A Systematic Review of Construction 4.0 in the Context of the BIM 4.0 Premise
Abstract
:1. Introduction
2. Research Methods
3. Industrial Revolutions: Genesis, Drivers, and Overlaps
3.1. Industries Pre-4IR
3.2. The Fourth Industrial Revolution (4IR)
4. Construction 4.0
4.1. The Construction 4.0 Paradigm
4.2. Drivers of the Construction 4.0
4.2.1. Cyberphysical Systems (CPS) and Digital Twins (DT)
4.2.2. Building Information Modeling (BIM)
4.2.3. Internet of Things (IoT)
4.2.4. Big Data (BD)
4.2.5. Additive Manufacturing (AM)/3D Printing
5. BIM 4.0: Synergies of BIM with Other Main Drivers in Construction 4.0
5.1. BIM and BD
5.2. BIM and IoT
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Berger, R. Digitization in the Construction Industry: Building Europe’s Road to “Construction 4.0”; Roland Berger GMBH: Munich, Germany, 2016; p. 16. [Google Scholar]
- Baldini, G.; Barboni, M.; Bono, F.; Delipetrev, B.; Duch Brown, N.; Fernandez Macias, E.; Gkoumas, K.; Joossens, E.; Kalpaka, A.; Nepelski, D. Digital Transformation in Transport, Construction, Energy, Government and Public Administration; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Forum, W.E. Shaping the Future of Construction: A Breakthrough in Mindset and Technology; World Economic Forum: Geneva, Switzerland, 2016. [Google Scholar]
- Oesterreich, T.D.; Teuteberg, F. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Comput. Ind. 2016, 83, 121–139. [Google Scholar] [CrossRef]
- Mêda, P.; Sousa, H.; Gonçalves, M.; Calvetti, D.; Dias, P.; Camargo, F. People, Process, Technology in Construction 4.0-Balancing Knowledge, Distrust and Motivations. In Proceedings of the 37th CIB W78 Information Technology for Construction Conference (CIB W78), São Paolo, Brazil, 18–20 August 2020; pp. 218–231. [Google Scholar]
- Owen, R.B.; Amor, R.; Dickinson, J.; Prins, M.; Kiviniemi, A. Research Roadmap Report-Integrated Design and Delivery Solutions (IDDS) [CIB Publication: 370]; CIB International Council for Research and Innovation in Building and Construction: Rotterdam, The Netherlands, 2013. [Google Scholar]
- Klinc, R.; Turk, Ž. Construction 4.0-digital transformation of one of the oldest industries. Econ. Bus. Rev. Cent. South-East. Eur. 2019, 21, 393–496. [Google Scholar]
- Sacks, R.; Brilakis, I.; Pikas, E.; Xie, H.S.; Girolami, M. Construction with digital twin information systems. Data Cent. Eng. 2020, 1, e1. [Google Scholar]
- Boton, C.; Rivest, L.; Ghnaya, O.; Chouchen, M. What is at the Root of Construction 4.0: A systematic review of the recent research effort. Arch. Comput. Methods Eng. 2021, 28, 2331–2350. [Google Scholar] [CrossRef]
- Arrotéia, A.V.; Freitas, R.C.; Melhado, S.B. Barriers to BIM adoption: A case study in Brazil. Front. Built Environ. 2021, 7, 16. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, L.; McCabe, B.; Shahi, A. The benefits of and barriers to BIM adoption in Canada. In Proceedings of the ISARC International Symposium on Automation and Robotics in Construction 2019, Banff, AB, Canada, 21–24 May 2019; pp. 152–158. [Google Scholar]
- Chan, D.W.; Olawumi, T.O.; Ho, A.M. Perceived benefits of and barriers to Building Information Modelling (BIM) implementation in construction: The case of Hong Kong. J. Build. Eng. 2019, 25, 100764. [Google Scholar] [CrossRef]
- Charef, R.; Emmitt, S.; Alaka, H.; Fouchal, F. Building information modelling adoption in the European Union: An overview. J. Build. Eng. 2019, 25, 100777. [Google Scholar] [CrossRef]
- Doan, D.T.; GhaffarianHoseini, A.; Naismith, N.; Ghaffarianhoseini, A.; Zhang, T.; Tookey, J. Examining critical perspectives on building information modelling (BIM) adoption in New Zealand. Smart Sustain. Built Environ. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y.; Yang, J.-B. Barriers to BIM implementation strategies in China. Eng. Constr. Archit. Manag. 2019, 26, 554–574. [Google Scholar] [CrossRef]
- Ragab, M.A.; Marzouk, M. BIM Adoption in Construction Contracts: Content Analysis Approach. J. Constr. Eng. Manag. 2021, 147, 04021094. [Google Scholar] [CrossRef]
- ISO 19650-1:2018 Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 1: Concepts and Principles. Available online: https://www.iso.org/standard/68078.html (accessed on 2 July 2021).
- ISO 19650-2:2018 Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 2: Delivery Phase of the Assets. Available online: https://www.iso.org/standard/68080.html (accessed on 2 July 2021).
