Die-Casting Conditions for Pure Aluminum Heat Sink with Thin Fins
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Effect of Plunger Speed, Die Temperature, and Molten Metal Temperature on the Flow Length of Pure Aluminum
3.2. Microstructure of Flow-Length Test Piece of Pure Aluminum Cast Using Spiral Die
3.3. Casting of Heat Sink
3.3.1. Consideration of Plunger Speed
3.3.2. Casting of Pure Aluminum Heat Sink
3.4. Heat Dissipation Properties of Pure Aluminum Heat Sink
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, Y.; Kurkute, V.; Deshmikh, S.M.; Pathan, H.A.; Attar, A.R.; Kahn, S.A. The influence of plate fin heat sink orientation under natural convection on thermal performance: An experimental and numerical study. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 114, 118–129. [Google Scholar] [CrossRef]
- Rasangika, A.H.D.K.; Nasif, M.S.; Pap, W.; Al-Waked, R. Effect of fin spacing on the vibration-assistant thermal performance of heat sink. IOP Conf. Ser.-Earth Environ. Sci. 2023, 1281, 012059. [Google Scholar] [CrossRef]
- Mani, P.; Radhakrishnan, S.; Mahalingam, A.; Vellaiyan, S. Heat dissipation effects of different nanocoated lateral fins an experimental investigation. Therm. Sci. 2024, 28, 293–305. [Google Scholar] [CrossRef]
- Grochalski, K.; Rukat, W.; Jakubek, B.; Wieczorowaki, M.; Słowiński, M.; Sarbinowska, K.; Graboń, W. The influence of geometry, surface texture, and cooling method on the efficiency of heat dissipation through the heat sink-A Review. Materials 2023, 16, 5348. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Wang, Z.; Ahu, C.; Yang, J.; Yang, B. Thermal-hydraulic performance analysis of combed heat sink with open microchannels and embedded pin fins. Energies 2024, 17, 5301. [Google Scholar] [CrossRef]
- Heidarshenas, B.; Abidi, A.; Sajadi, S.M.; Tuan, Y.; EI-Shafay, A.S.; Aybar, H.Ş. Numerical study and optimization of thermal efficiency for a pin fin heat sink with nanofluid flow by modifying flow by modifying heatsink geometry. Case Stud. Therm. Eng. 2024, 55, 104125. [Google Scholar] [CrossRef]
- Wang, J.; Qi, S.; Xu, Z.; Xu, X. Experimental investigation of the thermal-hydraulic characteristics of liquid cooling heat sinks with novel pin fins. Case Stud. Therm. Eng. 2024, 55, 104172. [Google Scholar] [CrossRef]
- Sadi, T.; Sijan, A.R.; Shifa, F.H.M.; Haque, M.R.; Harun-Or-Rashid, M. Numerical investigation of effect of perforated almond. tunnel, and bishop shaped pin fin heat sinks on the hydrothermal performance enhancement. Int. J. Thermofluids 2024, 23, 100727. [Google Scholar] [CrossRef]
- Mallikarjuna, V.; Rajesh, K.; Ramesh, K.; Reddy, B.R.B. Modeling and Optimization of shape of a Heat Sink Fins on Motherboard. J. Comput. Math. Sci. 2015, 65, 228–251. [Google Scholar]
- Durgam, S.; Ghodake, B.; Mohite, S. Numerical investigation on heat sink material for temperature control of electronics. J. Phys. Conf. Ser. 2022, 2312, 012016. [Google Scholar] [CrossRef]
- Pujol, T.; T’Jollyn, I.; Massaguer, E.; Massaguer, A.; Cózar, I. Design optimization of plate-fin heat sink with forced convection for single-module thermoelectric generator. Appl. Therm. Eng. 2023, 221, 119866. [Google Scholar] [CrossRef]
- Fischer, T.; Bissoonauth, C.; Liang, H.; Bai, J. Enabling cross-morphological performance comparison: A case study in heat management design. Mater. Des. 2024, 239, 112826. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, P.K.; Roy, P.K. Effect and analysis of die angle on stress distribution during aluminum rod extrusion process. J. Comput. Technol. 2023, 12, 1–8. [Google Scholar]
- Górecki, K.; Posobkiewicz, K. Cooling systems of power semiconductor devices-a review. Energies 2022, 15, 4566. [Google Scholar] [CrossRef]
- Czerwinski, F. Aluminum alloys for electrical engineering: A review. J. Mater. Sci. 2024, 59, 14847–14892. [Google Scholar] [CrossRef]
- Available online: https://myheatsinks.com/why-pire-aluminum/ (accessed on 25 February 2025).
- Available online: https://www.tokyo-kouatsu.jp/product/heatsink.html (accessed on 25 February 2025).
