Research on Visual Preference of Chinese Courthouse Architecture Appearance
Abstract
:1. Introduction
1.1. Courthouse Architecture
1.2. Visual Preference Appraisal
1.3. Demographic Characteristics
1.4. Research Basis
1.5. Research Questions
- What kind of external space form is more appropriate for Chinese courthouse buildings?
- What physical factors would influence people’s visual preference appraisal of the external space form of courthouse buildings?
- Do people of different demographic characteristics differ from each other in their visual preferences?
2. Research Method
2.1. Research Site
2.2. The Calculation of Buildings’ Physical Properties
2.2.1. Determining the Architectural Style of the Courthouse Buildings
2.2.2. Calculating the Height–Width Ratio of the Courthouse Buildings
2.2.3. Calculating the Window–Wall Ratio of the Courthouse Buildings
2.2.4. Calculating the Size of the Open Ground in Front of the Courthouse Buildings
2.3. The Preference Survey of Participants
3. Results
3.1. The Overall Assessment of the Photos
3.2. Demographic Characteristics and Visual Preference Appraisal
3.3. The Participants’ Gender Difference and the Photos’ Physical Properties
3.4. The Participants’ Age Difference and the Photos’ Physical Properties
3.5. The Participants’ Education Level Difference and the Photos’ Physical Properties
4. Discussion
4.1. Demographic Characteristics and Visual Preference Appraisal
4.2. Demographic Characteristics and Physical Characteristics of Photos
4.2.1. Age and Physical Characteristics of Photos
4.2.2. Gender and Physical Characteristics of the Photos
4.2.3. Education Level and Physical Characteristics of Photos
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rand, A. The Fountainhead; Penguin Group: London, UK, 2014. [Google Scholar]
- Maass, A.; Merici, I.; Villafranca, E.; Furlani, R.; Gaburro, E.; Getrevi, A.; Masserini, M. Intimidating Buildings Can Courthouse Architecture Affect Perceived Likelihood of Conviction. Environ. Behav. 2000, 32, 674–683. [Google Scholar] [CrossRef]
- Bentham, J. A Fragment on Government; Clarendon Press: Oxford, UK, 1891. [Google Scholar]
- Foucault, M. Discipline and Punish. Briarpatch. 1979, 157, 169–183. [Google Scholar]
- Rosenbloom, J.D. Social ideology as seen through courtroom and courthouse architecture. Colum.-VLA JL Arts 1997, 22, 463. [Google Scholar]
- Resnik, J.; Curtis, D.; Tait, A. Constructing Courts: Architecture, the Ideology of Judging, and the Public Sphere Law, Culture and Visual Studies; Springer: Dordrecht, The Netherlands, 2014; pp. 515–545. [Google Scholar]
- Commaille, J. La justice entre détraditionnalisation, néolibéralisation et démocratisation: Vers une théorie de sociologie politique de la justice. La Fonct. Polit. De La Justice Paris La Découverte 2007, 17, 293–321. [Google Scholar]
- Yuan, L.; Youbing, S. An Analysis on the Development of Court Architecture in China. Hous. Real Estate 2017, 12, 284. [Google Scholar]
- Geng, N. Postmodernist architectural thought—Is borrowed from the classical style of postmodernist architecture. Pop. Lit. Art Acad. Ed. 2010, 5, 179–181. [Google Scholar]
- Tang, X.; Wang, X. Landscape visual environment assessment (LVEA): Concept, origin and development. J. Shanghai Jiaotong Univ. 2007, 25, 173–179. [Google Scholar]