- ISO 19650-3:2020 Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 3: Operational Phase of the Assets. Available online: https://www.iso.org/standard/75109.html (accessed on 2 July 2021).
- ISO/DIS 19650-4 Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 4: Information Exchange. Available online: https://www.iso.org/standard/78246.html (accessed on 2 July 2021).
- ISO 19650-5:2020 Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 5: Security-Minded Approach to Information Management. Available online: https://www.iso.org/standard/74206.html (accessed on 2 July 2021.).
- ISO/AWI 19650-6 Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 6: Health and Safety. Available online: https://www.iso.org/standard/82705.html (accessed on 2 July 2021).
- VOSviewer. Available online: https://www.vosviewer.com/ (accessed on 15 January 2021).
- Roberts, B.H. The third industrial revolution: Implications for planning cities and regions. Work. Pap. Urban Front 2015, 1, 1. [Google Scholar]
- Fitzsimmons, J. Information technology and the third industrial revolution. Electron. Libr. 1994, 12, 295–297. [Google Scholar] [CrossRef]
- Troxler, P. Making the third industrial revolution—the struggle for polycentric structures and a new peer-production commons in the FabLab community. In Fablabs: Of Machines, Makers and Inventors; Walter-Herrman, J., Büching, C., Eds.; Transcript Verlag: Bielefield, Germany, 2013; pp. 181–198. [Google Scholar]
- Anderson, C. Makers: The New Industrial Revolution; Random House: New York, NY, USA, 2012. [Google Scholar]
- Finkelstein, J.; Newman, D. The third industrial revolution: A special challenge to managers. Organ. Dyn. 1984, 13, 53–65. [Google Scholar] [CrossRef]
- Kaplinsky, R. ‘Technological revolution’and the international division of labour in manufacturing: A place for the Third World? Eur. J. Dev. Res. 1989, 1, 5–37. [Google Scholar] [CrossRef]
- Smith, B.L. The third industrial revolution: Policymaking for the Internet. Columbia Sci. Technol. Law Rev. 2001, 3, 1. [Google Scholar]
- Musso, S. Labor in the Third Industrial Revolution: A Tentative Synthesis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Brucker Juricic, B.; Galic, M.; Marenjak, S. Review of the Construction Labour Demand and Shortages in the EU. Buildings 2021, 11, 17. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution, 1st ed.; Currency Books: New York, NY, USA, 2017. [Google Scholar]
- Sawhney, A.; Riley, M.; Irizarry, J. Construction 4.0: An Innovation Platform for the Built Environment; Routledge: London, UK, 2020. [Google Scholar]
- Kolberg, D.; Zühlke, D. Lean automation enabled by industry 4.0 technologies. IFAC PapersOnLine 2015, 48, 1870–1875. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards future industrial opportunities and challenges. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015; pp. 2147–2152. [Google Scholar]
- Petrillo, A.; De Felice, F.; Cioffi, R.; Zomparelli, F. Fourth industrial revolution: Current practices, challenges, and opportunities. In Digital Transformation in Smart Manufacturing, 1st ed.; Petrillo, A., De Felice, F., Cioffi, Eds.; Intech Open Limited: London, UK, 2018; pp. 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Bagheri, B.; Kao, H.-A. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Wang, L.; Nee, A. Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering 2019, 5, 653–661. [Google Scholar] [CrossRef]
- Bloem, J.; Van Doorn, M.; Duivestein, S.; Excoffier, D.; Maas, R.; Van Ommeren, E. The Fourth Industrial Revolution; LINE UP Boek en Media bv: Groningen, The Netherlands, 2014; pp. 11–15. [Google Scholar]
- Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for Implementing the Strategic Initiative Industrie 4.0: Final Report of the Industrie 4.0 Working Group; Forcschungsunion: Acatech, Germany, 2013; pp. 5–78.
- MacDougall, W. Industrie 4.0: Smart Manufacturing for the Future; Germany Trade & Invest: Berlin, Germany, 2014.
