Catalytic Properties of ZnZrOx Obtained via Metal–Organic Framework Precursors for CO2 Hydrogenation to Prepare Light Olefins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Catalyst Preparation
2.2. Characterization of Catalysts
2.3. Catalyst Evaluation
3. Results and Discussion
3.1. Catalytic Performance Evaluation
3.2. Structure of Catalysts
3.3. Surface Properties of Catalysts
3.4. Reaction Mechanism Study
4. Conclusions
- A comparison between ZnZrOx-M, prepared via MOF calcination, and ZnZrOx-CP, synthesized via co-precipitation, revealed that ZnZrOx-M had a larger specific surface area and a smaller particle size due to the structural advantages of the MOF precursor. This enhanced mass transfer during the catalytic process. XRD and TEM analyses showed that ZnZrOx-M contained less of a solid solution structure than ZnZrOx-CP, with a portion of Zn being highly dispersed on the ZnZrOx-M surface.
- The highly dispersed Zn on the surface improved the H2 reduction and activation ability of ZnZrOx-M. H2-TPR and H2-TPD results confirmed the superior H2 dissociation and activation capacity of ZnZrOx-M. XPS and CO2-TPD analyses further indicated that ZnZrOx-M had a high concentration of surface oxygen vacancies, which provided additional active sites for CO2 adsorption and activation. These properties contributed to the high activity and excellent catalytic performance of ZnZrOx-M.
- Under optimal reaction conditions (3 MPa, 380 °C, and 6000 mL·g_cat−1·h−1), the ZnZrOx-M/SAPO-34 catalyst achieved a CO2 conversion of 34.37%, a light olefin selectivity of 81.84%, and a light olefin yield of 15.13%. Additionally, the catalyst maintained catalytic stability for over 55 h. These findings indicate that ZnZrOx synthesized from the MOF precursor system has promising potential for industrial applications and further development.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saravanan, A.; Senthil Kumar, P.; Vo, D.-V.N.; Jeevanantham, S.; Bhuvaneswari, V.; Anantha Narayanan, V.; Yaashikaa, P.R.; Swetha, S.; Reshma, B. A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chem. Eng. Sci. 2021, 236, 116515. [Google Scholar] [CrossRef]
- Rahman, F.A.; Aziz, M.M.A.; Saidur, R.; Bakar, W.A.W.A.; Hainin, M.R.; Putrajaya, R.; Hassan, N.A. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 2017, 71, 112–126. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Senthil Kumar, P.; Varjani, S.J.; Saravanan, A. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J. CO2 Util. 2019, 33, 131–147. [Google Scholar] [CrossRef]
- Estevez, R.; Aguado-Deblas, L.; Bautista, F.M.; López-Tenllado, F.J.; Romero, A.A.; Luna, D. A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022, 12, 1555. [Google Scholar] [CrossRef]
- Flores-Granobles, M.; Saeys, M. Quantitative analysis of CO2 emissions reduction potential of alternative light olefins production processes. Green Chem. 2023, 25, 6459–6471. [Google Scholar] [CrossRef]
- Numpilai, T.; Cheng, C.K.; Limtrakul, J.; Witoon, T. Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide. Process Saf. Environ. Prot. 2021, 151, 401–427. [Google Scholar] [CrossRef]
- Gholami, Z.; Gholami, F.; Tišler, Z.; Hubáček, J.; Tomas, M.; Bačiak, M.; Vakili, M. Production of Light Olefins via Fischer-Tropsch Process Using Iron-Based Catalysts: A Review. Catalysts 2022, 12, 174. [Google Scholar] [CrossRef]
- Xie, T.; Wang, J.; Ding, F.; Zhang, A.; Li, W.; Guo, X.; Song, C. CO2 hydrogenation to hydrocarbons over alumina-supported iron catalyst: Effect of support pore size. J. CO2 Util. 2017, 19, 202–208. [Google Scholar] [CrossRef]