- Iverson, W.D. And that’s about the size of it: Visual magnitude as a measurement of the physical landscape. Landsc. J. 1985, 4, 14–22. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Liu, Z. Consensus in visual preferences: The effects of aesthetic quality and landscape types. Urban For. Urban Green. 2016, 20, 210–217. [Google Scholar] [CrossRef]
- Rusnak, M.A.; Rabiega, M. The Potential of Using an Eye Tracker in Architectural Education: Three Perspectives for Ordinary Users, Students and Lecturers. Buildings 2021, 11, 245. [Google Scholar] [CrossRef]
- Sussman, A.; Ward, J. Eye-tracking Boston City Hall to better understand human perception and the architectural experience. New Des. Ideas 2019, 3, 53–59. [Google Scholar]
- Jacobs, M. Psychology of the visual landscape. Res. Urban. Ser. 2011, 2, 41–54. [Google Scholar]
- Bulut, Z.; Yilmaz, H. Determination of waterscape beauties through visual quality assessment method. Environ. Monit. Assess. 2009, 154, 459–468. [Google Scholar] [CrossRef]
- Daniel, T.C. Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landsc. Urban Plan. 2001, 54, 267–281. [Google Scholar] [CrossRef]
- Palmer, J.F.; Hoffman, R.E. Rating reliability and representation validity in scenic landscape assessments. Landsc. Urban Plan. 2001, 54, 149–161. [Google Scholar] [CrossRef]
- Steinitz, C. Visual evaluation models: Some complicating questions regarding memorable scenes. Landsc. Urban Plan. 2001, 54, 283–287. [Google Scholar] [CrossRef]
- Barroso, F.L.; Pinto-Correia, T.; Ramos, I.L.; Surová, D.; Menezes, H. Dealing with landscape fuzziness in user preference studies: Photo-based questionnaires in the Mediterranean context. Landsc. Urban Plan. 2012, 104, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Lam, G. (Ed.) Landscape Architecture: Ideas and Concepts; Pace Publ.: Washington, DC, USA, 2009. [Google Scholar]
- Kalivoda, O.; Vojar, J.; Skřivanová, Z.; Zahradník, D. Consensus in landscape preference judgments: The effects of landscape visual aesthetic quality and respondents’ characteristics. J. Environ. Manag. 2014, 137, 36–44. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J. Demographic groups’ differences in visual preference for vegetated landscapes in urban green space. Sustain. Cities Soc. 2017, 28, 350–357. [Google Scholar] [CrossRef]
- Real, E.; Arce, C.; Sabucedo, J.M. Classification of landscapes using quantitative and categorical data, and prediction of their scenic beauty in north-western Spain. J. Environ. Psychol. 2000, 20, 355–373. [Google Scholar] [CrossRef]
- Buhyoff, G.J. An AI methodology for landscape visual assessments. AI Appl. 1994, 8, 1–13. [Google Scholar]
- Bailey, K.; Blandford, B.; Grossardt, T.; Ripy, J. Planning, technology, and legitimacy: Structured public involvement in integrated transportation and land-use planning in the United States. Environ. Plan. B Plan. Des. 2011, 38, 447–467. [Google Scholar] [CrossRef]
- Yu, K. Cultural variations in landscape preference: Comparisons among Chinese sub-groups and Western design experts. Landsc. Urban Plan. 1995, 32, 107–126. [Google Scholar] [CrossRef]
- Molnarova, K.; Sklenicka, P.; Stiborek, J.; Svobodova, K.; Salek, M.; Brabec, E. Visual preferences for wind turbines: Location, numbers and respondent characteristics. Appl. Energy 2012, 92, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Lindemann-Matthies, P.; Briegel, R.; Schüpbach, B.; Junge, X. Aesthetic preference for a Swiss alpine landscape: The impact of different agricultural land-use with different biodiversity. Landsc. Urban Plan. 2010, 98, 99–109. [Google Scholar] [CrossRef]
