Experimental Investigation and Design of Hollow Section, Centrifugal Concrete-Filled GFRP Tube Columns
Abstract
:1. Introduction
2. Test Program
2.1. Test Specimens
2.2. Material Properties
2.3. Specimen Preparation
2.4. Test Setup and Instrumentation
3. Test Results and Discussion
3.1. Failure Modes
3.2. Ultimate Condition
3.3. Axial Load–Axial Displacement Behavior
3.4. Axial Load–Axial Strain Behavior
3.5. Axial Load–Lateral Deflection Behavior
3.6. Effect of Initial Eccentricity
4. Design Methods
4.1. DL/T 5030 Technical Code
4.2. AASHTO Guide Specifications
4.3. ACI 440.2R-08 Guide
4.4. Proposal Equations
5. Conclusions
- (1)
- The straight HS-CFGTs and tapered HS-CFGTs generally behave in a comparable manner before the GFRP tube failure. The outward deformation of the GFRP tube, which was vulnerable in HS-CFGT columns, controlled the failure mode of both straight and tapered columns.
- (2)
- The initial imperfection caused by the unevenly thick centrifugal concrete layer, i.e., initial eccentricity should be seriously considered. The initial eccentricity has a considerable effect on the bearing capacity of straight columns, and the longer the member, the more significant the effect.
- (3)
- As the length of the specimen increases, it is shown that the lateral deflection value is even less than the initial eccentricity, indicating that the initial eccentricity has much more obvious influence than column lengths for columns up to 4000 mm.
- (4)
- A coefficient (φe) that accounts for the initial eccentricity is proposed to predict the ultimate bearing capacity of the HS-CFGTs. A coefficient (φl) for the effect of column slenderness is also proposed.
- (5)
- Current design rules ignore the longitudinal compression capacity of FRP tubes and overestimate the confinement effect of FRP on core concrete. Therefore, it is not completely advisable for the proposed HS-CFGT columns.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lignola, G.P.; Prota, A.; Manfredi, G.; Cosenza, E. Experimental Performance of RC Hollow Columns Confined with CFRP. J. Compos. Constr. 2007, 11, 42–49. [Google Scholar] [CrossRef]
- Kusumawardaningsih, Y.; Hadi, M. Comparative behaviour of hollow columns confined with FRP composites. Compos. Struct. 2010, 93, 198–205. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zhu, J.-H.; Feng, Y.; Liu, C.-B. Study on the Corroded Hollow Section RC Columns Strengthened by ICCP-SS System. Buildings 2021, 11, 197. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Chen, J.; Feng, Y.; Liu, C.-B. Compression tests of C-FRCM jacket confined hollow section RC columns. Structures 2021, 31, 961–969. [Google Scholar] [CrossRef]
- Hadi, M.; Wang, W.; Sheikh, M.N. Axial compressive behaviour of GFRP tube reinforced concrete columns. Constr. Build. Mater. 2015, 81, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Teng, J.G.; Yu, T. Compressive Behavior of Double-Skin Tubular Columns with High-Strength Concrete and a Filament-Wound FRP Tube. J. Compos. Constr. 2017, 21, 04017029. [Google Scholar] [CrossRef]
- Wang, F.; Young, B.; Gardner, L. Compressive testing and numerical modelling of concrete-filled double skin CHS with austenitic stainless steel outer tubes. Thin-Walled Struct. 2019, 141, 345–359. [Google Scholar] [CrossRef]
- Wang, F.; Young, B.; Gardner, L. CFDST sections with square stainless steel outer tubes under axial compression: Experimental investigation, numerical modelling and design. Eng. Struct. 2020, 207, 110189. [Google Scholar] [CrossRef]
- Chen, J.; Jin, W.L.; Fu, J. Experimental investigation of thin-walled centrifugal concrete-filled steel tubes under torsion. Thin-Walled Struct. 2008, 46, 1087–1093. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Jin, W.L. Design of thin-walled centrifugal concrete-filled steel tubes under torsion. Thin-Walled Struct. 2009, 47, 271–276. [Google Scholar] [CrossRef]
- Liu, X.L.; Chen, W.F. Reinforced Concrete Centrifugal Pipe Columns. J. Struct. Eng. 1984, 110, 1665–1678. [Google Scholar] [CrossRef]
- Hu, Q.-H.; Xu, G.-L.; Wang, H.-W. Strength calculation of various centrifugal hollow concrete filled steel tube (H-CFST) members under compression. Harbin Gongye Daxue Xuebao/J. Harbin Inst. Technol. 2005, 37, 149–152. [Google Scholar]
- Zhong, S.T.; Xu, G.L. Behaviors of centrifugal hollow concrete filled steel tube (H-CFST) stub columns under axial compression. Harbin Gongye Daxue Xuebao/J. Harbin Inst. Technol. 2006, 9, 38. [Google Scholar]