- Wang, J.; You, Z.; Zhang, Q.; Deng, W.; Wang, Y. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts. Catal. Today 2013, 215, 186–193. [Google Scholar] [CrossRef]
- Gong, K.; Wei, Y.; Dai, Y.; Lin, T.; Yu, F.; An, Y.; Wang, X.; Sun, F.; Jiang, Z.; Zhong, L. Carbon-encapsulated metallic Co nanoparticles for Fischer-Tropsch to olefins with low CO2 selectivity. Appl. Catal. B Environ. 2022, 316, 121700. [Google Scholar] [CrossRef]
- Liu, M.; Yi, Y.; Wang, L.; Guo, H.; Bogaerts, A. Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis. Catalysts 2019, 9, 275. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, S.; Zhao, Z.; Tao, H.; Sun, Z. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products. Acta Phys. -Chim. Sin. 2018, 34, 858–872. [Google Scholar] [CrossRef]
- Kattel, S.; Liu, P.; Chen, J.G. Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface. J. Am. Chem. Soc. 2017, 139, 9739–9754. [Google Scholar] [CrossRef]
- Ronda-Lloret, M.; Rothenberg, G.; Shiju, N.R. A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. ChemSusChem 2019, 12, 3896–3914. [Google Scholar] [CrossRef]
- Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068. [Google Scholar] [CrossRef]
- Chernyak, S.A.; Corda, M.; Marinova, M.; Safonova, O.V.; Kondratenko, V.A.; Kondratenko, E.V.; Kolyagin, Y.G.; Cheng, K.; Ordomsky, V.V.; Khodakov, A.Y. Decisive Influence of SAPO-34 Zeolite on Light Olefin Selectivity in Methanol-Meditated CO2 Hydrogenation over Metal Oxide-Zeolite Catalysts. ACS Catal. 2023, 13, 14627–14638. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Chen, S.; Wang, X.; Zhou, Z.; Wu, Y.; Zhang, T.; Yang, G.; Han, Y.; Tan, Y. Hydrogenation of CO2 into aromatics over a ZnCrOx–zeolite composite catalyst. Chem. Commun. 2019, 55, 973–976. [Google Scholar] [CrossRef]
- Gao, P.; Dang, S.; Li, S.; Bu, X.; Liu, Z.; Qiu, M.; Yang, C.; Wang, H.; Zhong, L.; Han, Y.; et al. Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis. ACS Catal. 2018, 8, 571–578. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, A.; Jiang, X.; Song, C.; Guo, X. Highly selective conversion of CO2 to lower hydrocarbons (C2-C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite. J. CO2 Util. 2018, 27, 81–88. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, F.; Ma, J.; Yang, C.; Wang, X.; Cao, J. Catalytic roles of In2O3 in ZrO2-based binary oxides for CO2 hydrogenation to methanol. Mol. Catal. 2022, 525, 112354. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, L.; Meng, F.; Wang, L.; Zhang, R.; Yang, G.; Li, Z. Boosting CO2 hydrogenation performance for light olefin synthesis over GaZrOx combined with SAPO-34. Appl. Catal. B Environ. 2022, 305, 121042. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, P.; Ma, L.; Yang, G.; Zhang, R.; Wang, B.; Hu, Y.; Li, Z. Unraveling the role of GaZrOx structure and oxygen vacancy in bifunctional catalyst for highly active and selective conversion of syngas into light olefins. Chem. Eng. J. 2023, 467, 143500. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, Z.; Xu, Y.; Qin, X.; Tang, X.; Xie, Z.; Zhang, J.; Song, C.; Yao, S.; Zhou, W.; et al. Cu-supported nano-ZrZnOx as a highly active inverse catalyst for low temperature methanol synthesis from CO2 hydrogenation. Appl. Catal. B Environ. 2024, 344, 123656. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Feng, Z.; Jiang, Y.; Hu, H.; Qu, Y.; Tang, S.; Li, Z.; Liu, J.; Wang, J.; et al. Hydrogenation of CO2 to Light Olefins over ZnZrOx/SSZ-13. Angew. Chem. Int. Ed. 2024, 63, e202316874. [Google Scholar] [CrossRef]