- Stumse, E. Demographic differences in the visual preferences for agrarian landscape in western Norway. J. Environ. Psychol. 1996, 16, 17–31. [Google Scholar] [CrossRef]
- Van den Berg, A.E.; Koole, S.L. New wilderness in the Netherlands: An investigation of visual preferences for nature development landscapes. Landsc. Urban Plan. 2006, 78, 362–372. [Google Scholar] [CrossRef]
- Howley, P.; Donoghue, C.O.; Hynes, S. Exploring public preferences for traditional farming landscapes. Landsc. Urban Plan. 2012, 104, 66–74. [Google Scholar] [CrossRef]
- Zube, E.H.; Pitt, D.G.; Evans, G.W. A lifespan developmental study of landscape assessment. J. Environ. Psychol. 1983, 3, 115–128. [Google Scholar] [CrossRef]
- López-Martínez, F. Visual landscape preferences in Mediterranean areas and their socio-demographic influences. Ecol. Eng. 2017, 104, 205–215. [Google Scholar] [CrossRef]
- Branco, P.; Dumoulin, L. La justice en trois dimensions: Représentations, architectures et rituels. Droit Et Société 2014, 2, 485–508. [Google Scholar] [CrossRef]
- Fawcett, W.; Ellingham, I.; Platt, S. Reconciling the architectural preferences of architects and the public: The ordered preference model. Environ. Behav. 2008, 40, 599–618. [Google Scholar] [CrossRef] [Green Version]
- Saruwono, M.; Rashdi, A.M.; Omar, E.O. To house-owners, style does matter. Procedia-Soc. Behav. Sci. 2012, 36, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.R. Visual Art in American Courthouses. In Law, Culture and Visual Studies; Springer: Dordrecht, The Netherlands, 2014; pp. 615–627. [Google Scholar]
- Akalin, A.; Yildirim, K.; Wilson, C.; Kilicoglu, O. Architecture and engineering students’ evaluations of house façades: Preference, complexity and impressiveness. J. Environ. Psychol. 2009, 29, 124–132. [Google Scholar] [CrossRef]
- Ozdemir, A. The effect of window views openness and naturalness on the perception of rooms spaciousness and brightness: A visual preference study. Sci. Res. Essays 2010, 5, 2275–2287. [Google Scholar]
- Lin, L.; Homma, R.; Iki, K. Preferences for a lake landscape: Effects of building height and lake width. Environ. Impact Assess. Rev. 2018, 70, 22–33. [Google Scholar] [CrossRef]
- Yabuki, N.; Miyashita, K.; Fukuda, T. An invisible height evaluation system for building height regulation to preserve good landscapes using augmented reality. Autom. Constr. 2011, 20, 228–235. [Google Scholar] [CrossRef]
- Samavatekbatan, A.; Gholami, S.; Karimimoshaver, M. Assessing the visual impact of physical features of tall buildings: Height, top, color. Environ. Impact Assess. Rev. 2016, 57, 53–62. [Google Scholar] [CrossRef]
- Dupont, L.; Ooms, K.; Antrop, M.; Van Eetvelde, V. Testing the validity of a saliency-based method for visual assessment of constructions in the landscape. Landsc. Urban Plan. 2017, 167, 325–338. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Yacobi, H. Form follows metaphors: A critical discourse analysis of the construction of the Israeli Supreme Court building in Jerusalem. J. Archit. 2004, 9, 219–239. [Google Scholar] [CrossRef]