- Zhang, S.; Zhang, X.; Xu, S.; Li, X.; Hao, J.; Yu, H. Experimental Study of Shear Behavior of Centrifugal Precast High-Strength Concrete Tubular Columns. Tianjin Daxue Xuebao (Ziran Kexue Yu Gongcheng Jishu Ban)/J. Tianjin Univ. Sci. Technol. 2019, 52, 98–106. [Google Scholar] [CrossRef]
- Zhao, Y.-G.; Yan, X.-F.; Lin, S. Compressive strength of axially loaded circular hollow centrifugal concrete-filled steel tubular short columns. Eng. Struct. 2019, 201, 109828. [Google Scholar] [CrossRef]
- Stel’Makh, S.A.; Shcherban, E.M.; Shuyskiy, A.I.; Nazhuev, M.P. Theoretical and Practical Aspects of the Formation of the Variational Structure of Centrifuged Products from Heavy Concrete. Mater. Sci. Forum 2018, 931, 502–507. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Xu, S.; Li, X. Seismic behavior of normal-strength concrete-filled precast high-strength concrete centrifugal tube columns. Adv. Struct. Eng. 2019, 23, 614–629. [Google Scholar] [CrossRef]
- Shcherban, E.; Stel’Makh, S.; Prokopov, A. Features of change in strength and modulus of elasticity of various layers of vibrocentrifuged fiber-reinforced concrete columns of annular section. IOP Conf. Series Mater. Sci. Eng. 2019, 687, 022009. [Google Scholar] [CrossRef]
- Kuranovas, A.; Kvedaras, A.K. Centrifugally Manufactured Hollow Concrete-Filled Steel Tubular Columns. J. Civ. Eng. Manag. 2007, 13, 297–306. [Google Scholar] [CrossRef]
- Al-Saadi, A.U.; Aravinthan, T.; Lokuge, W. Structural applications of fibre reinforced polymer (FRP) composite tubes: A review of columns members. Compos. Struct. 2018, 204, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.J.; Teng, J.G.; Lin, G.; Li, L.J. Large-Scale FRP-Confined Rectangular RC Columns with Section Curvilinearization under Axial Compression. J. Compos. Constr. 2021, 25, 04021020. [Google Scholar] [CrossRef]
- Ranzo, G.; Priestley, M.N. Seismic Performance of Circular Hollow Columns Subjected to High Shear; Structural Systems Research Project; University of California: San Diego, CA, USA, 2001. [Google Scholar]
- Yeh, Y.-K.; Mo, Y.L.; Yang, C.Y. Seismic Performance of Rectangular Hollow Bridge Columns. J. Struct. Eng. 2002, 128, 60–68. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Hassan, M.; Masmoudi, R. Effect of concrete strength and tube thickness on the flexural behavior of prestressed rectangular concrete-filled FRP tubes beams. Eng. Struct. 2019, 205, 110112. [Google Scholar] [CrossRef]
- Yu, F.; Niu, D.T. Effect of slenderness ratio on the bearing capacity of FRP-confined concrete columns. China Civ. Eng. J. 2008, 41, 1000–1131X. [Google Scholar]
- Jiang, T.; Teng, J.G. Behavior and Design of Slender FRP-Confined Circular RC Columns. J. Compos. Constr. 2013, 17, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Tao, Z.; Teng, J.; Han, L.-H.; Lam, L. Experimental behaviour of FRP-confined slender RC columns under eccentric loading. Adv. Polym. Composites Struct. Appl. Constr. 2004, 203–212. [Google Scholar] [CrossRef]
- Jiang, T.; Teng, J. Theoretical model for slender FRP-confined circular RC columns. Constr. Build. Mater. 2012, 32, 66–76. [Google Scholar] [CrossRef] [Green Version]
- DL/T 5030-2014. Technical Code for Concrete Filled Steel Tubular Structures; China Architecture & Building Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- American Association of State Highway and Transportation Officials (AASHTO). AASHTO LRFD Guide Specifications for Design of Concrete-Filled FRP Tubes for Flexural and Axial Members; AASHTO: Washington, DC, USA, 2012. [Google Scholar]
- American Concrete Institute. ACI. Committee 440. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures; ACI 440.2R; Farmington Hills (MI): Farmington Hills, MI, USA, 2017. [Google Scholar]
- GB/T 31539-2015. Reactive Powder Concrete; Standards Press of China: Beijing, China, 2014. [Google Scholar]
- Lam, L.; Teng, J. Design-oriented stress–strain model for FRP-confined concrete. Constr. Build. Mater. 2003, 17, 471–489. [Google Scholar] [CrossRef]
- Lignola, G.P.; Prota, A.; Manfredi, G.; Cosenza, E. Unified theory for confinement of RC solid and hollow circular columns. Compos. Part B Eng. 2008, 39, 1151–1160. [Google Scholar] [CrossRef]
- ENV 1992-1-1: Eurocode 2—Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; European committee for standardisation: Brussels, Belgium, 1991.
