Enhanced Soft Magnetic Properties of Iron-Based Powder Cores with Co-Existence of Fe3O4–MnZnFe2O4 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of As-Prepared MnZn Ferrite Sol
2.3. Composite Production
2.4. Material Characterization
3. Results and Discussion
3.1. Characterization of the Soft Magnetic Composites
3.2. Electrical and Magnetic Properties of the Composites
3.3. Core Loss of the Composites and Loss Seperation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Tech. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Guo, Y.G.; Zhu, J.G.; Zhong, J.J. Measurement and modelling of magnetic properties of soft magnetic composite material under 2D vector magnetisations. J. Magn. Magn. Mater. 2006, 302, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.G.; Zhu, J.G.; Lin, Z.W.; Zhong, J.J. 3D vector magnetic properties of soft magnetic composite material. J. Magn. Magn. Mater. 2006, 302, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Hamler, A.; Goričan, V.; Šuštaršič, B.; Sirc, A. The use of soft magnetic composite materials in synchronous electric motor. J. Magn. Magn. Mater. 2006, 304, 816–819. [Google Scholar] [CrossRef]
- Gay, D.E. Soft magnetic composite materials for ac electical applications. Metal Powder Rep. 1997, 52, 42. [Google Scholar] [CrossRef]
- Kong, L.B.; Li, Z.W.; Liu, L.; Huang, R.; Abshinova, M.; Yang, Z.H.; Tang, C.B.; Tan, P.K.; Deng, C.R.; Matitsine, S. Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 2013, 58, 203–259. [Google Scholar] [CrossRef]
- Wang, J.; Fan, X.A.; Wu, Z.; Li, G. Intergranular insulated Fe/SiO2 soft magnetic composite for decreased core loss. Adv. Powder Technol. 2016, 27, 1189–1194. [Google Scholar] [CrossRef]
- Wu, S.; Sun, A.; Lu, Z.; Cheng, C.; Gao, X. Magnetic properties of iron-based soft magnetic composites with SiO2 coating obtained by reverse microemulsion method. J. Magn. Magn. Mater. 2015, 381, 451–456. [Google Scholar] [CrossRef]
- Wu, S.; Sun, A.; Xu, W.; Zhang, Q.; Zhai, F.; Logan, P.; Volinsky, A.A. Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method. J. Magn. Magn. Mater. 2012, 324, 3899–3905. [Google Scholar] [CrossRef]
- Dias, M.M.; Mozetic, H.J.; Barboza, J.S.; Martins, R.M.; Pelegrini, L.; Schaeffer, L. Influence of resin type and content on electrical and magnetic properties of soft magnetic composites (SMCs). Powder Technol. 2013, 237, 213–220. [Google Scholar] [CrossRef]
- Wu, S.; Sun, A.; Lu, Z.; Cheng, C. Fabrication and properties of iron-based soft magnetic composites coated with parylene via chemical vapor deposition polymerization. Mater. Chem. Phys. 2015, 153, 359–364. [Google Scholar] [CrossRef]
- Kollár, P.; Birčáková, Z.; Füzer, J.; Bureš, R.; Fáberová, M. Power loss separation in Fe-based composite materials. J. Magn. Magn. Mater. 2013, 327, 146–150. [Google Scholar] [CrossRef]
- Peng, Y.; Nie, J.; Zhang, W.; Ma, J.; Bao, C.; Cao, Y. Effect of the addition of Al2O3 nanoparticles on the magnetic properties of Fe soft magnetic composites. J. Magn. Magn. Mater. 2016, 399, 88–93. [Google Scholar] [CrossRef]
