Prediction of Enthalpy of Mixing of Binary Alloys Based on Machine Learning and CALPHAD Assessments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Feature Descriptor Construction
2.3. Feature Selection Methods
2.4. Model Explanation Methods
Shapley Additive Explanations (SHAP)
2.5. Model Parameter Selection and Training
3. Results and Discussion
3.1. Prediction Results of Different Machine Learning Models
3.2. LightGBM Model for Feature Selection in Binary Alloy Enthalpy of Mixing Prediction
3.3. SHAP Analysis to Explore the Factors Influencing the Enthalpy of Mixing
3.4. LightGBM Model for Prediction of Enthalpy of Mixing of Binary Alloys
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Takeuchi, A.; Inoue, A. Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics 2010, 18, 1779–1789. [Google Scholar] [CrossRef]
- Zhu, A.; Shiflet, G.; Miracle, D. Glass forming ranges of Al–rare earth metal alloys: Thermodynamic and kinetic analysis. Scr. Mater. 2004, 50, 987. [Google Scholar] [CrossRef]
- Deffrennes, G.; Terayama, K.; Abe, T.; Ogamino, E.; Tamura, R. A framework to predict binary liquidus by combining machine learning and CALPHAD assessments. Mater. Des. 2023, 232, 112111. [Google Scholar] [CrossRef]
- Deffrennes, G.; Terayama, K.; Abe, T.; Tamura, R. A machine learning-based classification approach for phase diagram prediction. Mater. Des. 2022, 215, 110497. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Q.; Ding, Z.; Li, F.; Yang, Y. Machine learning guided appraisal and exploration of phase design for high entropy alloys. npj Comput Mater. 2019, 5, 128. [Google Scholar] [CrossRef]
- Li, Y.; Guo, W. Machine-learning model for predicting phase formations of high-entropy alloys. Phys. Rev. Mater. 2019, 3, 095005. [Google Scholar] [CrossRef]
- Hart, G.; Mueller, T.; Toher, C.; Curtarolo, S. Machine learning for alloys. Nat. Rev. Mater. 2021, 6, 730–755. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, F.; Chen, S.; Cao, W. Computational thermodynamics aided high-entropy alloy design. J. Occup. Med. 2012, 64, 839–845. [Google Scholar] [CrossRef]
- Kleppa, O. Thermodynamic analysis of binary liquid alloys of group II B metals-I The systems zinc-cadmium, zinc-gallium, zinc-indium and zinc-tin. Acta Metall. 1958, 6, 225–232. [Google Scholar] [CrossRef]
- Kleppa, O.; King, R. Heat of formation of the solid solutions of zinc, gallium and germanium in copper. Acta Metall. 1962, 10, 1183–1186. [Google Scholar] [CrossRef]
- Yokokawa, H.; Kleppa, O. Thermochemistry of liquid alloys of transition metals II.(Copper+ titanium) at 1372 K. J. Chem. Thermodyn. 1981, 13, 703–715. [Google Scholar] [CrossRef]
- Meschel, S.; Kleppa, O. Standard enthalpies of formation of some rare earth carbides by direct synthesis calorimetry. J. Alloys Compd. 1994, 205, 165–168. [Google Scholar] [CrossRef]
- Boer, F.; Mattens, W.; Boom, R.; Miedema, A.; Niessen, A. Cohesion in Metals: Transition Metal Alloys; North-Holland; Sole distributors for the U.S.A. and Canada, Elsevier Scientific Pub. Co.: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Zhang, R.; Sheng, S.; Liu, B. Predicting the formation enthalpies of binaryintermetallic compounds. Chem. Phys. Lett. 2007, 442, 511–514. [Google Scholar] [CrossRef]
- Sun, S.; Yi, D.; Jiang, Y.; Zang, B.; Xu, C.; Li, Y. An improved atomic size factor used in Miedema’s model for binary transition metal systems. Chem. Phys. Lett. 2011, 513, 149–153. [Google Scholar] [CrossRef]
- Chen, X.; Podloucky, R. Miedema’s model revisited: The parameter φ∗ for Ti, Zr, and Hf. Calphad 2006, 30, 266–269. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhong, X.; Du, Y.; Feng, Y.; He, Y. Enthalpies of formation for the Al-Cu-Ni-Zrquaternary alloys calculated via a combined approach of geometric model and Miedema theory. J. Alloys Compd. 2006, 420, 175–181. [Google Scholar] [CrossRef]