- Ponterosso, P.; Gaterell, M.; Williams, J. Post occupancy evaluation and internal environmental monitoring of the new BREEAM “Excellent” Land Rover/Ben Ainslie Racing team headquarters offices. Build. Environ. 2018, 146, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Chirapiwat, T. People Places: Design Guidelines for Urban Open Space. Am. Plan. Assoc. J. Am. Plan. Assoc. 1999, 65, 456. [Google Scholar]
- Norouzian-Maleki, S.; Bell, S.; Hosseini, S.B.; Faizi, M.; Saleh-Sedghpour, B. A comparison of neighbourhood liveability as perceived by two groups of residents: Tehran, Iran and Tartu, Estonia. Urban For. Urban Green. 2018, 35, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, L.; Trygg, J.; Wold, S. CV--ANOVA for significance testing of PLS and OPLS® models. J. Chemom. A J. Chemom. Soc. 2008, 22, 594–600. [Google Scholar] [CrossRef]
- Arriaza, M.; Cañas-Ortega, J.F.; Cañas-Madueño, J.A.; Avilés, P.R. Assessing the visual quality of rural landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Yap, B.W.; Sim, C.H. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 2011, 81, 2141–2155. [Google Scholar] [CrossRef]
- Hidalgo, V.; Pulopulos, M.M.; Puig-Perez, S.; Espin, L.; Gomez-Amor, J.; Salvador, A. Acute stress affects free recall and recognition of pictures differently depending on age and sex. Behav. Brain Res. 2015, 292, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Bandes, S.A.; Feigenson, N. Virtual trials: Necessity, invention, and the evolution of the courtroom. Buff. L. Rev. 2020, 68, 1275. [Google Scholar] [CrossRef]
- Grant, A. Hyperbuilding the civilized city: Ethnicity and marginalization in Eastern Tibet. Crit. Asian Stud. 2018, 50, 537–555. [Google Scholar] [CrossRef]
- Kaltenborn, B.P.; Bjerke, T. Associations between environmental value orientations and landscape preferences. Landsc. Urban Plan. 2002, 59, 1–11. [Google Scholar] [CrossRef]
- Qu, Q.X.; Guo, F. Can eye movements be effectively measured to assess product design?: Gender differences should be considered. Int. J. Ind. Ergon. 2019, 72, 281–289. [Google Scholar] [CrossRef]
- Sargezeh, B.A.; Tavakoli, N.; Daliri, M.R. Gender-based eye movement differences in passive indoor picture viewing: An eye-tracking study. Physiol. Behav. 2019, 206, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Abello, R.P.; Bernáldez, F.G. Landscape preference and personality. Landsc. Urban Plan. 1986, 13, 19–28. [Google Scholar] [CrossRef]
- Markus, T.A. Buildings and Power: Freedom and Control in the Origin of Modern Building Types; Routledge: London, UK, 2013. [Google Scholar]
- Zhao, M.; Zhang, J.; Cai, J. Visual preference evaluation on urban landmarks in the process of urbanization: A case study of Shanghai Oriental Pearl Radio TV Tower. J. Asian Archit. Build. Eng. 2021, 20, 493–501. [Google Scholar] [CrossRef]
- Alqudah, D.; Bidin, A.B.; Hussin, M.A.H.B.M. The Impact of Educational Infographic on Students’ Interaction and Perception in Jordanian Higher Education: Experimental Study. Int. J. Instr. 2019, 12, 669–688. [Google Scholar] [CrossRef]
- Vouligny, É.; Domon, G.; Ruiz, J. An assessment of ordinary landscapes by an expert and by its residents: Landscape values in areas of intensive agricultural use. Land Use Policy 2009, 26, 890–900. [Google Scholar] [CrossRef]
- Cody, J.W. Building in China: Henry, K. Murphy’s “Adaptive Architecture,” 1914–1935; Chinese University Press: Beijing, China, 2001. [Google Scholar]
