Behavior of the Steel T91 under Multi Axial Loading in Contact with Liquid and Solid Pb
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Specimens
2.3. Tensile Tests
3. Results
3.1. Test Curves
3.2. Fracture Surface
3.3. Cross Section
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lynch, S.P. Metal-Induced Embrittlement of Materials. Mater. Charact. 1992, 28, 279–289. [Google Scholar] [CrossRef]
- Lynch, S.P. Chapter 2: Hydrogen embrittlement (HE) phenomena and mechanisms; Chapter 18: Failures of structures and components by metal-induced embrittlement. In Stress Corrosion Cracking: Theory and Practice; Raja, V.S., Shoji, T., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2011; Volume 1, pp. 90–130, 714–748, eBook ISBN:9780857093769, Hardcover ISBN:9781845696733. [Google Scholar]
- Auger, T.; Lorang, G.; Guérin, S.; Pastol, J.-L.; Gorse, D. Effect of contact conditions on embrittlement of T91 steel by lead-bismuth. J. Nucl. Mater. 2004, 335, 227–231. [Google Scholar] [CrossRef]
- Weisenburger, A.; Schroer, C.; Jianu, A.; Heinzel, A.; Konys, J.; Steiner, H.; Mueller, G.; Fazio, C.; Gessi, A.; Babayan, S.; et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models. J. Nucl. Mater. 2011, 415, 260–269. [Google Scholar] [CrossRef]
- Schroer, C.; Wedemeyer, O.; Skrypnik, A.; Novotny, J.; Konys, J. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead-bismuth eutectic at 450 °C. J. Nucl. Mater. 2012, 431, 105–112. [Google Scholar] [CrossRef]
- Muller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V. Behavior of steels in flowing liquid PbBi eutectic alloy at 420–600 °C after 4000–7200 h. J. Nucl. Mater. 2004, 335, 163–168. [Google Scholar] [CrossRef]
- Hojna, A.; Di Gabriele, F.; Klecka, J.; Burda, J. Behaviour of the steel T91 under uniaxial and multiaxial slow loading in contact with liquid lead. J. Nucl. Mater. 2015, 466, 292–301. [Google Scholar] [CrossRef]
- Alves, M.; Jones, N. Influence of hydrostatic stress on failure of axisymmetric notched specimens. J. Mech. Phys. Solids 1999, 47, 647–667. [Google Scholar] [CrossRef]
- Alves, M.; Jones, N. Failure site of axisymmetric notched specimens as predicted by continuum damage mechanics. In Damage & Fracture Mechanics VI, 1st ed.; Selvadurai, A.P.S., Brebbia, C.A., Eds.; WIT Press: Southampton, UK, 2000; pp. 139–147. ISBN 1-85312-812-0. [Google Scholar]
- Mirone, G.; Corallo, D. A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening. Int. J. Plast. 2010, 26, 348–371. [Google Scholar] [CrossRef]
- Van den Bosch, J. ADS Candidate Materials Compatibility with Liquid Metals in a Neutron Irradiation Environment. Ph.D. Thesis, University of Gent, Gent, Belgium, June 2009. [Google Scholar]
- Savruk, M.P.; Kazberuk, A. Rectangular Specimens with Edge Notches. In Stress Concentration at Notches, 1st ed.; Springer International Publishing: Basel, Switzerland, 2017; pp. 279–322. ISBN 978-3-319-44555-7. [Google Scholar]
- Nicaise, G.; Legris, A.; Vogt, J.B.; Foct, J. Embrittlement of the martensitic steel 91 tested in liquid lead. J. Nucl. Mater. 2001, 296, 256–264. [Google Scholar] [CrossRef]
- Hojna, A.; Di Gabriele, F. On the kinetics of LME for the ferritic martensitic steel T91 immersed in liquid PbBi eutectic. J. Nucl. Mater. 2011, 413, 21–29. [Google Scholar] [CrossRef]
- Seifert, H.P.; Ritter, S.; Hickling, J. Environmentally-assisted cracking of low alloy RPV and piping steels under LWR conditions. In Proceedings of the 11th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Stevenson, WA, USA, 10–14 August 2003. NACE/TMS/ANS, Paper No. 47. [Google Scholar]
Fe | C | Cr | Mo | Mn | Si | Ni | V | Cu | Nb | P | Al | Ti | S | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bal. | 0.102 | 8.895 | 0.889 | 0.401 | 0.235 | 0.121 | 0.202 | 0.080 | 0.079 | 0.019 | 0.010 | 0.004 | 0.0007 | 0.048 |
T (°C) | Rp0.2 (MPa) | Rm (MPa) | Am (%) | A (%) | Z (%) |
