Sassi of Matera Building Material: High-Resolution Gamma-Ray Spectroscopy Characterization for Radioprotection
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Sassi Site
2.2. Samples and Preparation
2.3. Gamma Spectroscopy and Gamma Index
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pagliuca, A.; Guida, A.; Fatiguso, F. Traditional Architecture Conservation within the System of Modernity: The “Sassi” of Matera. In Proceedings of the Rehabimed Conference, Barcelona, Spain, 12–15 July 2007; Traditional Mediterranean Architecture—Present e Future. pp. 488–490, ISBN 84 87104 79 7. [Google Scholar]
- La Verde, G.; D’Avino, V.; Sabbarese, C.; Ambrosino, F.; Roca, V.; Raulo, A.; Pugliese, M. Radiation protection legislation and sustainable development of a rural green tuff village of Ischia Island. Sustainability 2020, 12, 8374. [Google Scholar] [CrossRef]
- Altaner, S.; Demosthenous, C.; Pozzuoli, A.; Rolandi, G. Alteration history of Mount Epomeo Green Tuff and a related polymictic breccia, Ischia Island, Italy: Evidence for debris avalanche. Bull. Volcanol. 2013, 75, 1–13. [Google Scholar] [CrossRef]
- Schweizer, C.; Edwards, R.D.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilacqua, V.; Jantunen, M.J.; Lai, H.K.; Nieuwenhuijsen, M.J.; Künzli, N. Indoor time–microenvironment–activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [Green Version]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Effects of Ionizing Radiation; UNSCEAR 2006 Report to the General Assembly, with Scientific Annexes; United Nations: New York, NY, USA, 2008. [Google Scholar]
- World Health Organization, Regional Office for Europe. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2010. [Google Scholar]
- Gulan, L.; Valjarevic, A.; Milenkovic, B.; Stevanovic, V.; Milic, G.; Stajic, J.M. Environmental radioactivity with respect to geology of some Serbian spas. J. Radioanal. Nucl. Chem. 2018, 317, 571–578. [Google Scholar] [CrossRef]
- Sanjurjo-Sánchez, J.; Alves, C. Geologic materials and gamma radiation in the built environment. Environ. Chem. Lett. 2017, 15, 561–589. [Google Scholar] [CrossRef]
- Decreto Legislativo n. 101 del 31 Luglio 2020, Attuazione Della Direttiva 2013/59/Euratom che Stabilisce Norme Fondamentali di Sicurezza Relative Alla Protezione Contro i Pericoli Derivanti dall’esposizione Alle Radiazioni Ionizzanti, e che Abroga le Direttive 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom E 2003/122/Euratom e Riordino Della Normative di Settore in Attuazione Dell’articolo 20, Comma 1, Letta A), della Legge 4 Ottobre 2019, n. 177; Gazzetta Ufficiale della Repubblica Italiana: Roma, Italy, 2020.
- European Council. European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionizing radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. OJ EU 2014, 13, 1–73. [Google Scholar]
- European Commission. Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials; Radiation Protection 112; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- Durante, M.; Grossi, G.; Napolitano, M.; Pugliese, M.; Gialanella, G. Chromosome-Damage Induced by High-Let Alpha-Particles in Plateau-Phase C3h 10t1/2 Cells. Int. J. Rad. Biol. 1992, 62, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Grossi, G.; Pugliese, M.; Manti, L.; Nappo, M.; Gialanella, G. Single charged-particle damage to living cells: A new method based on track-etch detectors. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1994, 94, 251–258. [Google Scholar] [CrossRef]
- National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation (BEIR VII); Committee on the Biological Effects of Ionizing Radiations; Board of Radiation Effects Research; Committee on Life Sciences; National Research Council; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- International Agency for Research on Cancer Monographs on the Evaluation of Carcinogenic Risks to Humans. Man-Made Mineral Fibres and Radon; IARC Press 43: Lyon, France, 1988; pp. 33–171. [Google Scholar]
- Lorenzo-González, M.; Torres-Durán, M.; Barbosa-Lorenzo, R.; Provencio-Pulla, M.; Barros-Dios, J.M.; Ruano-Ravina, A. Radon exposure: A major cause of lung cancer. Expert Rev. Respir. Med. 2019, 13, 839–850. [Google Scholar] [CrossRef]
- UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation, Biological Mechanisms of Radiation Actions at Low Doses; United Nations: New York, NY, USA, 2012. [Google Scholar]
