25 Single Crystals. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 094435. [Google Scholar] [CrossRef]
- Buchelnikov, V.D.; Sokolovskiy, V.V. Magnetocaloric Effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler Alloys. Phys. Met. Metallogr. 2012, 112, 633–665. [Google Scholar] [CrossRef]
- Marcos, J.; Planes, A.; Mañosa, L.; Casanova, F.; Batlle, X.; Labarta, A.; Martínez, B. Magnetic Field Induced Entropy Change and Magnetoelasticity in Ni-Mn-Ga Alloys. Phys. Rev. B 2002, 66, 224413. [Google Scholar] [CrossRef]
- Krenke, T.; Duman, E.; Acet, M.; Wassermann, E.F.; Moya, X.; Manosa, L.; Planes, A. Inverse Magnetocaloric Effect in Ferromagnetic Ni-Mn-Sn Alloys. Nat. Mater. 2005, 4, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Yuce, S.; Kavak, E.; Yildirim, O.; Bruno, N.M.; Emre, B. Investigation of the Inverse Magnetocaloric Effect with the Fraction Method. J. Phys. Condens. Matter 2023, 35, 345801. [Google Scholar] [CrossRef] [PubMed]
- Kamantsev, A.P.; Koshkidko, Y.S.; Bykov, E.O.; Gottschall, T.; Gamzatov, A.G.; Aliev, A.M.; Varzaneh, A.G.; Kameli, P. Giant Irreversibility of the Inverse Magnetocaloric Effect in the Ni47Mn40Sn12.5Cu0.5 Heusler Alloy. Appl. Phys. Lett. 2023, 123, 202405. [Google Scholar] [CrossRef]
- Gurunani, B.; Ghosh, S.; Gupta, D.C. Comprehensive Investigation of Half Heusler Alloy: Unveiling Structural, Electronic, Magnetic, Mechanical, Thermodynamic, and Transport Properties. Intermetallics 2024, 170, 108311. [Google Scholar] [CrossRef]
- Lin, Z. Progress Review on Topological Properties of Heusler Materials. E3S Web Conf. 2020, 213, 02016. [Google Scholar] [CrossRef]
- Moore, J.E. The Birth of Topological Insulators. Nature 2010, 464, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Rani, B.; Wani, A.F.; Sharopov, U.B.; Patra, L.; Singh, J.; Ali, A.M.; Abd El-Rehim, A.F.; Khandy, S.A.; Dhiman, S.; Kaur, K. Electronic Structure-, Phonon Spectrum-, and Effective Mass- Related Thermoelectric Properties of PdXSn (X = Zr, Hf) Half Heuslers. Molecules 2022, 27, 6567. [Google Scholar] [CrossRef]
- Jia, X.; Deng, Y.; Bao, X.; Yao, H.; Li, S.; Li, Z.; Chen, C.; Wang, X.; Mao, J.; Cao, F.; et al. Unsupervised Machine Learning for Discovery of Promising Half-Heusler Thermoelectric Materials. npj Comput. Mater. 2022, 8, 34. [Google Scholar] [CrossRef]
- Kumar, N.; Guin, S.N.; Manna, K.; Shekhar, C.; Felser, C. Topological Quantum Materials from the Viewpoint of Chemistry. Chem. Rev. 2021, 121, 2780–2815. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.K.; Yang, L.X.; Wu, S.C.; Shekhar, C.; Jiang, J.; Yang, H.F.; Zhang, Y.; Mo, S.K.; Hussain, Z.; Yan, B.; et al. Observation of Unusual Topological Surface States in Half-Heusler Compounds LnPtBi (Ln=Lu, Y). Nat. Commun. 2016, 7, 12924. [Google Scholar] [CrossRef] [PubMed]
- Tafti, F.F.; Fujii, T.; Juneau-Fecteau, A.; de Cotret, S.R.; Doiron-Leyraud, N.; Asamitsu, A.; Taillefer, L. Superconductivity in the Noncentrosymmetric Half-Heusler Compound LuPtBi: A Possible Topological Superconductor. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 87. [Google Scholar] [CrossRef]