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Jovović, I.; Husnjak, S.; Forenbacher, I.; Maček, S. Innovative application of 5G and blockchain technology in industry 4.0. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 2019, 6, 6. [Google Scholar] [CrossRef]
- Dopico, M.; Gómez, A.; De la Fuente, D.; García, N.; Rosillo, R.; Puche, J. A vision of industry 4.0 from an artificial intelligence point of view. In Proceedings of the Proceedings on the International Conference on Artificial Intelligence (ICAI), Las Vegas, NV, USA, 25–27 July 2016; p. 407. [Google Scholar]
- Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Hung Byers, A. Big Data: The Next Frontier for Innovation, Competition, and Productivity; McKinsey Global Institute: New York, NY, USA, 2011. [Google Scholar]
- Fernández, A.; Del Río, S.; López, V.; Bawakid, A.; Del Jesus, M.J.; Benítez, J.M.; Herrera, F. Big Data with Cloud Computing: An insight on the computing environment, MapReduce, and programming frameworks. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2014, 4, 380–409. [Google Scholar] [CrossRef]
- Purcell, B.M. Big data using cloud computing. J. Technol. Res. 2014, 5, 1. [Google Scholar]
- Lindemann, C.; Jahnke, U.; Moi, M.; Koch, R. Analyzing product lifecycle costs for a better understanding of cost drivers in additive manufacturing. In Proceedings of the 23th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference, Austin, TX, USA, 6–8 August 2012. [Google Scholar]
- Forcael, E.; Ferrari, I.; Opazo-Vega, A.; Pulido-Arcas, J.A. Construction 4.0: A Literature Review. Sustainability 2020, 12, 9755. [Google Scholar] [CrossRef]
- Dallasega, P.; Rauch, E.; Linder, C. Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. Comput. Ind. 2018, 99, 205–225. [Google Scholar] [CrossRef]
- García de Soto, B.; Agustí-Juan, I.; Joss, S.; Hunhevicz, J. Implications of Construction 4.0 to the workforce and organizational structures. Int. J. Constr. Manag. 2019, 19, 1–13. [Google Scholar] [CrossRef]
- Rowsell-Jones, A.; Lowendahl, J.; Howard, C.; Nielsen, T. The 2017 CIO Agenda: Seize the Digital Ecosystem Opportunity; Gartner Inc: Stamford, CT, USA, 2016. [Google Scholar]
- Sawhney, A.; Riley, M.; Irizarry, J.; Pérez, C.T. A proposed framework for Construction 4.0 based on a review of literature. EPiC Ser. Built Environ. 2020, 1, 301–309. [Google Scholar]
- Digital Supply Chains—Data Driven Collaboration. Available online: https://www.gs1.org/sites/default/files/digitalsupplychainsdatadrivencollaboration.pdf (accessed on 5 June 2021).
- Cooper, S. Civil engineering collaborative digital platforms underpin the creation of ‘digital ecosystems’. Civ. Eng. 2018, 171, 1. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Nadeem, A. Towards digitizing the construction industry: State of the art of construction 4.0. In Proceedings of the 10th International Structural Engineering and Construction Conference, Chicago, IL, USA, 1 April 2019. [Google Scholar]
- Anumba, C.J.; Akanmu, A.; Yuan, X.; Kan, C. Cyber—physical systems development for construction applications. Front. Eng. Manag. 2021, 8, 72–87. [Google Scholar] [CrossRef]
- Smith, P. BIM & the 5D project cost manager. Procedia Soc. Behav. Sci. 2014, 119, 475–484. [Google Scholar]
- Trappey, A.J.; Trappey, C.V.; Govindarajan, U.H.; Chuang, A.C.; Sun, J.J. A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0. Adv. Eng. Inform. 2017, 33, 208–229. [Google Scholar] [CrossRef]
- Trotta, D.; Garengo, P. Industry 4.0 key research topics: A bibliometric review. In Proceedings of the 2018 7th International Conference on Industrial Technology and Management (ICITM), Oxford, UK, 7–9 March 2018; IEEE: Oxford, UK, 2018; pp. 113–117. [Google Scholar]
- Sardroud, J.M. Influence of RFID technology on automated management of construction materials and components. Sci. Iran. 2012, 19, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Maskuriy, R.; Selamat, A.; Ali, K.N.; Maresova, P.; Krejcar, O. Industry 4.0 for the construction industry—How ready is the industry? Appl. Sci. 2019, 9, 2819. [Google Scholar] [CrossRef] [Green Version]
- Perrier, N.; Bled, A.; Bourgault, M.; Cousin, N.; Danjou, C.; Pellerin, R.; Roland, T. Construction 4.0: A survey of research trends. J. Inf. Technol. Constr. (ITcon) 2020, 25, 416–437. [Google Scholar] [CrossRef]
- Newman, C.; Edwards, D.; Martek, I.; Lai, J.; Thwala, W.D.; Rillie, I. Industry 4.0 deployment in the construction industry: A bibliometric literature review and UK-based case study. Smart Sustain. Built Environ. 2020. [Google Scholar] [CrossRef]
- Digitalisation in the Construction Sector. Available online: https://ec.europa.eu/docsroom/documents/45547?locale=pt (accessed on 5 June 2021).