- Montazer, B.; Soltanzadeh, H.; Hosseini, S.B. The Effect of 18th and 19th Centuries Russian Neoclassical Architecture on the Architecture of Iranian Administrative-Service Buildings (During Qajar and First Pahlavi Eras). Bagh-E Nazar. 2019, 16, 73–86. [Google Scholar]
- Ng, W.Y.; Chau, C.K.; Powell, G.; Leung, T.-M. Preferences for street configuration and street tree planting in urban Hong Kong. Urban For. Urban Green. 2015, 14, 30–38. [Google Scholar] [CrossRef]
- Short, M. Assessing the impact of proposals for tall buildings on the built heritage: England’s regional cities in the 21st century. Prog. Plan. 2007, 68, 97–199. [Google Scholar] [CrossRef]
- Branco, P. City/courthouse building: A mirror game. Examining connections between courthouse buildings and location in the urban environment. Int. J. Semiot. Law-Rev. Int. De Sémiotique Jurid. 2019, 32, 597–620. [Google Scholar] [CrossRef]
- McDougall, R. Designing the Courtroom of the Future. In Proceedings of the Paper Delivered at the International Conference on Court Excellence, Singapore, 27–29 January 2016; pp. 27–29. [Google Scholar]
- Tang, J.; Long, Y. Measuring visual quality of street space and its temporal variation: Methodology and its application in the Hutong area in Beijing. Landsc. Urban Plan. 2019, 191, 103436. [Google Scholar] [CrossRef]
- Walpole, P. The Courthouses of Early Virginia: An Architectural History. Va. Q. Rev. 2005, 81, 251. [Google Scholar]
Architectural Style | Number | Proportion |
---|---|---|
Modernist style | 16 | 32.00% |
Post-modernist style | 11 | 22.00% |
Neoclassical style | 23 | 46.00% |
Photo No. | The Length of A (m) | The Length of B (m) | Height–Width Ratio |
---|---|---|---|
No. 1 | 11.1 | 32.1 | 0.35 |
No. 2 | 19.2 | 26.7 | 0.72 |
No. 3 | 18.3 | 24.6 | 0.74 |
No. 4 | 26.7 | 69.3 | 0.39 |
No. 5 | 24.6 | 42.9 | 0.57 |
No. 6 | 12.6 | 78.3 | 0.16 |
No. 7 | 10.5 | 63.6 | 0.16 |
No. 8 | 17.7 | 47.4 | 0.37 |
No. 9 | 18.9 | 54.9 | 0.34 |
Photo No. | Mean Window–Wall Ratio |
---|---|
No. 1 | 74.8 |
No. 2 | 65.4 |
No. 3 | 51.9 |
No. 4 | 49.7 |
No. 5 | 66.1 |
No. 6 | 37.5 |
No. 7 | 77.3 |
No. 8 | 51.8 |
No. 9 | 48.1 |
Demographic Characteristics | Variable |
---|---|
Gender | Female |
Male | |
18–34 years old | |
Age | 35–59 years old |
60 and above | |
Primary education or below | |
Education level | Secondary education |
College education | |
Graduate education |
Score | Implication |
---|---|
1 | Inappropriate |
2 | Not very appropriate |
3 | Medium |
4 | Appropriate |
5 | Very appropriate |
Demographic Characteristics | Variable | Number of Participants | Proportion of Participants |
---|---|---|---|
Gender | Female | 294 | 49.49% |
Male | 300 | 50.51% | |
18–34 years old | 160 | 26.93% | |
Age | 35–59 years old | 284 | 47.81% |
60 and above | 150 | 25.25% | |
Primary education or below | 190 | 31.99% | |
Education level | Secondary education | 194 | 32.66% |
College education | 164 | 27.61% | |
Graduate education | 46 | 7.74% |
Sum of Squares | df | Mean Square | F | Sig | |
---|---|---|---|---|---|
Gender | 6.858 | 2 | 3.429 | 11.845 | 0.01 |
Age | 2.814 | 2 | 1.407 | 3.694 | 0.025 |
Education level | 6.049 | 2 | 2.417 | 6.450 | 0.000 |
Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | |||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Tolerance | VIF | |||
(Constant) | 3.481 | 0.03 | 14.389 | 0.000 | |||
Age | 0.25 | 0.013 | 0.421 | 4.785 | 0.012 | 0.82 | 1.075 |
Gender | −0.47 | 0.011 | −1.344 | −5.033 | 0.001 | 0.516 | 2.231 |