- Tong, M.; Gapu Chizema, L.; Chang, X.; Hondo, E.; Dai, L.; Zeng, Y.; Zeng, C.; Ahmad, H.; Yang, R.; Lu, P. Tandem catalysis over tailored ZnO-ZrO2/MnSAPO-34 composite catalyst for enhanced light olefins selectivity in CO2 hydrogenation. Microporous Mesoporous Mater. 2021, 320, 111105. [Google Scholar] [CrossRef]
- Ding, J.; Li, Z.; Xiong, W.; Zhang, Y.; Ye, A.; Huang, W. Structural evolution and catalytic performance in CO2 hydrogenation reaction of ZnO-ZrO2 composite oxides. Appl. Surf. Sci. 2022, 587, 152884. [Google Scholar] [CrossRef]
- Nan, Y.; Mao, Y.; Zha, F.; Yang, Z.; Ma, S.; Tian, H. ZrO2–ZnO–CeO2 integrated with nano-sized SAPO-34 zeolite for CO2 hydrogenation to light olefins. React. Kinet. Mech. Catal. 2022, 135, 2959–2972. [Google Scholar] [CrossRef]
- Zhang, L.; Geng, B.; Wang, P.; Kang, H.; Xiao, H.; Jia, J.; Wu, H. Highly efficient ZnCeZrOx/SAPO-34 catalyst for the direct conversion of CO2 into light olefins under mild reaction conditions. Appl. Catal. A Gen. 2023, 657, 119141. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Qu, Y.; Liu, H.; Tang, C.; Miao, S.; Feng, Z.; An, H.; Li, C. Highly Selective Conversion of Carbon Dioxide to Lower Olefins. ACS Catal. 2017, 7, 8544–8548. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, J.; Zhou, W.; Cheng, K.; Zhang, Q.; Kang, J.; Wang, Y. Highly Active ZnO-ZrO2 Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide. ACS Catal. 2020, 10, 302–310. [Google Scholar] [CrossRef]
- Sha, F.; Tang, S.; Tang, C.; Feng, Z.; Wang, J.; Li, C. The role of surface hydroxyls on ZnZrOx solid solution catalyst in CO2 hydrogenation to methanol. Chin. J. Catal. 2023. [Google Scholar]
- Pinheiro Araújo, T.; Morales-Vidal, J.; Zou, T.; Agrachev, M.; Verstraeten, S.; Willi, P.O.; Grass, R.N.; Jeschke, G.; Mitchell, S.; López, N.; et al. Design of Flame-Made ZnZrOx Catalysts for Sustainable Methanol Synthesis from CO2. Adv. Energy Mater. 2023, 13, 2204122. [Google Scholar] [CrossRef]
- Modak, A.; Ghosh, A.; Bhaumik, A.; Chowdhury, B. CO2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Adv. Colloid Interface Sci. 2021, 290, 102349. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, K.A.; Akpomie, K.G.; Okeke, E.S.; Olisah, C.; Malloum, A.; Maxakato, N.W.; Ighalo, J.O.; Conradie, J.; Ohoro, C.R.; Amaku, J.F.; et al. UiO-66-based metal-organic frameworks for CO2 catalytic conversion, adsorption and separation. Sep. Purif. Technol. 2024, 331, 125456. [Google Scholar] [CrossRef]
- Cheng, Z.; Yong, N.; Fei, C.; Feng, T.; Hua, T.; Yue, C. Metal-organic skeleton materials in carbon dioxide hydrogenation. J. Fuel Chem. 2021, 49, 1444–1457. [Google Scholar]
- Lin, W.; Wei, N.; Yi, Z.; Lei, Y.; Yao, Z.; Gui, G. Problems and Improvement of UiO-66 for CO2 Hydrogenation to Methanol. Mod. Chem. 2023, 43, 58–62+68. [Google Scholar] [CrossRef]
- Yu, J.; Chen, G.; Guo, Q.; Guo, X.; Da Costa, P.; Mao, D. Ultrasmall bimetallic Cu/ZnOx nanoparticles encapsulated in UiO-66 by deposition–precipitation method for CO2 hydrogenation to methanol. Fuel 2022, 324, 124694. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Huang, J.; Liu, X.; Fu, D.; Huang, J.; Li, Q.; Zhan, G. MxOy–ZrO2 (M = Zn, Co, Cu) Solid Solutions Derived from Schiff Base-Bridged UiO-66 Composites as High-Performance Catalysts for CO2 Hydrogenation. ACS Appl. Mater. Interfaces 2019, 11, 33263–33272. [Google Scholar] [CrossRef]
- Tian, H.; Gao, P.; Yang, X.; Jiao, C.; Zha, F.; Chang, Y.; Chen, H. Reaction Mechanisms and Catalytic Performance of CO2 to Aromatics Over M(ZnO, Ga2O3, In2O3)-UiO-66 Catalysts Without Zeolite. ACS Sustain. Chem. Eng. 2023, 11, 14334–14347. [Google Scholar] [CrossRef]
- Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals. Chem. A Eur. J. 2011, 17, 6643–6651. [Google Scholar] [CrossRef]
- Lu, P.; Riswan, M.; Chang, X.; Zhu, K.; Hondo, E.; Nyako, A.; Xing, C.; Du, C.; Chen, S. Hydrogenation of CO2 to light olefins on ZZ/MnSAPO-34@Si-2: Effect of silicalite-2 seeds on the acidity and catalytic activity. Fuel 2022, 330, 125470. [Google Scholar] [CrossRef]
- Chang, X.; Hondo, E.; Hu, Q.; Yu, W.; Ali, K.M.; Nyako, A.; Xing, C.; Yang, Z.; Lu, P. Effect of acidity and oxygen vacancy in Mn loaded SAPO-34 on CO2 hydrogenation to light olefin. Fuel 2023, 353, 129160. [Google Scholar] [CrossRef]
- Athar, M.; Rzepka, P.; Thoeny, D.; Ranocchiari, M.; Anton Van Bokhoven, J. Thermal degradation of defective high-surface-area UiO-66 in different gaseous environments. RSC Adv. 2021, 11, 38849–38855. [Google Scholar] [CrossRef]
- Huang, C.; Wu, Z.; Luo, H.; Zhang, S.; Shao, Z.; Wang, H.; Sun, Y. CO2 Hydrogenation to Methanol over PdZnZr Solid Solution: Effects of the PdZn Alloy and Oxygen Vacancy. ACS Appl. Energy Mater. 2021, 4, 9258–9266. [Google Scholar] [CrossRef]
- Feng, Z.; Tang, C.; Zhang, P.; Li, K.; Li, G.; Wang, J.; Feng, Z.; Li, C. Asymmetric Sites on the ZnZrOx Catalyst for Promoting Formate Formation and Transformation in CO2 Hydrogenation. J. Am. Chem. Soc. 2023, 145, 12663–12672. [Google Scholar] [CrossRef]
Catalysts | CO2. Con % | CO. Sel % | Hydrocarbon Distribution/% (CO2 Free) | Reference | |||
---|---|---|---|---|---|---|---|
CH4 | C2=-C4= | C20-C40 | C5+ | ||||
ZnZrOx/SAPO-34 | 12.6 | 47 | 3 | 80 | 14 | 3 | [29] |
ae-ZnO-ZrO2/H-ZSM-5 b | 16 | 34 | / | / | / | / | [30] |
13%ZnO-ZrO2/Mn0.1SAPO34 | 21.3 | 42.2 | 3.7 | 61.7 | 33.6 | 1.0 | [25] |
CZZ/MnSAPO34@Si-2 | 17.3 | 34.9 | 6.9 | 70 | 20.5 | 2.6 | [41] |
ZZ/4%MnSAPO-34 | 17.3 | 56.8 | 1.2 | 83.2 | 14.2 | 1.4 | [42] |
ZnZrOx/SSZ-13 b | 9.1 | 32 | / | 89 | / | / | [24] |
ZnZrOx-CP/SAPO-34 | 26.6 | 38.9 | 1.3 | 80.9 | 11.9 | 5.9 | this work |
ZnZrOx-M/SAPO-34 | 34.3 | 46.1 | 1.6 | 81.8 | 10.7 | 5.9 | this work |
Catalyst | BET Surface Area a (m²/g) | Micropore Volume b (cm3/g) | Mesopore Volume c (cm3/g) | Pore Diameter d (nm) |
---|---|---|---|---|
ZnZrOx-CP | 25 | 0.001 | 0.038 | 6.0 |
ZnZrOx-M | 46 | 0.017 | 0.037 | 4.8 |
Sample | Parameters | ||
---|---|---|---|
c (Å) | V (Å3) | Diffraction Angles (°) | |
ZnZrOx-CP a | 5.085 ± 0.003 | 65.51 | 30.46 |
ZnZrOx-M a | 5.122 ± 0.004 | 66.61 | 30.35 |
t-ZrO2 b | 5.184 | 67.04 | 30.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, R.; Zheng, H.; Liang, H.; Chen, X.; Tang, J. Catalytic Properties of ZnZrOx Obtained via Metal–Organic Framework Precursors for CO2 Hydrogenation to Prepare Light Olefins. Metals 2025, 15, 380. https://doi.org/10.3390/met15040380
Cai R, Zheng H, Liang H, Chen X, Tang J. Catalytic Properties of ZnZrOx Obtained via Metal–Organic Framework Precursors for CO2 Hydrogenation to Prepare Light Olefins. Metals. 2025; 15(4):380. https://doi.org/10.3390/met15040380
Chicago/Turabian StyleCai, Rundong, Heping Zheng, Hong Liang, Xiankun Chen, and Jianhua Tang. 2025. "Catalytic Properties of ZnZrOx Obtained via Metal–Organic Framework Precursors for CO2 Hydrogenation to Prepare Light Olefins" Metals 15, no. 4: 380. https://doi.org/10.3390/met15040380
APA StyleCai, R., Zheng, H., Liang, H., Chen, X., & Tang, J. (2025). Catalytic Properties of ZnZrOx Obtained via Metal–Organic Framework Precursors for CO2 Hydrogenation to Prepare Light Olefins. Metals, 15(4), 380. https://doi.org/10.3390/met15040380