Specimen ID | L (mm) | Dtop (mm) | Dbottom (mm) | tf (mm) | tc (mm) | (ei)exp (mm) | (eu)exp (mm) | (eu)exp/ (ei)exp | Pu (kN) | εu | Failure Mode |
---|---|---|---|---|---|---|---|---|---|---|---|
G600-A | 602 | 300 | 300 | 3.0 | 28.4 | 13.5 | 21 | 1.556 | 1992 | 0.0076 | CCa |
G600-B | 601 | 300 | 300 | 3.0 | 30.1 | 13.4 | 26 | 1.940 | 2027 | 0.0076 | CC |
G600-C | 597 | 300 | 300 | 2.8 | 30.0 | 0 | 2 | --- | 2097 | 0.0085 | CC |
G600-D | 589 | 300 | 300 | 3.1 | 32.0 | 1.3 | 11 | 1.183 | 2185 | 0.0094 | CC |
G2000-A | 2000 | 300 | 300 | 3.0 | 32.0 | 8.0 | 13 | 1.625 | 2098 | 0.0038 | CC |
G2000-B | 2000 | 300 | 300 | 3.0 | 30.1 | 5.5 | 12 | 2.182 | 2260 | 0.0038 | CC |
G2000-C | 2000 | 300 | 300 | 3.1 | 32.1 | 5.1 | 11 | 2.157 | 2308 | 0.0037 | CC |
G3000-A | 3005 | 300 | 300 | 3.1 | 30.0 | 7.1 | 23 | 3.239 | 1417 | 0.0032 | CC |
G3000-B | 2997 | 300 | 300 | 3.1 | 31.1 | 7.2 | 21 | 2.917 | 1569 | 0.0042 | CC |
G3000-C | 3001 | 300 | 300 | 3.0 | 31.2 | 5.6 | 49 | 5.179 | 1600 | 0.0034 | CC |
G4000-A | 4005 | 300 | 300 | 3.1 | 31.2 | 10.8 | 67 | 6.204 | 1449 | 0.0027 | CC |
G4000-B | 4003 | 300 | 300 | 3.0 | 32.3 | 10.7 | 64 | 5.981 | 1461 | 0.0022 | CC |
G4000-C | 4001 | 300 | 300 | 2.9 | 32.0 | 12.2 | 49 | 4.016 | 1595 | 0.0030 | CC |
Specimen ID | L (mm) | Dtop (mm) | Dbottom (mm) | tf (mm) | tc (mm) | (ei)exp (mm) | (eu)exp (mm) | (eu)exp/ (ei)exp | γ | Pu (kN) | εu | Failure Mode |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GT600-A | 602 | 300 | 308 | 3.5 | 30.0 | 5.1 | 9.6 | 1.882 | 0.38° | 2131 | 0.0099 | CC |
GT1200-A | 1200 | 300 | 316 | 3.5 | 30.0 | 0.0 | 0.5 | --- | 0.38° | 2524 | 0.0065 | CC |
GT2000-A | 2000 | 300 | 327 | 3.5 | 30.1 | 1.2 | 3.3 | 2.750 | 0.38° | 2244 | 0.0040 | CC |
GT3000-A | 3001 | 300 | 340 | 3.4 | 30.1 | 4.4 | 6.0 | 1.364 | 0.38° | 2527 | 0.0030 | CC |
Tube Type | Nominal Thickness (mm) | Stacking Sequence | Efl (GPa) | fflt (MPa) | Fflc (MPa) | Efh (GPa) | ffht (MPa) |
---|---|---|---|---|---|---|---|
GFRP | 3 | (89°) | 36.9 | 731 | 232 | 9.3 | 55 |
GFRP | 3.5 | (89°) | 37.2 | 731 | 232 | 9.6 | 56 |
fcu (MPa) | Mix Proportions (Relative to the Weight of 525 Cement) | |||||||
---|---|---|---|---|---|---|---|---|
Cement | Water | Superfine Cement | 1μm Quartz Powder | 2.5 mm Quartz Sand | 0.5 mm Quartz Sand | SFb | SPc | |
120 | 1.0 | 0.28 | 0.25 | 0.38 | 1.56 | 0.18 | 0.32 | 0.010 |
Specimen ID | Nu,test (kN) | NDL/T (kNm) | Nu,test/ NDL/T | NAAS (kNm) | Nu,test/ NAAS | NACI (kNm) | Nu,test/ NACI | Nprop (kNm) | Nu,test/ Nprop |