- Dillon, T.S.; Zhuge, H.; Wu, C.; Singh, J.; Chang, E. Web-of-things framework for cyber–physical systems. Concurr. Comput. Pract. Exp. 2011, 23, 905–923. [Google Scholar] [CrossRef]
- Chen, N.; Xiao, C.; Pu, F.; Wang, X.; Wang, C.; Wang, Z.; Gong, J. Cyber-physical geographical information service-enabled control of diverse in-situ sensors. Sensors 2015, 15, 2565–2592. [Google Scholar] [CrossRef] [Green Version]
- Shelden, D. Cyber-physical systems and the built environment. Technol. Archit. Des. 2018, 2, 137–139. [Google Scholar] [CrossRef]
- Xia, F.; Vinel, A.; Gao, R.; Wang, L.; Qiu, T. Evaluating IEEE 802.15. 4 for cyber-physical systems. EURASIP J. Wirel. Commun. Netw. 2011, 2011, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bordel, B.; Alcarria, R.; Robles, T.; Martín, D. Cyber–physical systems: Extending pervasive sensing from control theory to the Internet of Things. Pervasive Mob. Comput. 2017, 40, 156–184. [Google Scholar] [CrossRef]
- Kim, S.; Irizarry, J. Exploratory study on factors influencing UAS performance on highway construction projects: As the case of safety monitoring systems. In Proceedings of the Conference on Autonomous and Robotic Construction of Infrastructure, Ames, IA, USA, 2–3 June 2015; p. 132. [Google Scholar]
- Yuan, X.; Anumba, C.J.; Parfitt, M.K. Cyber-physical systems for temporary structure monitoring. Autom. Constr. 2016, 66, 1–14. [Google Scholar] [CrossRef]
- Calvetti, D.; Mêda, P.; Chichorro Gonçalves, M.; Sousa, H. Worker 4.0: The future of sensored construction sites. Buildings 2020, 10, 169. [Google Scholar] [CrossRef]
- Correa, F.R. Cyber-physical systems for construction industry. In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems (ICPS), Saint Petersburg, Russia, 15–18 May 2018; pp. 392–397. [Google Scholar]
- You, Z.; Feng, L. Integration of industry 4.0 related technologies in construction industry: A framework of cyber-physical system. IEEE Access 2020, 8, 122908–122922. [Google Scholar] [CrossRef]
- Cerovsek, T. A review and outlook for a ′Building Information Model′(BIM): A multi-standpoint framework for technological development. Adv. Eng. Inform. 2011, 25, 224–244. [Google Scholar] [CrossRef]
- Munoz-La Rivera, F.; Mora-Serrano, J.; Valero, I.; Oñate, E. Methodological-technological framework for Construction 4.0. Arch. Comput. Methods Eng. 2021, 28, 689–711. [Google Scholar] [CrossRef]
- De Lange, P.; Bähre, B.; Finetti-Imhof, C.; Klamma, R.; Koch, A.; Oppermann, L. Socio-technical Challenges in the Digital Gap between Building Information Modeling and Industry 4.0. In Proceedings of the STPIS@ CAiSE, Essen, Germany, 13 June 2017; pp. 33–46. [Google Scholar]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical review of bim-based LCA method to buildings. Energy Build. 2017, 136, 110–120. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M. Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing. IEEE Access 2017, 5, 20418–20427. [Google Scholar] [CrossRef]
- Megahed, N.A. Towards a theoretical framework for HBIM approach in historic preservation and management. ArchNet Int. J. Arch. Res. 2015, 9, 130–147. [Google Scholar] [CrossRef]
- Wong, J.; Wang, X.; Li, H.; Chan, G. A review of cloud-based BIM technology in the construction sector. J. Inf. Technol. Constr. 2014, 19, 281–291. [Google Scholar]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the construction industry: A review of present status, opportunities, and future trends. Adv. Eng. Inform. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Lin, J.R.; Hu, Z.Z.; Zhang, J.P.; Yu, F.Q. A natural-language-based approach to intelligent data retrieval and representation for cloud BIM. Comput. Aided Civ. Infrastruct. Eng. 2016, 31, 18–33. [Google Scholar] [CrossRef]
- Sun, C.; Jiang, S.; Skibniewski, M.J.; Man, Q.; Shen, L. A literature review of the factors limiting the application of BIM in the construction industry. Technol. Econ. Dev. Econ. 2017, 23, 764–779. [Google Scholar] [CrossRef] [Green Version]
- Barak, R.; Jeong, Y.-S.; Sacks, R.; Eastman, C. Unique requirements of building information modeling for cast-in-place reinforced concrete. J. Comput. Civ. Eng. 2009, 23, 64–74. [Google Scholar] [CrossRef]
- Post, N. Building Information modeling: Snags don’t dampen spirit. In Engineering News Record, December (01); Manhattan: New York, NY, USA, 2008; pp. 30–32. [Google Scholar]
- Chowdhury, T.; Adafin, J.; Wilkinson, S. Review of digital technologies to improve productivity of New Zealand construction industry. J. Inf. Technol. Constr. 2019, 24, 569–587. [Google Scholar]
- Yu, C.; Xu, X.; Lu, Y. Computer-integrated manufacturing, cyber-physical systems and cloud manufacturing–concepts and relationships. Manuf. Lett. 2015, 6, 5–9. [Google Scholar] [CrossRef]
- Delbrügger, T.; Lenz, L.T.; Losch, D.; Roßmann, J. A navigation framework for digital twins of factories based on building information modeling. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–4. [Google Scholar]
- King, M. How Industry 4.0 and BIM Are Shaping the Future of the Construction Environment. Available online: https://www.gim-international.com/content/article/how-industry-4-0-and-bim-are-shaping-the-future-of-the-construction-environment (accessed on 3 April 2021).