- Zhang, B.; Liao, S.; Shu, X.; Xie, H.; Yuan, X. Theoretical calculation of the mixing enthalpies of 21 IIIB-IVB, IIIB-VB and IVB-VB binary alloy systems. Phys. Metals Metallogr. 2013, 114, 457–468. [Google Scholar] [CrossRef]
- Boom, R.; de Boer, F. Enthalpy of formation of binary solid and liquid Mg alloys-Comparison of Miedema-model calculations with data reported in literature. Calphad. 2020, 68, 101647. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, Z.; Liu, H. Computational Physical Chemistry of Metallurgy and Materials; Metallurgical Industry Press: Beijing, China, 1999. [Google Scholar]
- Gorsse, S.; Senkov, O. About the Reliability of CALPHAD Predictions in Multicomponent Systems. Entropy 2018, 20, 899. [Google Scholar] [CrossRef]
- Mukhamedov, B.; Karavaev, K.; Abrikosov, I. Machine learning prediction of thermodynamic and mechanical properties of multicomponent Fe-Cr-based alloys. Phys. Rev. Mater. 2021, 5, 104407. [Google Scholar] [CrossRef]
- Kumar, S.; Thakur, A.; Jindal, V.; Muralidharan, K. A Neural Network Driven Approach for Characterizing the Interplay Between Short Range Ordering and Enthalpy of Mixing of Binary Subsystems in the NbTiVZr High Entropy Alloy. J. Phase Equilib. Diffus. 2023, 44, 520–538. [Google Scholar] [CrossRef]
- Casillas-Trujillo, L.; Parackal, A.; Armiento, R.; Alling, B. Evaluating and improving the predictive accuracy of mixing enthalpies and volumes in disordered alloys from universal pretrained machine learning potentials. Phys. Rev. Mater. 2024, 8, 113803. [Google Scholar] [CrossRef]
- Deffrennes, G.; Hallstedt, B.; Abe, T.; Bizot, Q.; Fischer, E.; Joubert, J.M.; Terayama, K.; Tamura, R. Data-driven study of the enthalpy of mixing in the liquid phase. Calphad 2024, 87, 102745. [Google Scholar] [CrossRef]
- Cao, Z.; Song, X.; Qiao, Z. Thermodynamic modeling software factSage and its application. Chin. J. Rare Met. 2008, 2, 216–219. [Google Scholar]
- Bale, C.; Chartrand, P.; Degterov, S.; Eriksson, G.; Gheribi, A.; Hack, K.; Jung, I.; Melançon, J.; Pelton, S.; Robelin, C.; et al. FactSage thermochemical software and databases. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Chelikowsky, J.; Anderson, K. Melting point trends in intermetallic alloys. J. Phys. Chem. Solids 1987, 48, 197–205. [Google Scholar] [CrossRef]
- Guan, P.; Viswanathan, V. MeltNet: Predicting alloy melting temperature by machine learning. arXiv 2010, arXiv:2010.14048. [Google Scholar] [CrossRef]
- Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput. Mater. 2016, 2, 16028. [Google Scholar] [CrossRef]
- Ward, L.; Dunn, A.; Faghaninia, A.; Zimmermann, N.; Bajaj, S.; Wang, Q.; Montoya, J.; Chen, J.; Bystrom, K.; Dylla, M.; et al. Matminer: An open source toolkit for materials data mining. Comput. Mater. Sci. 2018, 152, 60–69. [Google Scholar] [CrossRef]
- Ward, L.; O’Keeffe, C.; Stevick, J.; Jelbert, G.; Aykol, M.; Wolverton, C. A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 2018, 159, 102–111. [Google Scholar] [CrossRef]
- Wen, Z.; Duan, N.; Zhang, R.; Li, H.; Wu, Y.; Sun, Z.; Sun, Z. Machine learning-based deoxidizer screening for intensified hydrogen production from steam splitting. J. Clean. Prod. 2024, 449, 141779. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Dong, R.; Hu, J. Mlatticeabc: Generic lattice constant prediction of crystal materials using machine learning. ACS Omega. 2021, 6, 11585–11594. [Google Scholar] [CrossRef]
- Baikov, A. Database on Properties of Chemical Elements, Russian Academy of Sciences. Institute of Metallurgy and Materials Science. Last Database Update 21 February. 2014. Available online: http://phases.imet-db.ru/elements/main.aspx (accessed on 20 September 2024).