- Righi, S.; Bruzzi, L. Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J. Environ. Radioact. 2006, 88, 158–170. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Roca, V. Radiological characterization of natural building materials from the Campania region (Southern Italy). Constr. Build. Mater. 2021, 268, 121087. [Google Scholar] [CrossRef]
- Bochicchio, F.; Campos-Venuti, G.; Piermattei, S.; Nuccetelli, C.; Risica, S.; Tommasino, L.; Torri, G.; Magnoni, M.; Agnesod, G.; Sgorbati, G.; et al. Annual average and seasonal variations of residential radon concentration for all the Italian Regions. Radiat. Meas. 2005, 40, 686–694. [Google Scholar] [CrossRef]
- Pugliese, M.; Quarto, M.; Loffredo, F.; Mazzella, A.; Roca, V. Indoor Radon Concentrations in Dwellings of Ischia Island. J. Environ. Prot. 2013, 4, 37–39. [Google Scholar] [CrossRef]
- Quarto, M.; Pugliese, M.; La Verde, G.; Loffredo, F.; Roca, V. Radon Exposure Assessment and Relative Effective Dose Estimation to Inhabitants of Puglia Region, South Italy. Int. J. Environ. Res. Public Health 2015, 12, 14948–14957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Avino, V.; Pugliese, M.; La Verde, G. Effectiveness of passive ventilation on radon indoor level in Puglia Region according to European Directive 2013/59/EURATOM. Indoor Built Environ. 2020. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Pugliese, M.; La Verde, G.; D’Avino, V.; Roca, V. The first radon potential map of the Campania region (southern Italy). J. Appl. Geochem. 2021, 126, 104890. [Google Scholar] [CrossRef]
- Gaidolfi, L.; Malisan, M.; Bucci, S.; Cappai, M.; Bonomi, M.; Verdi, L.; Bochicchio, F. Radon Measurements in Kindergartens and Schools of Six Italian Regions. Radiat. Prot. Dosim. 1998, 78, 73–76. [Google Scholar] [CrossRef]
- Bochicchio, F.; Ampollini, M.; Antignani, S.; Bruni, B.; Quarto, M.; Venoso, G. Results of the first 5 years of a study on year-to-year variations of radon concentration in Italian dwellings. Radiat. Meas. 2009, 44, 1064–1068. [Google Scholar] [CrossRef]
- Antignani, S.; Venoso, G.; Ampollini, M.; Caprio, M.; Carpentieri, C.; Di Carlo, C.; Caccia, B.; Hunter, N.; Bochicchio, F. A 10-year follow-up study of yearly indoor radon measurements in homes, review of other studies and implications on lung cancer risk estimates. Sci. Total Environ. 2021, 762, 144150. [Google Scholar] [CrossRef]
- Guida, A.; Fatiguso, F.; Pagliuca, A. Building Envelopes Performance Qualities: The “Sassi” of Matera (Italy). In Proceedings of the 9th International Conference on NDT of Art, Jerusalem, Israel, 25–30 May 2008. [Google Scholar]
- Gizzi, F.T.; Sileo, M.; Biscione, M.; Danese, M.; de Buergo, M.A. The conservation state of the Sassi of Matera site (Southern Italy) and its correlation with the environmental conditions analysed through spatial analysis techniques. J. Cult. Herit. 2016, 17, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Laureano, O. I Sassi di Matera. Architettura 2000, 2, 134–139. [Google Scholar]
- Bernardo, M.; De Pascale, F. Matera (Basilicata, Southern Italy): A European model of reuse, sustainability and resilience. Adv. Econ. Bus. 2016, 4, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Cotecchia, V.; Grassi, D. Stato di conservazione dei “Sassi” di Matera (Basilicata) in rapporto alle condizioni geomorfologiche e geomeccaniche del territorio e alle azioni antropiche. Geol. Appl. Idrogeol. 1975, 10, 55–105. [Google Scholar]
- Spilotro, G.; Fidelibus, M.D.; Pellicani, R.; Qeraxhiu, L. La Salvaguardia del Patrimonio Architettonico di Matera: I Materiali Naturali da Costruzione, Nel Tufo e Col Tufo. Caratterizzazione Tecnica delle Calcareniti e Variazioni per Condizioni Ambientali. In Conference Convegno OdG Basilicata: Matera, La Prima Smart City Fondata sulla Geologia; Casa Cava, Italy, 6 Febreuay 2015; GTA: Potenza, Italy, 2016; Volume 25. [Google Scholar] [CrossRef]
- Ciaranfi, N.; Maggiore, M.; Pieri, P.; Rapisardi, L.; Ricchetti, G.; Walsh, N. Considerazioni sulla neotettonica della Fossa bradanica. Contributi Preliminari alla Realizzazione della Carta Neotettonica d’Italia. Prog. Fin. Geodini 1979, 251, 73–95. [Google Scholar]
- Laureano, P. Giardini di Pietra. I Sassi di Matera e La Civiltà Mediterranea; Bollati Boringhieri: Turin, Italy, 1993. [Google Scholar]
- Adozione Piano Regionale Alle Attività Estrattive (P.R.A.E.) L.R. 37/85 Art 33. n50 suppl. del 29; Bollettino Ufficiale della Regione Puglia: Bari, Italy, March 2001.