- Wang, X.; Chong, H.-Y. Setting new trends of integrated Building Information Modelling (BIM) for construction industry. Constr. Innov. 2015, 15, 2–6. [Google Scholar] [CrossRef]
- Čuš-Babič, N.; Rebolj, D.; Nekrep-Perc, M.; Podbreznik, P. Supply-chain transparency within industrialized construction projects. Comput. Ind. 2014, 65, 345–353. [Google Scholar] [CrossRef]
- Ma, Z.; Ren, Y. Integrated application of BIM and GIS: An overview. Procedia Eng. 2017, 196, 1072–1079. [Google Scholar] [CrossRef]
- Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Autom. Constr. 2013, 31, 241–254. [Google Scholar] [CrossRef]
- Meadati, P.; Irizarry, J.; Akhnoukh, A.K. BIM and RFID integration: A pilot study. In Proceedings of the Second International Conference on Construction in Developing Countries (ICCIDC-II) Advancing and Integrating Construction Education, Research and Practice, Cairo, Egypt, 3–5 August 2010; pp. 570–578. [Google Scholar]
- Li, C.Z.; Zhong, R.Y.; Xue, F.; Xu, G.; Chen, K.; Huang, G.G.; Shen, G.Q. Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction. J. Clean. Prod. 2017, 165, 1048–1062. [Google Scholar] [CrossRef]
- Costin, A.; Pradhananga, N.; Teizer, J. Passive RFID and BIM for real-time visualization and location tracking. In Proceedings of the Construction Research Congress 2014: Construction in a Global Network, Atlanta, GA, USA, 19–21 May 2014; pp. 169–178. [Google Scholar]
- Guo, H.; Yu, Y.; Liu, W.; Zhang, W. Integrated appliation of BIM and RFID in construction safety manangement. J. Eng. Manag. 2014, 28, 87–92. [Google Scholar]
- Machado, R.L.; Vilela, C. Conceptual framework for integrating BIM and augmented reality in construction management. J. Civ. Eng. Manag. 2020, 26, 83–94. [Google Scholar] [CrossRef]
- Wang, X.; Love, P.E.; Kim, M.J.; Park, C.-S.; Sing, C.-P.; Hou, L. A conceptual framework for integrating building information modeling with augmented reality. Autom. Constr. 2013, 34, 37–44. [Google Scholar] [CrossRef]
- Wang, X.; Truijens, M.; Hou, L.; Wang, Y.; Zhou, Y. Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry. Autom. Constr. 2014, 40, 96–105. [Google Scholar] [CrossRef]
- Wang, J.; Sun, W.; Shou, W.; Wang, X.; Wu, C.; Chong, H.-Y.; Liu, Y.; Sun, C. Integrating BIM and LiDAR for real-time construction quality control. J. Intell. Robot. Syst. 2015, 79, 417–432. [Google Scholar] [CrossRef]
- Tan, Y.; Li, S.; Wang, Q. Automated Geometric Quality Inspection of Prefabricated Housing Units Using BIM and LiDAR. Remote. Sens. 2020, 12, 2492. [Google Scholar] [CrossRef]
- Williams, G.; Gheisari, M.; Chen, P.-J.; Irizarry, J. BIM2MAR: An efficient BIM translation to mobile augmented reality applications. J. Manag. Eng. 2015, 31, A4014009. [Google Scholar] [CrossRef]
- Hahanov, V. Cyber Physical Computing for IoT-Driven Services; Springer: Berlin, Germany, 2018. [Google Scholar]
- Kumar, S.A.; Vealey, T.; Srivastava, H. Security in internet of things: Challenges, solutions and future directions. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 5772–5781. [Google Scholar]
- Ning, H.-S.; Xu, Q.-Y. Research on global Internet of Things’ developments and it’s construction in China. Dianzi Xuebao (Acta Electron. Sin.) 2010, 38, 2590–2599. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Li, Y. Design of energy consumption monitoring and energy-saving management system of intelligent building based on the Internet of things. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 3650–3652. [Google Scholar]
- Gamil, Y.; Abdullah, M.A.; Abd Rahman, I.; Asad, M.M. Internet of things in construction industry revolution 4.0. J. Eng. Des. Technol. 2020, 18, 5. [Google Scholar] [CrossRef]
- Da Costa, K.A.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; De Albuquerque, V.H.C. Internet of Things: A survey on machine learning-based intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [Google Scholar] [CrossRef]
- Kouicem, D.E.; Bouabdallah, A.; Lakhlef, H. Internet of things security: A top-down survey. Comput. Netw. 2018, 141, 199–221. [Google Scholar] [CrossRef] [Green Version]
- Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019, 148, 283–294. [Google Scholar]
- Dave, B.; Buda, A.; Nurminen, A.; Främling, K. A framework for integrating BIM and IoT through open standards. Autom. Constr. 2018, 95, 35–45. [Google Scholar] [CrossRef]
- Kim, S.H.; Ryu, H.G.; Kang, C.S. Development of an IoT-based construction site safety management system. In Proceedings of the International Conference on Information Science and Applications, Jeju, Korea, 27–29 April 2018; pp. 617–624. [Google Scholar]