- Miedema, A.; Boom, R.; De Boer, F. On the heat of formation of solid alloys. J. Less-Common Met. 1975, 41, 283–298. [Google Scholar] [CrossRef]
- Miedema, A.; De Boer, F.; Boom, R. Model predictions for the enthalpy of formation of transition metal alloys. Calphad 1977, 1, 341. [Google Scholar] [CrossRef]
- Michaelson, H. Relation Between an Atomic Electronegativity Scale and the Work Function. IBM J. Res. Dev. 1978, 22, 72. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhang, B.; Liao, S.; Jin, Z.; Chen, H. Formation enthalpies for fcc metal based binary alloys by embedded atom method. Trans. Nonferrous Met. Soc. China 1998, 8, 60–63. [Google Scholar]
- Zhang, Z.; Li, M.; Flores, K.; Mishra, R. Machine learning formation enthalpies of intermetallics. J. Appl. Phys. 2020, 128, 10. [Google Scholar] [CrossRef]
- Ubaru, S.; Międlar, A.; Saad, Y.; Chelikowsky, J. Formation enthalpies for transition metal alloys using machine learning. Phys. Rev. B 2017, 95, 214102. [Google Scholar] [CrossRef]
- Kinney, J.; Atwal, G. Equitability, mutual information, and the maximal information coefficient. Proc. Natl. Acad. Sci. USA. 2014, 111, 3354–3359. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Yuan, R.; Xue, X.; Wang, J.; Li, J.; Lookman, T. Unsupervised learning-aided extrapolation for accelerated design of superalloys. npj Comput. Mater. 2024, 10, 171. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Hume-Rothery, W.; Mabbott, G.; Channel Evans, K. The freezing points, melting points, and solid solubility limits of the alloys of sliver and copper with the elements of the b sub-groups. Philos. Trans. R. Soc. Lond. Ser. A 1934, 233, 1–97. [Google Scholar]
- Axon, H.; Hume-Rothery, W. The lattice spacings of solid solutions of different elements in aluminium. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1948, 193, 1–24. [Google Scholar]
- Okamoto, H. The Ir-Ru (Iridium-Ruthenium) System. J. Phase Equilib. 1992, 13, 565–567. [Google Scholar] [CrossRef]
- Ran, H.; Du, Z. Thermodynamic assessment of the Ir-Zr system. J. Alloys Compd. 2006, 413, 101–105. [Google Scholar] [CrossRef]
- Wang, C.; Yu, W.; Li, Z.; Liu, X.; Tang, A.; Pan, F. Thermodynamic assessments of the Bi-U and Bi-Mn systems. J. Nucl. Mater. 2011, 412, 66–71. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Jääskeläinen, K.; Luoma, R.; Nuotio, M.; Taskinen, P.; Teppo, O. A thermodynamic analysis of the binary alloy systems Cu-Cr, Cu-Nb and Cu-V. Calphad 1990, 14, 125–137. [Google Scholar] [CrossRef]
Descriptor | Meanings |
---|---|
Number | Atomic number |
MendelevNumber | Mendeleev number |
AtomicWeight | Relative atomic mass |
MeltingT | Melting point |
Column | What column in the periodic table of elements |
Row | What row in the periodic table of elements |
CovalentRadius | Covalent radius |
Electronegativity | Electronegativity |