- Komazaki, T.; Asada, J.; Watanabe, K.; Sasaki, H.; Nishi, N. Effects of Casting Conditions on Flow Length of Thin-Walled Diecasting for ADC 10 Alloy. Imono 1995, 67, 689–695. [Google Scholar]
- Hga, T.; Imamuea, S.; Fuse, H. Fluidity Investigation of Pure Al and Al-Si Alloys. Materials 2021, 14, 5372. [Google Scholar] [CrossRef] [PubMed]
- Asan, Y.E.; Ҫolak, M. Modeling the effect of pour height, casting and mold heating conditions for the analysis of fluidity of different section thickness in die mold casting of Al12Si alloy. J. Sci. Technol. 2022, 15, 14–27. [Google Scholar] [CrossRef]
- Timelli, G.; Bonollo, F. Fluidity of aluminium die castings alloy. Int. J. Cast Met. Res. 2007, 20, 304–311. [Google Scholar] [CrossRef]
- Chen, G.C.; Li, X. Effect of TiC nano-treating on the fluidity and solidification behavior of aluminum alloy 6063. J. Mater. Process. Technol. 2024, 324, 118241. [Google Scholar] [CrossRef]
- Haga, T.; Fuse, H. Die Casting of Lightweight Thin Fin Heat Sink Using Al-25%Si. Metals 2024, 14, 622. [Google Scholar] [CrossRef]
- Available online: https://hishinuma.jp/menu/2013/09/hc50f.html (accessed on 29 January 2025).
- Available online: https://hishinuma.jp/menu/cat/cat132/cat1/ (accessed on 29 January 2025).
- Japan Industrial Standard (JIS) H 5202; Aluminum Alloy Die Castings. Japanese Standards Association: Tokyo, Japan, 2010.
- Han, Z.; Wang, Z.; Sun, Z.; Zhang, B.; Rao, W. Influence of non-uniform ultrasonic vibration on casting fluidity of liquid aluminum alloy. Res. Dev. 2022, 19, 380–386. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Niu, J.; Xu, H.; Ren, X. Enhanced Fluidity of ZL205A Alloy with the Combined Addition of Al-Ti-C and La. Materials 2021, 14, 6169. [Google Scholar] [CrossRef]
- Zou, G.; Chai, Y.; Shen, Q.; Cheng, T.; Zhang, H. Analysis of the Fluidity and Hot Tearing Susceptibility of AlSi3.5Mg0.5Cu0.4 and A356 aluminum alloys. Int. J. Metalcast. 2022, 16, 909–923. [Google Scholar] [CrossRef]
- Haga, T.; Fuse, H. Fluidity of Pure Aluminum in a Narrow Channel Die Gap during Die Casting. Metals 2024, 14, 1133. [Google Scholar] [CrossRef]
- Aoyama, S.; Akase, M.; Sakamoto, K. Evaluation of lubricant film deposit on die casting die surface by measuring glossiness. J. Jpn. Inst. Light Met. 1991, 41, 49–54. [Google Scholar] [CrossRef]
- Haga, T.; Fuse, H.; Terao, M. Fabrication thin heat sink by the die casting of semisolid Al-25%Si. Solid State Phenom. 2018, 285, 423–428. [Google Scholar] [CrossRef]
- Costanza, G.; Quadrini, F.; Tata, E. Pressure effect on Al alloy cast behaviour: Microstructures and mechanical properties. Int. J. Mater. Prod. Technol. 2004, 20, 345–357. [Google Scholar] [CrossRef]
- Abe, Y. Die-casting machine. J. Jpn. Inst. Light Met. 2019, 69, 512–517. [Google Scholar] [CrossRef]
- Fuse, H.; Imamura, S.; Terao, M.; Haga, T. Semisolid die casting of hypereutectic Al-25%ssSi alloy. Mater. Trans. 2020, 61, 993–999. [Google Scholar] [CrossRef]
- Available online: https://group.nikkeikin.co.jp/act/technology/basic.html (accessed on 25 February 2025).
- Available online: https://www.diecasting.or.jp/diecast/pdf/book/pdf_set023-0.pdf (accessed on 25 February 2025).
Material | Cu | Si | Mg | Fe | Zn | Mn | Ti | Bal. |
---|---|---|---|---|---|---|---|---|
Pure Al | 0.00 | 0.04 | 0.00 | 0.10 | 0.03 | 0.00 | 0.00 | Al |
JIS ADC12 | 1.92 | 10.31 | 0.28 | 0.79 | 0.81 | 0.31 | 0.04 | Al |
Al-25%Si | 1.62 | 24.18 | 0.22 | 0.63 | 0.38 | 0.34 | 0.03 | Al |
Condition | Heat Sinks Shown in Figure 2 | Number of Fins | Plunger Speed (m/s) | Die Temperature (°C) | Pouring Temperature of Molten Metal (°C) |
---|---|---|---|---|---|
A1 | Figure 2b | 4 | 1.6 | 30 | 720 |
A2 | Figure 2b | 4 | 1.6 | 30 | 780 |
A3 | Figure 2b | 4 | 1.6 | 150 | 780 |
B1 | Figure 2b | 6 | 1.6 | 30 | 720 |
B2 | Figure 2b | 6 | 1.6 | 150 | 780 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuse, H.; Haga, T. Die-Casting Conditions for Pure Aluminum Heat Sink with Thin Fins. Metals 2025, 15, 911. https://doi.org/10.3390/met15080911
Fuse H, Haga T. Die-Casting Conditions for Pure Aluminum Heat Sink with Thin Fins. Metals. 2025; 15(8):911. https://doi.org/10.3390/met15080911
Chicago/Turabian StyleFuse, Hiroshi, and Toshio Haga. 2025. "Die-Casting Conditions for Pure Aluminum Heat Sink with Thin Fins" Metals 15, no. 8: 911. https://doi.org/10.3390/met15080911
APA StyleFuse, H., & Haga, T. (2025). Die-Casting Conditions for Pure Aluminum Heat Sink with Thin Fins. Metals, 15(8), 911. https://doi.org/10.3390/met15080911