- Butch, N.P.; Syers, P.; Kirshenbaum, K.; Hope, A.P.; Paglione, J. Superconductivity in the Topological Semimetal YPtBi. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84, 220504. [Google Scholar] [CrossRef]
- Guo, P.-J.; Zhang, J.-F.; Yang, H.-C.; Liu, Z.-X.; Liu, K.; Lu, Z.-Y. LnPd2Sn (Ln=Sc, Y, Lu) Class of Heusler Alloys for Topological Superconductivity. arXiv 2018, preprint. arXiv:1811.06401. [Google Scholar]
- Joshi, V.K. Spintronics: A Contemporary Review of Emerging Electronics Devices. Eng. Sci. Technol. Int. J. 2016, 19, 1503–1513. [Google Scholar] [CrossRef]
- Yakout, S.M. Spintronics: Future Technology for New Data Storage and Communication Devices. J. Supercond. Nov. Magn. 2020, 33, 2557–2580. [Google Scholar] [CrossRef]
- Leclair, P.; Ha, J.K.; Swagten, H.J.M.; Kohlhepp, J.T.; Van De Vin, C.H.; De Jonge, W.J.M. Large Magnetoresistance Using Hybrid Spin Filter Devices. Appl. Phys. Lett. 2002, 80, 625–627. [Google Scholar] [CrossRef]
- Herran, J.; Carlile, R.; Kharel, P.; Lukashev, P.V. Half-Metallicity in CrAl-Terminated Co2CrAl Thin Film. J. Phys. Condens Matter. 2019, 31, 495801. [Google Scholar] [CrossRef]
- Jourdan, M.; Minár, J.; Braun, J.; Kronenberg, A.; Chadov, S.; Balke, B.; Gloskovskii, A.; Kolbe, M.; Elmers, H.J.; Schönhense, G.; et al. Direct Observation of Half-Metallicity in the Heusler Compound Co2MnSi. Nat. Commun. 2014, 5, 3974. [Google Scholar] [CrossRef]
- Kc, S.; Mahat, R.; Regmi, S.; Mukherjee, A.; Padhan, P.; Datta, R.; Butler, W.H.; Gupta, A.; Leclair, P. Tunable Properties and Potential Half-Metallicity in (Co2−xTix)FeGe Heusler Alloys: An Experimental and Theoretical Investigation Tunable Properties and Potential Half-Metallicity in (Co2−xTix)FeGe Heusler Alloys: An Experimental and Theoretical Investigation. Phys. Rev. Mater. 2019, 3, 114406. [Google Scholar] [CrossRef]
- Inomata, K.; Ikeda, N.; Tezuka, N.; Goto, R.; Sugimoto, S.; Wojcik, M.; Jedryka, E. Highly Spin-Polarized Materials and Devices for Spintronics. Sci. Technol. Adv. Mater. 2008, 9, 14101. [Google Scholar] [CrossRef] [PubMed]
Type | 4a | 4b | 4c |
---|---|---|---|
I | X | Y | Z |
II | Z | X | Y |
III | Y | Z | X |
Type | 4a | 4c | 4b | 4d |
---|---|---|---|---|
Y1 | X | X’ | Y | Z |
Y2 | X | Y | X’ | Z |
Y3 | X’ | X | Y | Z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wederni, A.; Daza, J.; Ben Mbarek, W.; Saurina, J.; Escoda, L.; Suñol, J.-J. Crystal Structure and Properties of Heusler Alloys: A Comprehensive Review. Metals 2024, 14, 688. https://doi.org/10.3390/met14060688
Wederni A, Daza J, Ben Mbarek W, Saurina J, Escoda L, Suñol J-J. Crystal Structure and Properties of Heusler Alloys: A Comprehensive Review. Metals. 2024; 14(6):688. https://doi.org/10.3390/met14060688
Chicago/Turabian StyleWederni, Asma, Jason Daza, Wael Ben Mbarek, Joan Saurina, Lluisa Escoda, and Joan-Josep Suñol. 2024. "Crystal Structure and Properties of Heusler Alloys: A Comprehensive Review" Metals 14, no. 6: 688. https://doi.org/10.3390/met14060688
APA StyleWederni, A., Daza, J., Ben Mbarek, W., Saurina, J., Escoda, L., & Suñol, J.-J. (2024). Crystal Structure and Properties of Heusler Alloys: A Comprehensive Review. Metals, 14(6), 688. https://doi.org/10.3390/met14060688