Education level | 0.52 | 0.015 | −1.96 | −6.632 | 0.000 | 0.732 | 6.845 |
Dependent | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | |||
---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Tolerance | VIF | ||||
Scores for male | Constant | 2.784 | 0.269 | 4.125 | 0 | |||
L | 1.982 | 1.474 | 0.424 | 2.812 | 0.01 | 0.874 | 2.412 | |
(R2 = 0.62, N = 150) | A | 0.549 | 2.315 | 0.455 | 2.944 | 0.01 | 0.784 | 2.785 |
H | 1.497 | 1.597 | 0.439 | 1.425 | 0.02 | 1.43 | 1.215 | |
Scores for female | Constant | 6.724 | 1.221 | 6.638 | 0 | |||
(R2 = 0.58, N = 147) | A | 0.897 | 0.364 | 0.897 | 4.121 | 0.001 | 0.782 | 4.271 |
S | 1.865 | 0.562 | 0.812 | 1.365 | 0.002 | 0.415 | 5.348 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | VIF | ||||
18–34 years old | (Constant) | 4.851 | 0.379 | 4.982 | 0 | ||
H | 0.482 | 0.792 | 0.481 | 4.192 | 0.001 | 2.874 | |
R2 = 0.638 n = 65 | A | 0.364 | 0.835 | 0.498 | 4.325 | 0.001 | 3.524 |
S | 0.416 | 0.738 | 0.428 | 3.982 | 0.001 | 2.981 | |
35–59 years old | (Constant) | 9.251 | 0.345 | 4.356 | 0 | ||
R2 = 0.681 n = 127 | S | 2.751 | 1.312 | 2.543 | 4.291 | 0 | 5.435 |
H | 1.192 | 0.942 | 1.821 | 3.982 | 0 | 4.982 | |
60 years old or older | (Constant) | 7.312 | 0.528 | 6.475 | 0 | ||
R2 = 0.714 n = 55 | S | 0.478 | 1.634 | 0.639 | 4.394 | 0 | 4.361 |
H | 0.798 | 1.372 | 0.718 | 3.581 | 0 | 3.982 | |
L | 1.332 | 0.782 | 1.139 | 3.612 | 0 | 4.461 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | |||
---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Tolerance | VIF | ||||
Primary education or below | (Constant) | 4.125 | 0.412 | 7.684 | 0 | |||
R2 = 0.711 n = 95 | S | 0.963 | 2.698 | 0.714 | 4.697 | 0 | 0.367 | 6.258 |
A | 0.873 | 2.183 | 0.682 | 5.291 | 0 | 0.412 | 5.821 | |
Secondary education | (Constant) | 3.856 | 0.392 | 6.854 | 0 | |||
R2 = 0.694 n = 97 | H | 0.426 | 1.482 | 0.347 | 2.528 | 0.02 | 0.521 | 4.528 |
L | 0.652 | 0.831 | 0.472 | 2.481 | 0.01 | 0.471 | 3.752 | |
S | 0.572 | 1.382 | 0.892 | 3.412 | 0 | 0.772 | 4.582 | |
College Education | (Constant) | 4.528 | 0.582 | 2.257 | 0 | |||
R2 = 0.639 n = 82 | L | 0.471 | 1.052 | 0.428 | 4.747 | 0 | 0.782 | 3.127 |
A | 0.398 | 2.821 | 0.376 | 3.471 | 0 | 0.672 | 2.852 | |
S | 0.576 | 0.582 | 0.641 | 4.716 | 0 | 0.418 | 3.251 | |
Graduate education | (Constant) | 6.483 | 0.439 | 3.598 | 0 | |||
R2 = 0.639 n = 23 | L | 0.386 | 2.551 | 0.536 | 4.819 | 0 | 0.834 | 3.982 |
H | 0.471 | 3.412 | 0.672 | 4.112 | 0 | 0.749 | 3.192 | |
A | 0.376 | 3.598 | 0.441 | 2.421 | 0 | 0.582 | 2.932 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Yuan, Y.; Wang, X.; Han, C. Research on Visual Preference of Chinese Courthouse Architecture Appearance. Buildings 2022, 12, 557. https://doi.org/10.3390/buildings12050557
Pan J, Yuan Y, Wang X, Han C. Research on Visual Preference of Chinese Courthouse Architecture Appearance. Buildings. 2022; 12(5):557. https://doi.org/10.3390/buildings12050557
Chicago/Turabian StylePan, Jingyin, Yuping Yuan, Xinyu Wang, and Chenping Han. 2022. "Research on Visual Preference of Chinese Courthouse Architecture Appearance" Buildings 12, no. 5: 557. https://doi.org/10.3390/buildings12050557
APA StylePan, J., Yuan, Y., Wang, X., & Han, C. (2022). Research on Visual Preference of Chinese Courthouse Architecture Appearance. Buildings, 12(5), 557. https://doi.org/10.3390/buildings12050557