---|---|---|---|---|---|
300 | 503 | 621 | 9.4 | 20 | 75 |
350 | 459 | 557 | 7.8 | 18 | 73 |
500 | 464 | 498 | 4.2 | 19 | 85 |
Compound | SnCl2 | NH4Cl | HCl | NaF | ZnCl2 | H2O |
---|---|---|---|---|---|---|
Wt. % | 3.7 | 13.2 | 4.2 | 0.8 | 65.5 | 12.6 |
T (°C) | Specimen | Surface Treatment | Cell Environment | Displacement Rate (m/s) |
---|---|---|---|---|
300 | B97 | as received | Ar + 6% H2 | R1 (2 × 10−6) |
B90 | flux + Pb | Ar + 6% H2 | R1 | |
B07 * | flux + Pb | Argon | R2 (2 × 10−8) | |
350 | B05, B08 *, B92 | as received | Air | R1 |
B01, B06 * | as received | Air | R2 | |
B02, B03 | as received | Pb | R1 | |
B04 | as received | Pb | R2 | |
B87 | flux + Pb | Pb | R1 | |
B88 | flux + Pb | Pb | R2 | |
400 | B85 | as received | Air | R1 |
B86 | as received | Air | R2 | |
B89 | flux + Pb | Pb | R1 | |
B33, B34 | flux + Pb | Pb | R2 | |
450 | B09 * | as received | Air | R1 |
B10 * | as received | Air | R2 | |
B93 | flux + Pb | Pb | R1 | |
B91 | flux + Pb | Pb | R2 |
Spec. | T (°C) | Surface Treatment | Cell Environment | Displ. Rate (m/s) | Fgy (kN) | Fmax (kN) | f_max (mm) | f_final (mm) | LME Max (mm) |
---|---|---|---|---|---|---|---|---|---|
B97 | 300 | as rec. | Ar + 6% H2 | R1 (2 × 10−6) | 5.90 | 7.06 | 1.44 | 2.49 | n.a. |
B90 | flux + Pb | Ar + 6% H2 | R1 | 5.76 | 6.94 | 1.33 | 2.31 | 0.05 | |
B07 * | flux + Pb | Argon | R2 (2 × 10−8) | 5.89 | 7.49 | 1.57 | 2.47 | 0.11 | |
B92 | 350 | as rec. | Air | R1 | 5.59 | 6.81 | 1.40 | 2.39 | n.a. |
B05 | as rec. | Air | R1 | 5.67 | 7.12 | 1.54 | 2.53 | n.a. | |
B08 * | as rec. | Air | R1 | 6.29 | 7.38 | 1.46 | 3.25 | n.a. | |
B06 * | as rec. | Air | R2 | 6.12 | 7.62 | 1.84 | 4.10 | n.a. | |
B02 | as rec. | Lead | R1 | 5.51 | 7.32 | 1.39 | 2.12 | 0.10 | |
B03 | as rec. | Lead | R1 | 5.98 | 7.28 | 1.38 | 2.34 | 0.20 | |
B04 | as rec. | Lead | R2 | 5.26 | 7.42 | 1.45 | 2.05 | 0.40 | |
B87 | flux + Pb | Lead | R1 | 5.43 | 6.73 | 1.10 | 1.40 | 0.55 | |
B88 | flux + Pb | Lead | R2 | 5.46 | 7.07 | 1.45 | 1.98 | 0.60 | |
B85 | 400 | as rec. | Air | R1 | 5.34 | 6.64 | 1.39 | 2.50 | n.a. |
B89 | flux + Pb | Lead | R1 | 5.41 | 6.59 | 1.38 | 2.32 | 0.10 | |
B86 | as rec. | Air | R2 | 5.23 | 6.71 | 1.48 | 2.57 | n.a. | |
B33 | flux + Pb | Lead | R2 | 5.43 | 6.68 | 1.25 | 2.24 | 0.44 | |
B34 | flux + Pb | Lead | R2 | 5.36 | 6.78 | 1.38 | 2.55 | 0.46 | |
B09 * | 450 | as rec. | Air | R1 | 5.30 | 6.80 | 1.47 | 3.17 | n.a. |
B10 * | as rec. | Air | R2 | 5.29 | 6.16 | 1.22 | 3.77 | n.a. | |
B94 | as rec. | Air | R2 | 5.25 | 6.38 | 1.25 | 2.73 | n.a. | |
B93 | flux + Pb | Lead | R1 | 5.29 | 6.19 | 1.40 | 2.59 | 0 | |
B91 | flux + Pb | Lead | R2 | 4.91 | 5.81 | 1.55 | 2.84 | 0 |
Points/Elements | O | Fe | Cr | Si | Zn | Pb |
---|---|---|---|---|---|---|
1 | 18.81 | 67.83 | 11.31 | 0.48 | 0.76 | 0.42 |
2 | 2.76 | 86.55 | 9.64 | 0.83 | 0.22 | |
3 | 3.6 | 86.55 | 9.4 | 1.33 | 0.32 | |
4 | 5.25 | 84.26 | 9.06 | 1.12 | 0.32 | |
5 | 6.01 | 78.18 | 12.54 | 2.64 | 0.64 | |
6 | 4.85 | 80.1 | 12.4 | 1.86 | 0.79 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Gabriele, F.; Hojna, A.; Chocholousek, M.; Klecka, J. Behavior of the Steel T91 under Multi Axial Loading in Contact with Liquid and Solid Pb. Metals 2017, 7, 342. https://doi.org/10.3390/met7090342
Di Gabriele F, Hojna A, Chocholousek M, Klecka J. Behavior of the Steel T91 under Multi Axial Loading in Contact with Liquid and Solid Pb. Metals. 2017; 7(9):342. https://doi.org/10.3390/met7090342
Chicago/Turabian StyleDi Gabriele, Fosca, Anna Hojna, Michal Chocholousek, and Jakub Klecka. 2017. "Behavior of the Steel T91 under Multi Axial Loading in Contact with Liquid and Solid Pb" Metals 7, no. 9: 342. https://doi.org/10.3390/met7090342
APA StyleDi Gabriele, F., Hojna, A., Chocholousek, M., & Klecka, J. (2017). Behavior of the Steel T91 under Multi Axial Loading in Contact with Liquid and Solid Pb. Metals, 7(9), 342. https://doi.org/10.3390/met7090342