- Chung, W.W.S.; Tariq, S.; Mohandes, S.R.; Zayed, T. IoT-based application for construction site safety monitoring. Int. J. Constr. Manag. 2020, 20, 1–17. [Google Scholar] [CrossRef]
- Kanan, R.; Elhassan, O.; Bensalem, R. An IoT-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. Autom. Constr. 2018, 88, 73–86. [Google Scholar] [CrossRef]
- Park, M.; Park, S.; Song, M.; Park, S. IoT-based Safety Recognition Service for Construction Site. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; pp. 738–741. [Google Scholar]
- Teizer, J.; Wolf, M.; Golovina, O.; Perschewski, M.; Propach, M.; Neges, M.; König, M. Internet of Things (IoT) for integrating environmental and localization data in Building Information Modeling (BIM). In Proceedings of the International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28–30 June 2017. [Google Scholar]
- Chiarello, F.; Trivelli, L.; Bonaccorsi, A.; Fantoni, G. Extracting and mapping industry 4.0 technologies using wikipedia. Comput. Ind. 2018, 100, 244–257. [Google Scholar] [CrossRef]
- Borgia, E. The Internet of Things vision: Key features, applications and open issues. Comput. Commun. 2014, 54, 1–31. [Google Scholar] [CrossRef]
- Li, C.Z.; Xue, F.; Li, X.; Hong, J.; Shen, G.Q. An Internet of Things-enabled BIM platform for on-site assembly services in prefabricated construction. Autom. Constr. 2018, 89, 146–161. [Google Scholar] [CrossRef]
- Louis, J.; Dunston, P.S. Integrating IoT into operational workflows for real-time and automated decision-making in repetitive construction operations. Autom. Constr. 2018, 94, 317–327. [Google Scholar] [CrossRef]
- Hand, D.J.; Adams, N.M. Data Mining. In Wiley StatsRef: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2014; pp. 1–7. [Google Scholar]
- Yang, C.; Huang, Q.; Li, Z.; Liu, K.; Hu, F. Big Data and cloud computing: Innovation opportunities and challenges. Int. J. Digit. Earth 2017, 10, 13–53. [Google Scholar] [CrossRef] [Green Version]
- Omran, B.A.; Chen, Q. Trend on the implementation of analytical techniques for big data in construction research (2000–2014). In Proceedings of the Construction Research Congress 2016, San Juan, Puerto Rico, 31 May–2 June 2016; pp. 990–999. [Google Scholar]
- Katal, A.; Wazid, M.; Goudar, R.H. Big data: Issues, challenges, tools and good practices. In Proceedings of the 2013 Sixth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2013; pp. 404–409. [Google Scholar]
- Cuzzocrea, A.; Bellatreche, L.; Song, I.-Y. Data warehousing and OLAP over big data: Current challenges and future research directions. In Proceedings of the Sixteenth International Workshop on Data Warehousing and OLAP, San Francisco, CA, USA, 28 October 2013; pp. 67–70. [Google Scholar]
- Agrawal, D.; Bernstein, P.; Bertino, E.; Davidson, S.; Dayal, U.; Franklin, M.; Gehrke, J.; Haas, L.; Halevy, A.; Han, J. Challenges and Opportunities with Big Data 2011-1; Purdue University: West Lafayette, IN, USA, 2011. [Google Scholar]
- Guo, S.; Ding, L.; Luo, H.; Jiang, X. A Big-Data-based platform of workers’ behavior: Observations from the field. Accid. Anal. Prev. 2016, 93, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Kargah-Ostadi, N. Comparison of machine learning techniques for developing performance prediction models. In Proceedings of the Computing in Civil and Building Engineering (2014), Orlando, FL, USA, 23–25 June 2014; pp. 1222–1229. [Google Scholar]
- Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of big data to smart cities. J. Internet Serv. Appl. 2015, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Webster, C.; Peng, Y.; Chen, X.; Chen, K. Big data in construction waste management: Prospects and challenges. Detritus 2018, 4, 129–139. [Google Scholar] [CrossRef]
- Lu, W. Big data analytics to identify illegal construction waste dumping: A Hong Kong study. Resour. Conserv. Recycl. 2019, 141, 264–272. [Google Scholar] [CrossRef]
- Górecki, J. Big Data as a Project Risk Management Tool. In Risk Management Treatise for Engineering Practitioners; Intech Open Limited: London, UK, 2018. [Google Scholar]
- Keating, S. Beyond 3D printing: The new Dimensionsof additive fabrication. In Designing for Emerging Technologies: UX for Genomics, Robotics, and the Internet of Things; O’Reilly: Newton, MA, USA, 2014; p. 379. [Google Scholar]
- Hull, C.W. Apparatus for Production of Three-Dimensional Objects by Stereolithography. 1984. Available online: https://patents.google.com/patent/US4575330A/en (accessed on 2 July 2021).