NsValence | Number of filled s orbitals electrons |
NpValence | Number of filled p orbitals electrons |
NdValence | Number of filled d orbitals electrons |
NfValence | Number of filled f orbitals electrons |
NValence | Number of valence electrons |
NsUnfilled | s orbital not filled with electrons |
NpUnfilled | p orbital not filled with electrons |
NdUnfilled | d orbital not filled with electrons |
NfUnfilled | f orbital not filled with electrons |
NUnfilled | Periphery not filled with electrons |
SpaceGroupNumber | Space group number |
Electronegativity_MB | Electronegativity (Martynov and Batsanov) |
Rs+p | Zunger’s pseudopotential radius |
Work function | Work function |
1st ionization energy | Energy of ionization first |
The cube roots of the electron densities at the Wigner–Seitz cell boundary | |
Molar volume to the 2/3 power | |
Electrochemical equivalent | Electrochemical equivalent |
Bulk modulus | Value of bulk modulus |
Cohesive energy | Cohesive energy |
Parameter | N_Estimators | Max_Depth | Min_Samples_Split | Min_Samples_Leaf | Max_Features |
---|---|---|---|---|---|
Value | 800 | None | 20 | 6 | Log2 |
Parameter | Learning_Rate_Init | Hidden_Layer_Sizes | Activation | Max_Iter |
Value | 0.01 | (50, 50) | relu | 800 |
Parameter | N_Estimators | Min_Child_Samples | Max_Depth | Num_Leaves | Reg_Lambda |
---|---|---|---|---|---|
Value | 1000 | 40 | 15 | 31 | 0.1 |
Parameter | N_Neighbors |
---|---|
Value | 10 |
Model | Dataset | R2 | MAE (kJ/mol) | RMSE (kJ/mol) |
---|---|---|---|---|
LGBM | Train | 0.99 | 0.7 | 1.0 |
Test | 0.92 | 3.5 | 5.0 | |
KNN | Train | 0.93 | 2.6 | 4.8 |
Test | 0.48 | 7.7 | 12.8 | |
RF | Train | 0.99 | 0.8 | 1.4 |
Test | 0.90 | 3.8 | 5.6 | |
MLP | Train | 0.92 | 3.5 | 5.1 |
Test | 0.85 | 4.9 | 6.8 |
Cross-Validation Fold | High-Error Systems | MAEtest (kJ/mol) | MAEtrain (kJ/mol) |
---|---|---|---|
Fold-06 | Ir-Ru | 62.55 | 1.19 |
Fold-10 | Bi-U | 39.8 | 0.88 |
Fold-05 | Ir-Zr | 36.03 | 2.73 |
Fold-11 | Cu-Nb | 31.69 | 3.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Wang, G.; Cao, Z. Prediction of Enthalpy of Mixing of Binary Alloys Based on Machine Learning and CALPHAD Assessments. Metals 2025, 15, 480. https://doi.org/10.3390/met15050480
Huang S, Wang G, Cao Z. Prediction of Enthalpy of Mixing of Binary Alloys Based on Machine Learning and CALPHAD Assessments. Metals. 2025; 15(5):480. https://doi.org/10.3390/met15050480
Chicago/Turabian StyleHuang, Shuangying, Guangyu Wang, and Zhanmin Cao. 2025. "Prediction of Enthalpy of Mixing of Binary Alloys Based on Machine Learning and CALPHAD Assessments" Metals 15, no. 5: 480. https://doi.org/10.3390/met15050480
APA StyleHuang, S., Wang, G., & Cao, Z. (2025). Prediction of Enthalpy of Mixing of Binary Alloys Based on Machine Learning and CALPHAD Assessments. Metals, 15(5), 480. https://doi.org/10.3390/met15050480