- Xu, L.; Yan, B. Fe–6.5% Si/SiO2 powder cores prepared by spark plasma sintering: Magnetic properties and sintering mechanism. Int. J. Mod. Phys. B 2017, 31, 16–19. [Google Scholar] [CrossRef]
- Geng, K.; Xie, Y.; Xu, L.; Yan, B. Structure and magnetic properties of ZrO2-coated Fe powders and Fe/ZrO2 soft magnetic composites. Adv. Powder Technol. 2017, 28, 2015–2022. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.; Yang, X.; Yu, R. Chemical synthesis of Fe/Fe3O4 core-shell composites with enhanced soft magnetic performances. J. Magn. Magn. Mater. 2017, 428, 6–11. [Google Scholar] [CrossRef]
- Sunday, K.J.; Hanejko, F.G.; Taheri, M.L. Magnetic and Microstructural Properties of Fe3O4-Coated Fe Powder Soft Magnetic Composites. J. Magn. Magn. Mater. 2016, 423, 164–170. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Effect of curve fitting parameters on quantitative analysis of Fe0.94O and Fe2O3 using XPS. J. Electron Spectrosc. Relat. Phenom. 2006, 152, 6–11. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Lv, J.; Ying, Y.; Yu, J.; Zheng, J.; Qiao, L.; Che, S. Structure and Magnetic Properties of Iron-based Soft Magnetic Composite with Ni-Cu-Zn Ferrite–silicone Insulation Coating. J. Magn. Magn. Mater. 2018, 456, 333–340. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. Effect of warm compaction on the magnetic and electrical properties of Fe-based soft magnetic composites. J. Magn. Magn. Mater. 2007, 313, 182–186. [Google Scholar] [CrossRef]
Sample | Ms (A·m2/kg) | Mr (A·m2/kg) | Mr/Ms |
---|---|---|---|
Fe | 220 | 8.52 | 0.0387 |
Fe3O4 | 84.1 | 8.17 | 0.0971 |
MnZnFe2O4 | 33.2 | 5.40 | 0.163 |
Fe/1 wt. % Fe3O4-MnZnFe2O4 | 216 | 0.507 | 0.00235 |
Fe/2 wt. % Fe3O4-MnZnFe2O4 | 214 | 0.305 | 0.00143 |
Fe/4 wt. % Fe3O4-MnZnFe2O4 | 212 | 0.122 | 0.000575 |
Fe/6 wt. % Fe3O4-MnZnFe2O4 | 207 | 0.0988 | 0.000477 |
Fe3O4 Content (wt. %) | MnZnFe2O4 Content (wt. %) | Density (g·cm−3) | Maximum Relative Permeability | Magnetic Induction (T) | Br (T) | Hc (Oe) |
---|---|---|---|---|---|---|
0 | 0 | 7.56 | 358.2 | 1.88 | 1.172 | 6.5 |
0.5 | 0.5 | 7.35 | 263.7 | 1.81 | 0.263 | 7.7 |
1 | 1 | 7.12 | 243.2 | 1.76 | 0.246 | 8.1 |
2 | 2 | 6.98 | 227.3 | 1.74 | 0.213 | 8.9 |
3 | 3 | 6.92 | 187.6 | 1.70 | 0.176 | 11.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Yan, P.; Yan, B. Enhanced Soft Magnetic Properties of Iron-Based Powder Cores with Co-Existence of Fe3O4–MnZnFe2O4 Nanoparticles. Metals 2018, 8, 702. https://doi.org/10.3390/met8090702
Xie Y, Yan P, Yan B. Enhanced Soft Magnetic Properties of Iron-Based Powder Cores with Co-Existence of Fe3O4–MnZnFe2O4 Nanoparticles. Metals. 2018; 8(9):702. https://doi.org/10.3390/met8090702
Chicago/Turabian StyleXie, Yuye, Pengfei Yan, and Biao Yan. 2018. "Enhanced Soft Magnetic Properties of Iron-Based Powder Cores with Co-Existence of Fe3O4–MnZnFe2O4 Nanoparticles" Metals 8, no. 9: 702. https://doi.org/10.3390/met8090702
APA StyleXie, Y., Yan, P., & Yan, B. (2018). Enhanced Soft Magnetic Properties of Iron-Based Powder Cores with Co-Existence of Fe3O4–MnZnFe2O4 Nanoparticles. Metals, 8(9), 702. https://doi.org/10.3390/met8090702