- Pegna, J. Exploratory investigation of solid freeform construction. Autom. Constr. 1997, 5, 427–437. [Google Scholar] [CrossRef]
- De Schutter, G.; Lesage, K.; Mechtcherine, V.; Nerella, V.N.; Habert, G.; Agusti-Juan, I. Vision of 3D printing with concrete—technical, economic and environmental potentials. Cem. Concr. Res. 2018, 112, 25–36. [Google Scholar] [CrossRef]
- Mehrpouya, M.; Dehghanghadikolaei, A.; Fotovvati, B.; Vosooghnia, A.; Emamian, S.S.; Gisario, A. The potential of additive manufacturing in the smart factory industrial 4.0: A review. Appl. Sci. 2019, 9, 3865. [Google Scholar] [CrossRef] [Green Version]
- Ghaffar, S.H.; Corker, J.; Fan, M. Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Autom. Constr. 2018, 93, 1–11. [Google Scholar] [CrossRef]
- Khoshevis, B. Additive Fabrication Apparatus and Method. 1996. Available online: https://patents.google.com/patent/US5529471A/en (accessed on 2 July 2021).
- Halicioglu, F.H.; Koralay, S. Applicability analysis of additive manufacturing methods in construction projects. Gradevinar 2020, 72, 335–349. [Google Scholar]
- International, A. F2792-12a-Standard Terminology for Additive Manufacturing Technologies. Rapid Manuf. Assoc. 2013, 12, 10–12. [Google Scholar]
- International Organization for Standardization. Additive Manufacturing: General: Principles: Terminology; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- Al Rashid, A.; Khan, S.A.; Al-Ghamdi, S.G.; Koç, M. Additive manufacturing: Technology, applications, markets, and opportunities for the built environment. Autom. Constr. 2020, 118, 103268. [Google Scholar] [CrossRef]
- Krupík, P. 3D printers as part of Construction 4.0 with a focus on transport constructions. In Proceedings of the IOP Conference Series: Materials Science and Engineering, High Tatras, Slovakia, 23–24 April 2020; p. 012025. [Google Scholar]
- Cor, A. The First on-Site House Has Been Printed in Russia. Available online: http://apiscor.com/en/about/news/first-house (accessed on 20 February 2017).
- Sevenson, B. Shanghai-Based WinSun 3D Prints 6-Story Apartment Building and an Incredible home. Available online: https://www.b3d-online.com/blog-news/shanghai-based-winsun-3d-prints-6-story-apartment-building-and-an-incredible-home (accessed on 20 February 2017).
- Labonnote, N.; Rønnquist, A.; Manum, B.; Rüther, P. Additive construction: State-of-the-art, challenges and opportunities. Autom. Constr. 2016, 72, 347–366. [Google Scholar] [CrossRef]
- Camacho, D.D.; Clayton, P.; O’Brien, W.J.; Seepersad, C.; Juenger, M.; Ferron, R.; Salamone, S. Applications of additive manufacturing in the construction industry–A forward-looking review. Autom. Constr. 2018, 89, 110–119. [Google Scholar] [CrossRef]
- Correa, F. Is BIM big enough to take advantage of big data analytics? In Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), Oulu, Finland, 15–18 June 2015; p. 1. [Google Scholar]
- Lu, W.; Lai, C.C.; Tse, T. BIM and Big Data for Construction Cost Management; Routledge: London, UK, 2018. [Google Scholar]
- Eadie, R.; Browne, M.; Odeyinka, H.; McKeown, C.; McNiff, S. BIM implementation throughout the UK construction project lifecycle: An analysis. Autom. Constr. 2013, 36, 145–151. [Google Scholar] [CrossRef]
- Liu, H.; Al-Hussein, M.; Lu, M. BIM-based integrated approach for detailed construction scheduling under resource constraints. Autom. Constr. 2015, 53, 29–43. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, J.; Yung, P.; Jun, G. Engagement of facilities management in design stage through BIM: Framework and a case study. Adv. Civ. Eng. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Curry, E.; O’Donnell, J.; Corry, E.; Hasan, S.; Keane, M.; O’Riain, S. Linking building data in the cloud: Integrating cross-domain building data using linked data. Adv. Eng. Inform. 2013, 27, 206–219. [Google Scholar] [CrossRef] [Green Version]
- Galić, M.; Nguyen Vu, L.; Feine, I. Weather Forecast as an Additional Dimension to BIM. In Proceedings of the 12th International Conference Organization, Technology And Management in Construction Conference Proceedings, Primošten, Croatia, 2–5 September 2015; p. 355. [Google Scholar]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Akinade, O.O.; Ajayi, S.O.; Alaka, H.A.; Owolabi, H.A. Analysis of critical features and evaluation of BIM software: Towards a plug-in for construction waste minimization using big data. Int. J. Sustain. Build. Technol. Urban Dev. 2015, 6, 211–228. [Google Scholar] [CrossRef]
- Aziz, Z.; Riaz, Z.; Arslan, M. Leveraging BIM and big data to deliver well maintained highways. Facilities 2017, 35, 818–832. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, K.; Abanda, H.; Vidalakis, C.; Wood, G. Bim big data system architecture for asset management: A conceptual framework. In Proceedings of the Joint Conference on Computing in Construction (JC3), Heriot-Watt University School of the Built Environment, Edinburgh, Scotland, 21 July 2017; pp. 289–296. [Google Scholar]