- Andriani, G.F.; Walsh, N. Fabric, porosity and water permeability of calcarenites (from Apulia SE Italy) used as building and ornamental stone. Bull. Eng. Geol. Env. 2003, 62, 77–84. [Google Scholar] [CrossRef]
- Andriani, G.F.; Walsh, N. Petrophysical and mechanical properties of soft and porous buildings used in Apulian monuments (south Italy). Geo. Soc. Spec. Pub. 2010, 333, 129–141. [Google Scholar] [CrossRef]
- Bonomo, A.E.; Prosser, G.; Rizzo, G.; Sileo, M. Degradation Diagnosis on Gravina Calcarenite: Classification and Damage Indexes on the Sassi di Matera Site (Southern Italy). In Proceedings of the 3rd IMEKO International Conference on Metrology for Archaeology and Cultural Heritage, Lecce, Italy, 23–25 October 2017. [Google Scholar]
- UNI EN ISO 18589-2:2015. Measurement of Radioactivity in the Environment—Soil Guidance for the Selection of the Sampling Strategy, Sampling and Pre-Treatment of Samples; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- Currie, L.A. Limits for qualitative detection and quantitative determination, Application to radiochemistry. Anal. Chem. 1968, 40, 586–593. [Google Scholar] [CrossRef]
- GammaVision® Maestro-PRO Software User’s Manual. Available online: https://www.ortec-online.com/-/media/ametekortec/manuals/a66-mnl.pdf?la=en&revision=9a65ca5e-a6ee-4cf1-b1c9-a7ac37e9b72b (accessed on 9 June 2021).
- Nuccetelli, C.; Risica, S.; Trevisi, R.; Leonardi, F. Natural Radioactivity in Building Materials in the European Union: A Database of Activity Concentrations, Radon Emanations and Radon Exhalation Rates; Rapporto ISTISAN 17/36; Istituto Superiore di Sanità: Rome, Italy, 2017.
- Rizzo, S.; Brai, M.; Basile, S.; Bellia, S.; Hauser, S. Gamma activity and geochemical features of building materials: Estimation of gamma dose rate and indoor radon levels in Sicily. Appl. Radiat. Isot. 2001, 55, 259–265. [Google Scholar] [CrossRef]
Activity Concentration (Bq/kg) | ||||||
---|---|---|---|---|---|---|
Sample | 226Ra | err | 232Th | err | 40K | err |
#1 | 3.52 | 0.74 | 5.85 | 1.93 | 4.02 | 0.80 |
#2 | 3.48 | 0.73 | 5.73 | 1.89 | 4.78 | 0.96 |
#3 | 2.98 | 0.63 | 4.98 | 1.64 | 4.92 | 0.98 |
#4 | 4.25 | 0.89 | 6.2 | 2.04 | 5.37 | 1.07 |
#5 | 2.54 | 0.53 | 5.23 | 1.72 | 4.47 | 0.89 |
#6 | 3.15 | 0.66 | 4.96 | 1.64 | 4.59 | 0.92 |
#7 | 4.75 | 1.00 | 5.35 | 1.77 | 5.04 | 1.01 |
#8 | 3.35 | 0.70 | 5.12 | 1.69 | 4.33 | 0.87 |
#9 | 2.76 | 0.58 | 5.62 | 1.85 | 4.12 | 0.82 |
#10 | 3.12 | 0.66 | 5.58 | 1.84 | 4.28 | 0.86 |
MDA | 1.04 | 0.7 | 1.3 |
Scheme | Activity Concentration (Bq/kg) | |||
---|---|---|---|---|
226Ra | 232Th | 40K | Iγ | |
Sassi of Matera | 3.0 ± 0.7 | 5 ± 2 | 5.0 ± 0.1 | 0.04 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artiola, V.; La Verde, G.; D’Avino, V.; Pugliese, M. Sassi of Matera Building Material: High-Resolution Gamma-Ray Spectroscopy Characterization for Radioprotection. Buildings 2021, 11, 258. https://doi.org/10.3390/buildings11060258
Artiola V, La Verde G, D’Avino V, Pugliese M. Sassi of Matera Building Material: High-Resolution Gamma-Ray Spectroscopy Characterization for Radioprotection. Buildings. 2021; 11(6):258. https://doi.org/10.3390/buildings11060258
Chicago/Turabian StyleArtiola, Valeria, Giuseppe La Verde, Vittoria D’Avino, and Mariagabriella Pugliese. 2021. "Sassi of Matera Building Material: High-Resolution Gamma-Ray Spectroscopy Characterization for Radioprotection" Buildings 11, no. 6: 258. https://doi.org/10.3390/buildings11060258
APA StyleArtiola, V., La Verde, G., D’Avino, V., & Pugliese, M. (2021). Sassi of Matera Building Material: High-Resolution Gamma-Ray Spectroscopy Characterization for Radioprotection. Buildings, 11(6), 258. https://doi.org/10.3390/buildings11060258