---|---|---|---|---|---|---|---|---|---|
G600-A | 1992 | 2662 | 0.75 | 2231 | 0.89 | 1396 | 1.43 | 1983 | 1.00 |
G600-B | 2027 | 2773 | 0.73 | 2338 | 0.87 | 1470 | 1.38 | 2087 | 0.97 |
G600-C | 2097 | 3050 | 0.69 | 2361 | 0.89 | 1473 | 1.42 | 2082 | 1.01 |
G600-D | 2185 | 3183 | 0.69 | 2473 | 0.88 | 1550 | 1.41 | 2191 | 1.00 |
G2000-A | 2098 | 3012 | 0.70 | 2332 | 0.90 | 1466 | 1.43 | 1985 | 1.06 |
G2000-B | 2260 | 2940 | 0.77 | 2338 | 0.97 | 1470 | 1.54 | 1911 | 1.18 |
G2000-C | 2308 | 3103 | 0.74 | 2479 | 0.93 | 1555 | 1.48 | 2007 | 1.15 |
G3000-A | 1417 | 2857 | 0.50 | 2349 | 0.60 | 1465 | 0.97 | 1716 | 0.83 |
G3000-B | 1569 | 2927 | 0.54 | 2417 | 0.65 | 1512 | 1.04 | 1753 | 0.90 |
G3000-C | 1600 | 2949 | 0.54 | 2406 | 0.67 | 1517 | 1.05 | 1737 | 0.92 |
G4000-A | 1449 | 2823 | 0.51 | 2424 | 0.60 | 1516 | 0.96 | 1563 | 0.93 |
G4000-B | 1461 | 2750 | 0.53 | 2350 | 0.62 | 1479 | 0.99 | 1520 | 0.96 |
G4000-C | 1595 | 2808 | 0.57 | 2444 | 0.65 | 1553 | 1.03 | 1542 | 1.03 |
Mean | 0.64 | 0.78 | 1.24 | 1.00 | |||||
Cov | 0.100 | 0.139 | 0.221 | 0.093 |
Specimen ID | Nu,test (kN) | NDL/T (kNm) | Nu,test/ NDL/T | Nprop (kNm) | Nu,test/ Nprop |
---|---|---|---|---|---|
GT600-A | 2131 | 3036 | 0.70 | 2421 | 0.88 |
GT1200-A | 2524 | 3150 | 0.80 | 2393 | 1.05 |
GT2000-A | 2244 | 3130 | 0.72 | 2357 | 0.95 |
GT3000-A | 2527 | 2976 | 0.85 | 2241 | 1.13 |
Mean | 0.77 | 1.00 | |||
Cov | 0.061 | 0.095 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, B.; Zhu, Y.-H.; Xie, F.; Chen, J.; Liu, C.-B. Experimental Investigation and Design of Hollow Section, Centrifugal Concrete-Filled GFRP Tube Columns. Buildings 2021, 11, 598. https://doi.org/10.3390/buildings11120598
Feng B, Zhu Y-H, Xie F, Chen J, Liu C-B. Experimental Investigation and Design of Hollow Section, Centrifugal Concrete-Filled GFRP Tube Columns. Buildings. 2021; 11(12):598. https://doi.org/10.3390/buildings11120598
Chicago/Turabian StyleFeng, Bing, Ya-Hui Zhu, Fang Xie, Ju Chen, and Cheng-Bin Liu. 2021. "Experimental Investigation and Design of Hollow Section, Centrifugal Concrete-Filled GFRP Tube Columns" Buildings 11, no. 12: 598. https://doi.org/10.3390/buildings11120598
APA StyleFeng, B., Zhu, Y.-H., Xie, F., Chen, J., & Liu, C.-B. (2021). Experimental Investigation and Design of Hollow Section, Centrifugal Concrete-Filled GFRP Tube Columns. Buildings, 11(12), 598. https://doi.org/10.3390/buildings11120598