- Chen, H.-M.; Chang, K.-C.; Lin, T.-H. A cloud-based system framework for performing online viewing, storage, and analysis on big data of massive BIMs. Autom. Constr. 2016, 71, 34–48. [Google Scholar] [CrossRef]
- Gbadamosi, A.-Q.; Oyedele, L.; Mahamadu, A.-M.; Kusimo, H.; Bilal, M.; Delgado, J.M.D.; Muhammed-Yakubu, N. Big data for Design Options Repository: Towards a DFMA approach for offsite construction. Autom. Constr. 2020, 120, 103388. [Google Scholar] [CrossRef]
- Venkrbec, V.; Galić, M.; Klanšek, U. Construction process optimisation–review of methods, tools and applications. Građevinar 2018, 70, 593–606. [Google Scholar]
- Bottaccioli, L.; Aliberti, A.; Ugliotti, F.; Patti, E.; Osello, A.; Macii, E.; Acquaviva, A. Building energy modelling and monitoring by integration of IoT devices and building information models. In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; pp. 914–922. [Google Scholar]
- Tagliabue, L.C.; Ciribini, A.L.C. A BIM-Based IoT Approach to the Construction Site Management. IN_BO. Ric. E Progett. Per Il Territ. Città E L’architettura 2018, 9, 136–145. [Google Scholar]
- Wu, C.-M.; Liu, H.-L.; Huang, L.-M.; Lin, J.-F.; Hsu, M.-W. Integrating BIM and IoT technology in environmental planning and protection of urban utility tunnel construction. In Proceedings of the 2018 IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 16–18 November 2018; pp. 198–201. [Google Scholar]
- Sava, G.N.; Pluteanu, S.; Tanasiev, V.; Patrascu, R.; Necula, H. Integration of BIM solutions and IoT in smart houses. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–4. [Google Scholar]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Wu, I.; Liu, C.-C. A visual and persuasive energy conservation system based on BIM and IoT technology. Sensors 2020, 20, 139. [Google Scholar] [CrossRef] [Green Version]
Benefits [4,51,56,57] | Challenges [4,58,59,60,61,62] |
---|---|
adoption of the lifecycle building approach, reduction of waste and efficiency improvement, horizontal, vertical, and longitudinal integration, improving sustainability, cost and time reduction, improved safety performance, enhanced quality of buildings, improvement of the poor image of the construction industry | high initial investments, lack of skilled workforce and the need for enhanced work skills, deficiency of globally agreed standards for the construction industry, data security, i.e., cybersecurity lack of knowledge about Construction 4.0 resistance of the construction industry to change |
Year, Reference | Methodology | Main Findings—Drivers, Aims and Challenges |
---|---|---|
2016, [4] | Systematic literature review; Method and data triangulation | Central 4IR technologies are BIM, Cloud Computing, and IoT; 4IR technologies are at different levels of maturity |
2019, [63] | Bibliometric mapping study method; scoping review technique | There is a lack of a complete understanding of the 4IR concept in the construction industry; there is an active collaboration between BIM and 4IR technologies |
2020, [50] | Bibliometric analysis | 4IR technologies—3D printing, BD, VR, and IoT are essential to understand the Construction 4.0 concept; the USA, UK, and China are leaders in publications regarding Construction 4.0; the number of Construction 4.0 publications is growing exponentially |
2020, [64] | Classification of existing literature | Most research regarding 4IR in the construction industry is focused on the preconstruction stage |
2020, [65] | Synthesis of extant literature; empirical case study | Germany leads in the field of Construction 4.0, followed by China and the United States; residual managerial practices are a barrier to implementing Construction 4.0; main enablers: IoT, Cloud computing, BD, AI and robotics, and cybersecurity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begić, H.; Galić, M. A Systematic Review of Construction 4.0 in the Context of the BIM 4.0 Premise. Buildings 2021, 11, 337. https://doi.org/10.3390/buildings11080337
Begić H, Galić M. A Systematic Review of Construction 4.0 in the Context of the BIM 4.0 Premise. Buildings. 2021; 11(8):337. https://doi.org/10.3390/buildings11080337
Chicago/Turabian StyleBegić, Hana, and Mario Galić. 2021. "A Systematic Review of Construction 4.0 in the Context of the BIM 4.0 Premise" Buildings 11, no. 8: 337. https://doi.org/10.3390/buildings11080337
APA StyleBegić, H., & Galić, M. (2021). A Systematic Review of Construction 4.0 in the Context of the BIM 4.0 Premise. Buildings, 11(8), 337. https://doi.org/10.3390/buildings11080337